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Increments to life and mortality tempo  

Griffith Feeney 1 

Abstract 

This paper introduces and develops the idea of “increments to life.” Increments to life 
are roughly analogous to forces of mortality: they are quantities specified for each age 
and time by a mathematical function of two variables that may be used to describe, 
analyze and model changing length of life in populations. 

The rationale is three-fold. First, I wanted a general mathematical representation of 
Bongaart’s “life extension” pill (Bongaarts and Feeney 2003) allowing for continuous 
variation in age and time. This is accomplished in sections 3-5, to which sections 1-2 
are preliminaries. It turned out to be a good deal more difficult than I expected, partly 
on account of the mathematics, but mostly because it requires thinking in very 
unaccustomed ways. 

Second, I wanted a means of assessing the robustness of the Bongaarts-Feeney 
mortality tempo adjustment formula (Bongaarts and Feeney 2003) against variations in 
increments to life by age. Section 6 shows how the increments to life mathematics 
accomplishes this with an application to the Swedish data used in Bongaarts and Feeney 
(2003). In this application, at least, the Bongaarts-Feeney adjustment is robust. 

Third, I hoped by formulating age-variable increments to life to avoid the slight 
awkwardness of working with conditional rather than unconditional survival functions. 
This third aim has not been accomplished, but this appears to be because it was 
unreasonable to begin with. While it is possible to conceptualize length of life as 
completely described by an age-varying increments to life function, this is not 
consistent with the Bongaarts-Feeney mortality tempo adjustment. 

What seems to be needed, rather, is a model that incorporates two fundamentally 
different kinds of changes in mortality and length of life, one based on the familiar 
force of mortality function, the other based on the increments to life function.  Section 7 
considers heuristically what such models might look like. 

 

                                                        
1 E-mail: feeney@gfeeney.com 
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1. Time-discrete increments to life  

Figure 1 shows cohort survival for two birth cohorts of Swedish females. In the usual 
way of thinking, the survival curve for the later cohort has moved up because risks of 
death have declined, but we might equally well think of the curve for the later cohort as 
having moved to the right as a result of the prolongation of life. 

To quantify this idea, consider the earlier cohort, choose a particular age (x = 50 
years, say) and consider the horizontal distance between the two survival curves at the 
corresponding survival proportion, 1(50, ) 0.6666c t =� (Figure 1), 1t denoting the time 

of birth of the earlier cohort. To calculate this distance we need to know the age to 
which this proportion of persons survive in the later cohort. Interpolating on the values 
for the later cohort we find this age to be 60.65 years, i.e.,

2

(60.65, ) 0.6666
c

t =� . The 

horizontal distance between the two curves at the ordinate value 

1 2(50, ) (60.65, ) 0.6666c ct t= =� �  is thus 1 2, (50) 10.65t t
cλ =  years.  

The difference between any two survival curves may be described as the collection 
of all such horizontal distances. These “increments to life” are plotted in Figure 2. The 
increment for any given age represents “how much longer” persons in the second cohort 
live in a rather special and formal sense. The persons in the second cohort who survive 

to age 1 2, ( )t t
cx xλ+  live , ( )t n

c xλ  years longer than the persons in the first cohort who 

survive to age x. Their advantage is retrospective, however, not prospective. The 
increment to life for older ages may be smaller, zero or negative. 

The area under the increments to life curve is the difference between the areas 
under the survival curves. Since the area under the survival curves gives the expectation 
of life at birth for the two cohorts, we have the following decomposition of the 
difference between the expectations of life at birth in the two cohorts in terms of the 
increments to life values, 

 

1 2,
0 2 0 1 10
( ) ( ) ( ) ( , )t tc c

c ce t e t x d x tλ
∞

− = −∫ �      (1) 

 
where the integral is taken with respect to the first survivorship function. 
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Figure 1:  Survivorship for Swedish Female Cohorts of 1890 and 1900 
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Figure 2:  Time Discrete Increments to Life for Swedish Female Cohorts  
of 1890 and 1900 
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2. Empirical results: Swedish females, 1751-2002  

Increments to life by single years of age may be calculated for successive pairs of 
annual birth cohorts for Swedish females using the data provided in the Human 
Mortality Database (http://www.mortality.org). The database provides period life tables 
by single years of age to age 110 years for Sweden for (as of September 2004) 252 
years, from 1751 through 2002. The xq  values from these tables may be used to 

compute cumulative cohort survival for the birth cohorts of persons born at the 
beginning of each calendar year. Applying the calculation of the preceding section to 
each successive pair of cohorts gives increments to life by single years of age for 
successive pairs of cohorts. These values may be arranged in a table in which rows 
correspond to single years of age and columns to pairs of adjacent birth cohorts and 
therefore to calendar years. 

