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Abstract

BACKGROUND
Estimating the total fertility rate is challenging for many developing countries because of
limited data and varying data quality. A standardized, reproducible approach to produce
estimates that include an uncertainty assessment is desired.

METHODS
We develop a method to estimate and assess uncertainty in the total fertility rate over time,
based on multiple imperfect observations from different data sources, including surveys
and censuses. We take account of measurement error in observations by decomposing it
into bias and variance, and assess both by linear regression on a variety of data quality co-
variates. We estimate the total fertility rate using a local smoother, and assess uncertainty
using the weighted likelihood bootstrap.
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RESULTS
We apply our method to data from seven countries in West Africa and construct estimates
and uncertainty intervals for the total fertility rate. Based on cross-validation exercises,
we find that accounting for differences in data quality between observations gives better
calibrated confidence intervals and reduces bias.

CONCLUSIONS
When working with multiple imperfect observations from different data sources to es-
timate the total fertility rate, or demographic indicators in general, potential biases and
differences in error variance should be taken into account to improve the estimates and
their uncertainty assessment.

1. Introduction

In this article we describe a new method to estimate the total fertility rate (TFR) over
time from multiple sources of imperfect data. The procedure is automated and therefore
reproducible, and it takes account of data quality by characterizing bias and measurement
error separately. We illustrate the method using fertility data from seven countries in West
Africa whose fertility data are of widely varying quality and coverage. We assess it using
cross-validation and show that it is reasonably well calibrated.

Estimating demographic indicators is challenging for many developing countries be-
cause of limited data and varying data quality. This is illustrated in Figure 1 for Burkina
Faso in West Africa. The black and red dots are nationally representative observations of
the total fertility rate in Burkina Faso constructed using age-specific fertility rates. For
the period from 1950 until the mid 1970s, there are very few observations for the TFR.
After 1970 the number of observations increases, but they vary a great deal because of
issues with data quality, e.g. observations are biased because of the collection process, or
measured with large errors.

The United Nations (UN) Population Division produces estimates of the TFR from
1950 up to the most recent five-year period, for all countries in the world. Here we
use the 2006 estimates (United Nations, Department of Economic and Social Affairs,
Population Division 2007). UN analysts estimate the fertility rates in a labor-intensive,
iterative fashion: initially, age-specific fertility rates are estimated based on all available
nationally representative data combined with expert knowledge of the reliability of the
different subsets of observations (e.g. known issues with a particular survey or census,
or general knowledge of undercounts or overcounts of particular retrospective estimates
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of fertility rates). The initial fertility estimates are combined with estimates of mortality
and migration to derive estimates of population counts. The population count estimates
are then compared to bias-adjusted census counts. If estimated and observed population
counts differ substantially, the estimates of the three input components of the population
counts are reconsidered. Uncertainty in these input components allows for adjustments of
the initial input values until population estimates and observations are in agreement. The
UN estimates for Burkina Faso are shown in Figure 1.

Figure 1: Observations of the TFR in Burkina Faso, and UN estimates
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The UN estimates of the TFR are generally considered to be of good quality and are
widely used. The observations from Demographic and Health Surveys (DHS), shown in
red in Figure 1, are also considered to be of good quality and widely used. Figure 1 shows
that when examining the TFR in Burkina Faso, different conclusions about its level and
trend can be drawn depending on whether the UN estimates or the DHS estimates are
being used. The DHS observations are estimates from nationally representative surveys
and as such are subject to sampling and other errors. The UN estimates use a wide variety
of available information including what is known about other demographic indicators.
However, the UN estimates have the drawback of being hard to reproduce because they are
not produced in an automated way, and of having no associated statements of uncertainty.

There are no standardized, reproducible methods for estimating trends in fertility rates
in developing countries based on different data sources that assess the uncertainty of the
estimates. Much of the literature on fertility estimation methods focuses on the devel-
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opment of indirect estimation techniques (Brass 1964; Brass et al. 1968; Trussell 1975;
United Nations 1983; Brass 1996; Feeney 1998). These techniques deal with bias caused
by recall lapse errors, omissions of births (especially soon after birth), and misinterpreta-
tion of the reference period in retrospective estimates of fertility rates (Som 1973; Potter
1977; Becker and Mahmud 1984; Pullum and Stokes 1997) by reconciling information
from recent fertility (in the last year or years) with lifetime fertility. Recent fertility is
adjusted rather than the full retrospective birth histories stretching back 25 years.

These methods typically rely on just one source of data, and the assumptions they
require can affect their accuracy (Moultrie and Dorrington 2008). The indirect methods
address a particular type of bias but do not confront differences in the variance of the
measurement error. More recently, Schoumaker (2010, 2011) attempted to improve re-
constructed fertility trends by analyzing birth histories for multiple DHS simultaneously,
and showed the challenges in reconciling differences in levels and trends between surveys
within the same country, especially for the earliest and latest observation periods from
one survey. The drawbacks of this kind of approach are that they can only be applied
to countries with multiple birth history surveys, and that other data sources, including
adjusted fertility from indirect methods, cannot easily be taken into account.

Here we introduce a new, automated, reproducible method for estimating trends in the
TFR, with measures of uncertainty for countries with limited data from multiple sources
of varying quality. We assess the quality of our method using cross-validation by exclud-
ing subsets of the data, and evaluating how well we can predict both the excluded data
and the errors in the predictions, using the remaining data. We apply our method to data
from seven countries in West Africa which have experienced among the highest fertility
rates in the world in recent years. We compare our findings to the results from a method
that is similar except that it does not weight the observations, and so does not take into
account data quality.

