Volume 20 - Article 25 | Pages 599–622

Graduating the age-specific fertility pattern using Support Vector Machines

By Anastasia Kostaki, Javier Moguerza, Alberto Olivares, Stelios Psarakis

Print this page  

 

References

Aronszajn, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc. 68: 337-404.

Weblink doi:10.2307/1990404
Download reference in RIS | BibTeX

Brockmann, M., Gasser, T., and Herrmann, E. (1993). Locally Adaptive Bandwidth choice for kernel regression estimators. Journal of the American Statistical Association 88(424): 1302-1309.

Weblink doi:10.2307/2291270
Download reference in RIS | BibTeX

Chandola, T., Coleman, D. A., and Horns, R. W. (1999). Recent European fertility patterns: fitting curves to 'distorted' distributions. Population Studies 53(3): 317-329.

Weblink doi:10.1080/00324720308089
Download reference in RIS | BibTeX

Chandola, T., Coleman, D. A., and Horns, R. W. (2002). Distinctive features of age-specific fertility profiles in the English-speaking world: Common patterns in Australia, Canada, New Zealand and the United States, 1970-98. Population Studies 56: 181-200.

Weblink doi:10.1080/00324720215929
Download reference in RIS | BibTeX

Eurostat New Cronos Database (2006). Europa database: Population and Social Conditions [electronic resource]. Manchester UK.

Weblink http://www.esds.ac.uk/international/support/u ...
Download reference in RIS | BibTeX

Gasser, T., Kneip, A., and Kohler, W. (1991). A flexible and fast method for automatic smoothing. Journal of the American Statistical Association 86(415): 643-652.

Weblink doi:10.2307/2290393
Download reference in RIS | BibTeX

Gasser, T. and Müller, H. (1979). Kernel estimation of regression functions. In: Smoothing Techniques for Curve Estimation. Lecture Notes in Mathematics 757. New York: Springer-Verlag: 23-68.

Weblink doi:10.1007/BFb0098489
Download reference in RIS | BibTeX

Gasser, T. and Müller, H. G. (1984). Estimating regression functions and their derivatives by the kernel method. Scandinavian Journal of Statistics 11: 171-185.

Download reference in RIS | BibTeX

Gilje, E. (1969). Fitting curves to age-specific fertility rates: some examples. Statistical Review of the Swedish National Central Bureau of Statistics III 7: 118-134.

Download reference in RIS | BibTeX

Hadwiger, H. (1940). Eine analytische reprodutions-funktion fur biologische Gesamtheiten. Skandinavisk Aktuarietidskrift 23: 101-113.

Download reference in RIS | BibTeX

Hardle, W. (1990). Applied Non parametric Regression. Cambridge: Cambridge University Press.

Download reference in RIS | BibTeX

Hardle, W. (1991). Smoothing Techniques with Implementation in S. New-York: Springer-Verlag.

Download reference in RIS | BibTeX

Herrmann, E. (1997). Local bandwidth choice in kernel regression estimation. Journal of Computational and Graphical Statistics 6(1): 35-54.

Weblink doi:10.2307/1390723
Download reference in RIS | BibTeX

Hoem, J. M., Madsen, D., Nielsen, J. L., Ohlsen, E., Hansen, H. O., and Rennermalm, B. (1981). Experiments in modelling recent Danish fertility curves. Demography 18: 231-244.

Weblink doi:10.2307/2061095
Download reference in RIS | BibTeX

Hoem, J. M. (1976). The statistical theory of demographic rates: A review of current denvelopments (with discussion). Scandinavian Journal of Statistics 3: 169-185.

Download reference in RIS | BibTeX

Kostaki, A. and Peristera, P. (2005). Graduating mortality data using Kernel techniques: Evaluation and comparisons. Journal of Population Research 22(2): 185-197.

Download reference in RIS | BibTeX

Moguerza, J., Muñoz, A., and Psarakis, S. (2007). Monitoring nonlinear profiles using support vector machines. Lecture Notes in Computer Science 4789: 574-583.

Weblink doi:10.1007/978-3-540-76725-1_60
Download reference in RIS | BibTeX

Moguerza, J. and Muñoz, A. (2006). Support vector machines with applications. Statistical Science 21(3): 322-336.

Weblink doi:10.1214/088342306000000493
Download reference in RIS | BibTeX

Muñoz, A. and Moguerza, J. (2005). Building smooth neighbourhood kernels via functional data analysis. Lecture Notes in Computer Science 3697: 631-636.

Weblink doi:10.1007/11550907
Download reference in RIS | BibTeX

Pearce, N.D. and Wand, M.P. (2006). Penalized Splines and Reproducing Kernel Methods. The American Statistician 60(3): 233-240.

Weblink doi:10.1198/000313006X124541
Download reference in RIS | BibTeX

Peristera, P. and Kostaki, A. (2007). Modeling fertility in modern populations. Demographic Research 16(6): 141-194.

Download reference in RIS | BibTeX

Ruppert, D., Sheather, S. J., and Wand, M. P. (1995). An effective bandwidth selector for local least squares regression. Journal of the American Statistical Association 90: 1257-1270.

Weblink doi:10.2307/2291516
Download reference in RIS | BibTeX

Schmertmann, C. P. (2003). A system of model fertility schedules with graphically intuitive parameters. Demographic Research 9(5): 82-110.

Weblink doi:10.4054/DemRes.2003.9.5
Download reference in RIS | BibTeX

Schölkopf, B., Smola, A., Williamson, R., and Bartlett, P. (2000). New support vector algorithms. Neural Computation 12: 1207-1245.

Weblink doi:10.1162/089976600300015565
Download reference in RIS | BibTeX

Tikhonov, A.N. and Arsenin, V.Y. (1977). Solutions of ill-posed problems. John Wiley and Sons.

Download reference in RIS | BibTeX

US National Centre of Health Statistics (2003). Natality Data set [electronic resource]. Maryland.

Weblink http://www.cdc.gov/nchs/
Download reference in RIS | BibTeX

Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York: Springer.

Download reference in RIS | BibTeX