Figure 3 shows increments to life averaged over successive pairs of birth cohorts 
for the period 1751-1760. It illustrates that increments to life may be negative as well as 
positive, corresponding to a rise in mortality risks and a decline in length of life. Figure 
4 shows increments to life averaged over successive pairs of birth cohorts for the period 
1891-1900. Values are positive here, and the age pattern quite different. The depression 
at young adult ages is notable. 
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Figure 3:  Time-Continuous Cohort Increments to Life, Swedish Females,  
Average over Cohorts of 1751-1760 
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Figure 4:  Time-Continuous Cohort Increments to Life, Swedish Females,  
Average over Cohorts of 1891-1900 
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3. Time-continuous cohort-indexed increments to life  

Let ( , )c x t�  denote the proportion of persons surviving to age x  in the cohort of 

persons born at time t . These values define a two-dimensional surface over the age-time 
plane of the Lexis diagram. This surface may be described by its contour lines, the lines 
on the age-time plane along which proportions surviving are constant. If length of life is 
constant, these contour lines will be straight lines parallel to the time axis. If length of 
life is increasing (decreasing), they will move to higher (lower) ages. The assumption 
that the population age distribution defined by ( , )c x t�  shifts to uniformly to higher 

ages (Bongaarts and Feeney 2002:16) is equivalent to the assumption that the rate of 
change of the contour lines with respect to age at any given time is invariant with 
respect to age. 

Let the rate of change with respect to age of the contour line passing through the 
point ( , )x t  be ( , )x tλ . The directional derivative of the surface defined by ( , )c x t�  in 

the direction ( ( , ),1)x tλ  equals zero because the value of ( , )c x t�  does not change on 

the contour line. We therefore have 
 

( , ) ( , )
( , ) 0c c

c

x t x t
x t

x t
λ∂ ∂

+ =
∂ ∂

� �
,     (2) 

 
where the constant factor in the definition of the directional derivative may be ignored 
since the value is zero. Formula (2) is equivalent to 

 

( , )
( , )

( , )
c

c
c

x t t
x t

x t x
λ

 ∂ ∂= − ∂ ∂ 

�

�
,      (3) 

 
which may be taken as the formal definition of the time-continuous cohort-indexed 
increment to life ( , )c x tλ  at age x  and time t . The partial derivative in the denominator 

shows that empirical increments to life values will tend to be unstable over age intervals 
over which few deaths occur, since for these intervals  ( , )c x t x∂ ∂�  will be close to 

zero. 
Dividing both sides of (2) by ( , )c x t�  and rearranging terms gives 

 
( , ) ( , ) ( , )c x t x t r x t xλ µ = + ,      (4) 
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where ( , )x tµ  denotes the force of mortality at age x   and time t  and ( , )r x t  denotes 

the age-specific growth rate at age x  and time t  of the normalized population ( , )c� i i . 

This shows that values of the increments to life function vary inversely with the values 
of the force of mortality function for any given age and time. 

The definition of increments to life by formula (3) supposes that the values 
( , )c x t�  are given. If we assume instead that values ( , )c x tλ  are given, formula (2) 

defines a partial differential equation that may be solved for the values ( , )c x t�  given 

the boundary condition ( ,0)c x�  for 0x > . 

 
 

4. Time-continuous period-indexed increments to life  

Let ( , )p x t� denote the proportion of persons born at time t x−  who survive to age x . 

