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Formal Relationships 11

Attrition in heterogeneous cohorts

James W. Vaupel1, 3

Zhen Zhang2, 3

Abstract

In a heterogeneous cohort, the change with age in the force of mortality or some other
kind of hazard or intensity of attrition depends on how the hazard changes with age for
the individuals in the cohort and on how the composition of the cohort changes due to
the loss of those most vulnerable to attrition. Here we prove that the change with age
for the cohort equals the average of the change in the hazard for the individuals in the
cohort minus the variance in the hazard across individuals. The variance captures the
compositional change. This very general and remarkably elegant relationship can be
applied to understand and to analyze changes with age in many kinds of demographic
hazards, including, e.g., the lifetable aging rate or the intensity of first births.

1 Max Planck Institute for Demographic Research. E-mail: jwv@demogr.mpg.de.
2 Max Planck Institute for Demographic Research. E-mail: zhang@demogr.mpg.de.
3 We thank Maxim Finkelstein and Michel Guilllot for constructive comments.
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1. Relationship

Let µ(x, z) denote the hazard of attrition (e.g., the force of mortality) at age x for a cohort
of individuals in a subpopulation with characteristic z; the subpopulation could consist
of a single individual. Let g(z) denote the probability density function of z at initial age
zero, let s(x, z) = exp[− ∫ x

0
µ(a, z)da] denote the survival function for the subpopulation

with characteristic z and let s̄(x) =
∫∞
−∞ s(x, z)g(z)dz denote the survival function for

the population as a whole. Then

(1a) ˙̄µ(x) = ¯̇µ(x)− σ2
µ(x),

where µ̄(x) =
∫∞
−∞ µ(x, z)s(x, z)g(z)dz/s̄(x) is the average hazard of attrition for the

population at age x as a whole, ˙̄µ(x) = dµ̄(x)
dx is the change in this hazard with age for the

population as a whole at age x, µ̇(x, z) = dµ(x,z)
dx is the change in the hazard of attrition

with age for subpopulation with characteristic z at age x,
¯̇µ(x) =

∫∞
−∞ µ̇(x, z)s(x, z)g(z)dz/s̄(x) is the average change in the hazard of attrition

for subpopulations at age x, and σ2
µ(x) =

∫∞
−∞ µ2(x, z)s(x, z)g(z)dz/s̄(x) − µ̄2(x) is

the variance at age x in the hazard of attrition across subpopulations.
A relationship similar to (1a) holds for the case of a characteristic that is discrete.

Let πz(x) be the proportion of the subpopulation with characteristic z surviving at age
x, with πz(x) = πz(0) exp[− ∫ x

0
µz(t)dt], where µz(x) is the hazard of attrition of

the subpopulation with characteristic z at age x and πz(0) is the proportion of the
subpopulation with characteristic z at the initial age. Then the average of mortality of
the whole population is given by

µ̄(x) =
∑

z µz(x)πz(x)∑
z πz(x)

and

(1b) ˙̄µ(x) = ¯̇µ(x)− σ2
µ(x),

where ¯̇µ(x) =
∑

z µ̇z(x)πz(x)∑
z πz(x) and σ2

µ(x) =
∑

z µ2
z(x)πz(x)∑
z πz(x) − µ̄2(x).

Equation (1b) is essentially the same as (1a) and can be used to study attrition in a
population that is heterogeneous with regard to a discrete characteristic.

In short, the change in the average equals the average change minus the variance.
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2. Proof

Because µ̄(x) =
∫∞
−∞ µ(x, z)s(x, z)g(z)dz/s̄(x), it follows that

˙̄µ(x) =

∫∞
−∞{µ̇(x, z)s(x, z) + µ(x, z)ṡ(x, z)}g(z)dz

s̄(x)
− µ̄(x)

˙̄s(x)
s̄(x)

.