From this definition and that of ( , )c x t�  it follows immediately that 

 
( , ) ( , )p cx t x t x= −� � and      (5a) 

 
( , ) ( , )c px t x t x= +� � .      (5b) 

 
Compare Appendix 1 of Bongaarts and Feeney (1998), which states the same relation 
using slightly different notation. The subscripts refer to the cohort indexing of the 
preceding section and the period indexing of this section. Note that both ( , )p x t�  and 

( , )c x t�  are survival proportions for cohorts; the difference is only in the time 

reference. 
The apparently trifling difference between the two representations turns out to 

have non-trivial consequences. Proceeding as before, consider contour lines of the 
surface defined by the values ( , )p x t� . In the period case these contour lines may move 

backward as well as forward in time. Backward movement will occur whenever a later 
cohort experiences much lower survivorship than an earlier cohort. 

Suppose for example that (a) for the cohort born at time t , half of all persons 
survive to age 50 years, corresponding to the point (50, 50)t +  and that (b) the cohort 

born at time 1t +  experiences much higher infant mortality, with the result that the age 
to which half of all persons in the cohort survive is only 40 years, corresponding to the 
point (40, 41)t + . The time coordinate of the point for the later cohort lies 9 years 

before the time coordinate of the point for the earlier cohort. 
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The time-continuous increment to life may still be defined as the direction for 
which the directional derivative equals zero, but this direction must now be specified as 
a vector rather than as a scalar. The period version of formula (2) is 

 

1 2
( , ) ( , )

( , ) ( , ) 0p p
p p

x t x t
x t x t

x t
λ λ

∂ ∂
+ =

∂ ∂
� �

,    (6) 

 

where the vector 1 2( ( , ), ( , ))p px t x tλ λ  gives the direction of the tangent to the contour line 

at the point  (x,t) . For consistency with the cohort formulation we may assume that 
2 ( , )p x tλ  assumes only the values 1+  and 1− , corresponding to movement forward and 

backward in time. 
 
 

5. Relation between cohort and period increments to life  

Figure 5 shows a Lexis diagram in which the diagonal line beginning at time t  and 
ending at time 1 ct λ+ +  represents the tangent line to the contour line that passes 

through the point ( , )x t  of the surface ( , )p� i i . The slope of this line is by definition the 

period increment to life ( , )p p x tλ λ= . 

The corresponding rate of change between the cohorts born at times  t − x  
and 1t x− + , represented by the dotted diagonal lines, is ( , )c c x t xλ λ= − . From the 

similarity of the two right triangles, 
 

( , )
( , )

1 ( , )
c

p
c

x t x
x t x

x t x

λλ
λ

−
− =

+ −
,      (7) 

 
from which it follows that ( , ) 1p x tλ →  as ( , )c x tλ → ∞  and ( , )p x tλ → −∞  

as ( , ) 1c x tλ → − . Values of ( , )c x tλ  less than 1−  correspond contour lines moving 

backward in time. 
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Figure 5:  Lexis Diagram Illustrating Relation Between Cohort and Period 
Increment to Life 

 
 
Zeng Yi and Land (2002) prove a special case of (7) for a model in which cohort 

fertility, period fertility, the shape of the age-schedule of fertility and the rate of change 
in the mean age at childbearing are all constant over time. 

To obtain a more general formula, observe that the partial derivatives in (6) may 
be expressed as  

 
( , ) ( , ) ( , )p c c
x t x t x x t x

x x t

∂ ∂ − ∂ −
= −

∂ ∂ ∂
� � �

     (8a) 

 
and 

 
( , ) ( , )p c
x t x t x

t t

∂ ∂ −
=

∂ ∂
� �

,      (8b) 

 
these expressions being obtained by differentiating (5a). Substituting the right hand 
sides here in (6) and rearranging terms gives 

 

x

x+ λc

Age

t t+ 1 t +1 + λc

Time

t − x t −x+ 1

Birth cohort

1 λc

λc

λp
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1 ( , ) /
( , )

( , ) / ( , ) /
c

p
c c

x t x t
x t

x t x x x t x t
λ −∂ − ∂

=
∂ − ∂ − ∂ − ∂

�

� �
    (9a) 

 

if 2 ( , ) 1p x tλ = +  and 

 

1 ( , ) /
( , )

( , ) / ( , ) /
c

p
c c

x t x x
x t

x t x x x t x t
λ ∂ − ∂

=
∂ − ∂ − ∂ − ∂

�

� �
    (9b) 

 

if 2 ( , ) 1p x tλ = − . Dividing the numerator and denominator on the right hand sides of (9) 

gives 
 

1 ( , )
( , )

1 ( , )
c

p
c

x t x
x t

x t x

λλ
λ

−
=

+ −
, ( , ) 1c x tλ > − ,     (10a) 

 

when 2 ( , ) 1p x tλ = +  and 

 

1 ( , )
( , )

1 ( , )
c

p
c

x t x
x t

x t x

λλ
λ

− −
=

+ −
, ( , ) 1c x tλ < −      (10b) 

 

when 2 ( , ) 1p x tλ = − . Formula (10a) is the same as formula (7), but the graphical 

approach leaves it unclear how to cope with the case in which 2 ( , ) 1p x tλ = −  or, 

equivalently, ( , ) 1c x tλ < − . 

The relationship between ( , )c x tλ , 1 ( , )p x tλ  and 2 ( , )p x tλ  is shown in Figure 6. The 

curve to the right of the vertical at ( , ) 1c x tλ =  shows the relation between ( , )c x tλ  and 
1 ( , )p x tλ  when 2 ( , ) 1p x tλ = +  and the curve to the left of this vertical shows this relation 

when 2 ( , ) 1p x tλ = − . 

The relation displayed in Figure 6 is curious indeed. Discussion of tempo effects in 
the demographic literature has generally (always, so far as I am aware) been limited to 
values of cλ  and pλ  fairly close to zero (roughly, say, the unit square centered on the 

origin), and in this neighborhood the relationship is unremarkable. The Lexis diagram 
in Figure 5 shows that pλ  cannot exceed one, whereas cλ  may assume arbitrarily large 

values, so it is not surprising to see in Figure 6 that 1pλ →  as cλ → ∞ . To see 
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pλ → −∞  as 1cλ → −  is rather less comfortable (though obviously, from (10a), this is 

what happens), since this suggests that tempo effects in this case can have arbitrarily 
large magnitude. In demographic terms (Lexis diagram in Figure 5), events in 
successive cohorts are shifting to younger ages in such a way as to pile up events on the 
vertical line at time t . 

The portion of Figure 6 to the left of the vertical (dotted line) at   x = −1 is even 
more surprising. The idea that events occurring in successive cohorts may be moved to 
earlier ages so rapidly that the period effect is to “thin out” events and reduce period 
levels rather than to “bunching up” events and increase period levels has not, so far as I 
am aware, ever been considered in the demographic literature. Yet this is what happens 
when 1cλ < . In demographic terms (Lexis diagram in Figure 5), events in subsequent 

cohorts are moved to earlier ages so rapidly that they occur earlier in time than events to 
earlier cohorts. The asymptotic approach to pλ  to the left of the vertical line (dotted) at 

1x = −  mirrors the asymptote on the other side, but with cλ  decelerating toward 1− . Of 

course the value of cλ  is constrained on the left because events cannot be shifted to a 

time before the cohort’s birth! 
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Figure 6:  Relation Between Cohort and Period Increments to Life 
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6. Robustness of the Bongaarts-Feeney Tempo Adjustment Formula  

The Bongaarts-Feeney mortality tempo adjustment formula (Bongaarts and Feeney 
2002, 2003) is based on the “constant shape assumption,” which they show to be 
equivalent to the assumption that the normalized age distributions ( , )p x t�  are 

translated uniformly up or down the age axis with changing time. This is equivalent to 
the assumption that period increments to life ( , )p x tλ  are constant with respect to age 

for each time t, ( , ) ( )p x t tλ λ= for all a. This suggests that tempo adjusted life 

expectancy at birth may be calculated more generally by replacing ( )tλ  by ( , )p x tλ  in 

the Bongaarts-Feeney tempo adjustment formula (2003: formula 11, in 
which 1( ) ( )t M t tλ = ∂ ∂ . 

This adjustment may be applied to average of annual values of xq  for Swedish 

females for 1980-1995 with xq  set equal to zero for 30x <  years, the same Swedish 

data used in Bongaarts and Feeney (2003). Values of ( , )p x tλ  are obtained by first 

calculating ( , )c x tλ  using formula (3) and then applying formula (10) to obtain values 

of ( , )p x tλ . The resulting period increments to life by age ( , )p x tλ  are plotted in Figure 

7, which suggests that they are reasonably close to constant with respect to age from 
about age 35 onward. 