Substituting ṡ(x, z) = −µ(x, z)s(x, z) and ˙̄s(x) = −µ̄(x)s̄(x) and simplifying yields

˙̄µ(x) = ¯̇µ(x)−
∫∞
−∞ µ2(x, z)s(x, z)g(z)dz

s̄(x)
+ µ̄2(x)

= ¯̇µ(x)− σ2
µ(x). Q.E.D.

Equation (1b) can be proven in a similar manner. Simple calculus yields

˙̄µ(x) =
∑

z(µ̇(x)πz(x) + µz(x)π̇z(x))∑
z πz(x)

− µ̄(x)
∑

z π̇z(x)∑
z πz(x)

.

Because µz(x) = −π̇z(x)/πz(x), it follows that π̇z(x) = −µz(x)πz(x). Substituting
this expression into the above equation leads to

˙̄µ(x) = ¯̇µ(x)− σ2
µ(x) Q.E.D.

Equation (1a) - and with minor modifications equation (1b) - can also be proven as a
special case of the more general equation

(2) ˙̄v(x) = ¯̇v(x) + Cov(v(x), r(x)).

In (2), v(x, z) gives the value of some function of age or time x in the subpopulation with
characteristic z, the proportion of individuals at age or time x in the subpopulation with
characteristic z is given by the probability density function g(x, z),

v̄(x) =
∫∞
−∞ v(x, z)g(x, z)dz, ˙̄v(x) = dv̄(x)

dx , v̇(x, z) = dv(x,z)
dx and

¯̇v(x) =
∫∞
−∞ v̇(x, z)g(x, z)dz.
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The covariance is given by

Cov(v(x), r(x)) =
∫ ∞

−∞
v(x, z)r(x, z)g(x, z)dz − v̄(x)r̄(x),

where r(x, z) = dg(x,z)/dx
g(x,z) is the relative derivative of the density function and

r̄(x) =
∫∞
−∞ r(x, z)g(x, z)dz. To prove (1a), substitute µ for v in (2) and substitute

s(x, z)g(z)/s̄(x) for g(x, z). It readily can be shown that r(x, z) = −µ(x, z) + µ̄(x).
It follows that Cov(v(x), r(x)) = −σ2

µ(x).

3. Discussion

Equation (1) is very general. In the frailty model developed by Vaupel, Manton, and
Stallard (1979), an individual’s frailty is a relative-risk that is fixed for life, and in many
applications frailty is assumed to be gamma distributed. Equation (1), however, holds
regardless of the distribution of z and even if z is not a relative-risk (proportional-hazard)
but z affects the hazard of attrition in some complicated manner. The value of z can be
positive, zero or negative. Every individual in the population could have a unique value of
z that determines the mortality trajectory over age for that individual. Depending on the
individual, such trajectories could rise or fall or rise and then fall, etc. Changing-frailty
models in which an individual’s risk varies with age, perhaps stochastically, can be
captured by defining z as an index of every possible trajectory.

Both (1) and (2) were presented at an annual meeting of the Population Association
of America (Vaupel 1992). A proof of (2) is given by Vaupel and Canudas-Romo (2002).
A version of (2) without the first term on the right was derived by Preston, Himes and
Eggers (1989). A discrete version of (2) was devised by Price (1970) to analyze genetic
change. Cohen (1971) independently derived the same result. Coulson and Tuljapurkar
(2008) extend the so-called Price equation.

4. Applications

4.1 The shape of the hazard of attrition in heterogeneous populations

Consider the simplest case where the hazard of attrition for individuals is constant over
age but varies across individuals. Then µ̇(x) = 0 and ¯̇µ(x) = 0, resulting in
˙̄µ(x) = −σ2

µ(x) < 0 for all x. That is, the hazard of attrition for the overall population
decreases with age.
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If the hazard of attrition for subpopulations is decreasing with age (i.e. µ̇(x, z) < 0
and ¯̇µ(x) < 0), the hazard of attrition for the population as a whole must decease with
age, because both terms on the right hand side of (1), ¯̇µ(x) and −σ2

µ(x), are negative.
This result is well known in reliability theory (e.g., Barlow 1985, Proschan 1963).