Calculation of a tempo-adjusted 0e  using these values gives 79.5 years, as 

compared with an unadjusted value of 0 81.0e =  years, for a tempo effect of  1.5  years. 

This is very close to the 1.6 years given in Bongaarts and Feeney (2003). I conclude 
that the simple, non-age-specific adjustment is robust against observed departures from 
the constant shape assumption in this application, and also that the increments to life 
concept has succeeded in providing a general method for assessing robustness. 
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Figure 7:  Time-Continuous Period Increments to Life, Swedish Females, 
1980-1995 (qx = 0 for x < 30 years) 
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7. Increments to life and mortality tempo: mixed models  

What happens if the conditioning on survival to mid-adult ages is dropped and variable 
increments to life are substituted for the constant increment to life used in the 
Bongaarts-Feeney adjustment formula? The procedure described in the previous section 
gives in this case an expectation of life more than 5 years lower than the conventional 
expectation of life. The magnitude of the implied tempo effects is about three times 
larger than the tempo effects calculated by Bongaarts and Feeney. 

The explanation for this discrepancy is evidently the age variation in increments to 
life shown Figures 3 and 4. The Bongaarts-Feeney mortality tempo adjustment is 
derived on the assumption that increments to life are constant with respect to age. When 
the survival function is conditional on survival to age 30 years, the Swedish increments 
to life 1980-1995 vary in a range of about 0.05± , as shown in Figure 7. When the 
survival function is unconditional, increments are very far from constant. Figure 4 
shows a variation of about 0.9± . Conditioning on survival to age 30 has the effect of 
radically reducing the variability of increments to life by age. 

Consistency with the Bongaarts-Feeney mortality tempo model therefore requires 
that increments to life be considered only for adult survival. The nature of mortality 
change at younger and older ages appears to be fundamentally different, so that the 
tempo model that makes sense at older ages does not make sense at younger ages. 

This suggests that we need a “mixed” model in which mortality change at younger 
ages is modeled differently from mortality change at older ages. To suggest what such 
models might look like, consider the familiar graph of the force of mortality function 
with values (vertical axis) plotted against age (horizontal axis). Thinking heuristically, 
suppose that there are two kinds of mortality change, “up and down” change 
(movement in the vertical direction to higher or lower values), and “back and forth” 
change (movement of a fixed schedule of values in the horizontal direction, to the left 
or to the right). Suppose further than “up and down” change occurs in infancy, 
childhood and young adult ages, and that “back and forth” change occurs at older ages. 

The force of mortality function may be most appropriate representation of “up and 
down” change, the increments to life function the most appropriate representation of 
“back and forth” change. The distinction may be captured mathematically by writing 
the Makeham force of mortality function as ( , ) ( ) exp( ) ( )x t a t bx c tµ = + , where ( )c t  

represents “up and down” change and ( )a t  represents “back and forth” change that may 

be equivalently expressed in terms of increment to life values ( )tλ  representing the rate 

at which movement toward older or younger ages occurs. 
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So regarded, the Makeham defines a mixed model incorporating both forces of 
mortality and increments to life. Both components of the model could be generalized, to 
arrive at a more realistic model without changing the mixed nature of the model. 

 
 

8. Conclusion  

The study of mortality and length of life has been dominated by the concept of risks of 
death, to the point that mortality is sometimes regarded as being defined by age-specific 
death rates and the force of mortality function. Empirically, however, survival functions 
are the theoretical structure closest to the empirical data (migration may be handled 
with product limit survival functions), and changing survival functions give rise to and 
may be modeled by both forces of mortality and increments to life. 

When we think in terms of risks of death, life times are a residual. How long we 
live reflects how successful we are in escaping various risks of death. When we think in 
terms of increments to life, deaths are the residual. Death is what happens when we run 
out of life. As pointed out by Vaupel and Yashin (1987), physicians and health 
personnel tend to think more in the latter terms than the former. They suggest also that 
the two perspectives are complementary rather than contradictory. A better 
understanding of this complementarity may usefully advance the study of changing 
mortality and length of life. 
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