The case of increasing mortality for individuals, however, is not so simple: the average
hazard of attrition for the population as a whole could either increase or decrease at age
x depending on the value of ¯̇µ(x) vs. σ2

µ(x). As an example, consider a population
composed of two subpopulations with forces of attrition µ1(x) = c1t + a1 and
µ2(x) = c2t+a2, with 0 < c1 < c2 and 0 < a1 < a2. Then the hazard of attrition for the
overall population can decrease over some ages and increase over other ages, as shown in
Figures 1a and 1b.

Figure 1: The divergence of the forces of attrition for the population as a
whole and the two subpopulations.

x

µ

a

µ2

µ1

µ

x

µ

b

µ2

µ1

µ

Note: The blue dotted line represents µ1(x) = c1t + a1 with c1 = .5 and a1 = .1, the red dashed
line µ2(x) = c2t + a2 with c2 = 2 and a2 = 3. The solid line represents the force of attrition
for the population as a whole. The only difference between the two figures is that the share of the
subpopulation with µ1(x) at initial age zero is .1 in Figure 1a and .5 in Figure 1b. The graph in
Figure 1a is similar to a graph in Vaupel and Yashin (1985) and the graph in Figure 1b is similar
to graphs in Finkelstein (2009) and Block, Li, and Savtis (2003).
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The pattern of attrition for the population as a whole can differ from the patterns for
subpopulations or individuals in a variety of ways, as illustrated by Vaupel and Yashin
(1985). The above examples illustrate how equation (1) can shed light on patterns of
attrition in heterogeneous populations.

4.2 Estimation of the rate of aging in a heterogeneous cohort

A more specific application of equation (1) is in studies of the rate of aging, measured as
the relative change with age in the force of mortality. Note that dividing both sides of (1)
by µ̄(x) yields the relative change in the force of mortality for the whole population:

(3) b̄(x) =
dµ̄(x)
µ̄(x)dx

=
¯̇µ(x)
µ̄(x)

− σ2
µ(x)
µ̄(x)

= b†(x)− µ̄(x)CVµ(x)

where

b†(x) =
¯̇µ(x)
µ̄(x)

=

∫∞
−∞

dµ(x,z)/dx
µ(x,z) µ(x, z)s(x, z)g(z)dz/s̄(x)

∫∞
−∞ µ(x, z)s(x, z)g(z)dz/s̄(x)

is the deaths-weighted rate of aging (because the density of deaths is given by the product
of µ and s) and CVµ(x) = σ2

µ(x)/µ̄2(x) is the coefficient of variation at age x.
Suppose the force of mortality is given by µ(x, z) = za exp(bx) + c with frailty z

at initial age zero described by a gamma distribution with mean 1 and variance γ. Then,
results in Vaupel, Manton and Stallard (1979) imply that:

(4) µ̄(x) = z̄(x)(µ(x, 1)− c) + c =
a exp(bx)

1 + aγ
b (exp(bx)− 1)

+ c,

where z̄(x) is the mean value of frailty among survivors at age x. It appears that such a
logistic curve may capture the pattern of human mortality from age 35 or so to the most
advanced ages (Thatcher, Kannisto and Vaupel 1998, Vaupel 2010). It can be readily
shown that ¯̇µ(x) = b(µ̄(x)− c). Furthermore, because (4) can be rearranged as
µ̄(x)− c = (µ(x, 1)− c)z̄(x), it follows that σ2

µ(x) = γ(µ̄(x)− c)2, where
γ = σ2

z(x)/z̄2(x) is the coefficient of variation of the gamma distribution of frailty. Note
that an important property of the gamma distribution is that γ is constant, and that when
mean frailty at the initial age zero is one, then γ is the variance in frailty at age zero.
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These results, substituted in (3), imply:

(5) b̄(x) =
˙̄µ(x)
µ̄(x)

= b

(
1− c

µ̄(x)

)
− γ

(
1− c

µ̄(x)

)
(µ̄(x)− c),

where the relative derivative b̄(x) is the lifetable aging rate (Horiuchi and Coale 1990,
Horiuchi and Wilmoth 1997, 1998).

The curve in (4) asymptotically approaches a limit of µ̄∗ = b/γ +c. In recent decades
for countries with high life expectancies, it appears that this limit is closely approached
by age 110, such that the force of mortality after 110 is essentially constant at a value of
about .7, which implies an annual probability of death of about 50% (Gampe 2010). In
any case, at the limit (4) indicates:

(6) b̄(x) = 0 = b

(
1− c

µ̄∗

)
− γ

(
1− c

µ̄∗

)
(µ̄∗ − c),

which in turn implies γ = b/(µ̄∗ − c). Substituting this result in (5) yields:

(7) b̄(x) = b

(
1− c

µ̄(x)

)(
µ̄∗ − µ̄(x)

µ̄∗ − c

)
.

Equation (7) shows how and why the lifetable aging rate b̄(x) differs from the rate of
increase in mortality b, which is constant for all the members of the population. The first
adjustment to b reduces the value of b̄(x) at younger ages when c accounts for a substantial
share of total mortality. The second adjustment to b reduces the value of b̄(x) at older ages
as the force of mortality approaches its maximum value µ̄∗. If c is small compared with
this maximum value, then the adjustment is approximately equal to (1 − µ̄(x)

µ̄∗
). At the

maximum value b̄(x) equals zero. Note that because µ̄(x) ≥ c, both factors adjusting b
are less than or equal to one. Hence, b̄(x) ≤ b, and sometimes b̄(x) can be much lower
than b.

For Japanese females in 1980-2008, the force of mortality from age 50 to 105 can be
serviceably approximated, using methods of maximum likelihood estimation, by (4) with
initial age zero corresponding to chronological age 50, with a = .0007 at the initial age,
b = .14, c = .002 and γ = .19; these values imply that µ̄∗ = .73. For Swiss females
in 1860-1880, the parameter estimates are a = .0018, b = .11, c = .007, γ = .15 and
µ̄∗ = .76. The trajectory of b̄(x) estimated by (7) resembles the trend of change in the
empirical b̄(x) calculated directly from the data, as shown in Figures 2a and 2b.
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Figure 2: Lifetable aging rate for Swiss females in 1860-1880 (a) and for
Japanese females in 1980-2008 (b).
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Note: The black circles represent empirical lifetable aging rates calculated directly from the data and
the red line represents the lifetable aging rate estimated by (7).

Source of data: Human Mortality Database available at http://www.demogr.mpg.de.

In addition to applications to mortality, equation (1) can also be used in studies of other
kinds of attrition with age in a heterogeneous cohort. The cohort could pertain to childless
women who drop out when they have a child, single women who marry, men who become
widowers or who divorce, natives of a country who leave if they emigrate, healthy people
who drop out when they get sick with some kind of disease, sick people who drop out
when they regain their health, employed people who lose their jobs, unemployed people
who take a job, automobiles bought new that are sold to a second owner, etc.
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Consider, for instance, the attrition of childless women when they give birth. Suppose
that in such a cohort, some of the women are married and the rest are not married. Suppose
the intensity (i.e., force or hazard) of a first birth is higher for the married women than for
the unmarried women, and suppose that the women are at an age x at which the intensity
is rising for both groups. To be specific, suppose that half of the women are in each
group, that for the married µm(x) = .5 and µ̇m(x) = .02 and that for the unmarried
µu(x) = .1 and µ̇u(x) = .02. Then ¯̇µ(x) = .02 and σ2

µ(x) = .04. Equation (1) indicates
that ˙̄µ(x) = −.02. Hence, even though the intensity of first births is increasing at a pace
of 2% for both married and unmarried women, the intensity of first births is falling at this
pace for the cohort as a whole.
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