2. Data

The data we use to illustrate and test our method come from seven countries in West
Africa that represent the type of situation for which this method has been developed.
Data on fertility in these countries come from multiple sources of uneven quality; the
problems include limited coverage through time, bias, and measurement error. Moreover
countries like these, with similar data problems, are likely to be those with high fertility,
and therefore important for understanding the population dynamics of their regions.

The data set consists of nationally representative observations of the TFR for Burkina
Faso, Gambia, Guinea, Mali, Mauritania, Niger and Senegal. All the observations were
collected retrospectively by either asking women about their births in a restricted period
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(e.g. the number of births in the last year before the survey/census) or for their complete
birth histories (birth of their first child, second child, etc.). Figure 2 shows the observa-
tions in each of the seven countries. For each observation the recall period is displayed by
a horizontal line that joins the midpoint of the observation period to the year of data col-
lection. The UN estimates are shown in grey (United Nations, Department of Economic
and Social Affairs, Population Division 2007).

The observations are from sources that fall into three groups: censuses, Demographic
and Health Surveys (DHS) and non-DHS surveys – the World Fertility Surveys and other
surveys. Censuses and non-DHS surveys generally collect only lifetime fertility and/or
recent fertility (in the past year). The retrospective estimates of the TFR produced by the
DHS are based on complete birth histories of all women who participated in the survey,
typically aged 15-49. The birth history data are tabulated by period. For example, based
on the DHS in Burkina Faso in 2003, age-specific fertility rates were obtained for periods
0-4 years, 5-9 years, 10-14 years, 15-19 years and 20-24 years before the survey, and the
TFR was calculated for each period from the age-specific fertility rates. For the periods in
which no estimates of the age-specific fertility in older age groups were available (because
women aged 50 and over were not interviewed), the outcomes for the older age groups
were extrapolated from the outcomes in the younger age groups in that period, and from
the observed age pattern of fertility in the most recent period.

Table 1 summarizes the observations based on their data quality covariates. For each
observation four data quality covariates are available: source, period before survey (PBS),
direct/indirect estimation method, and time span. Source is either Census, DHS or other
survey. Period before survey is the midpoint of the period before the survey to which the
retrospective estimate refers. Time span is the length of the observation period in years.
The data quality covariate “Direct” in Table 1 divides the data set into direct and indirect
estimates. Direct estimates are observations based on the reported number of births in a
given period, as described above. Indirect estimates are for the most recent period before
a survey or census, and they are constructed using indirect estimation methods that correct
for recall lapse biases in retrospective observations of fertility (Som 1973; Potter 1977;
Becker and Mahmud 1984; Pullum and Stokes 1997).
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Figure 2: Direct observations (dots) and indirect observations (crosses) for
different data sources. The black horizontal lines extend from the
midpoint of the observation period to the year of data collection.
The UN estimates are plotted as grey circles.
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The indirect techniques rely on the use of the P/F ratio (Brass 1964, Brass et al 1968),
which compares cumulative cohort fertility to cumulative period fertility. The assump-
tions underlying this method are that fertility and its age distribution are constant over
time, and that the fertility of non-surviving women is equal to the fertility of surviving
women (whose number of children is reported). Under these assumptions cohort and
period fertility are equal, and deviations from equality are used to adjust the observed
fertility rates. Several variations of the P/F ratio are used to relax these assumptions
(Trussell 1975; United Nations 1983; Feeney 1998). However, because of the problems
with the indirect estimation techniques (Moultrie and Dorrington 2008), indirect estimates
can be biased, too. Therefore, direct estimates (including unadjusted estimates for longer
retrospective periods) as well as indirect estimates are taken into account and analyzed
simultaneously.

Table 1: Summary of fertility data for seven countries in West Africa.
The number of observations for each observed combination of data
quality covariates: Source, Period Before Survey (PBS — based on
the midpoint of the period before the survey to which the retrospec-
tive estimate refers), Direct (specifying whether the observation is a
direct or an indirect estimate) and Time span (the number of years
included in the observation).

Combination Source PBS Direct Time span # Obs.

1 Census 0-1 Year No 1 Year 18
2 Yes 1 Year 20

3 Survey 0-1 Year No 1 Year 12
4 Yes 1 Year 12
5 1-5 Years No 3 Years 1

6 DHS 1-5 Years No 3 Years 15
7 No 4-5 Years 7
8 Yes 3 Years 13
9 Yes 4-5 Years 23
10 Yes 5+ Years 1
11 5-10 Years Yes 4-5 Years 23
12 Yes 5+ Years 22
13 10+ Years Yes 4-5 Years 50
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3. Methods

Our method has four parts. First, the bias for each TFR observation is estimated by
regression on the data quality covariates and subtracted from the observation. Second, the
measurement error variance is estimated, also by regression on data quality covariates.
Third, the TFR trajectory for each country is estimated by weighted local smoothing of
the bias-adjusted observations, with the weights being the reciprocals of the estimated
measurement error variances. Fourth, we assess the uncertainty of our TFR estimates
using the weighted likelihood bootstrap. We compare the four-step method with one that
omits the first two steps, in order to evaluate the effects of accounting for data quality.

3.1 Modeling data quality

Some observations of the TFR are better than others, depending on the quality of the
underlying data. We decompose data quality into two components: bias and measure-
ment error variance. Bias refers to systematic over- or underestimation of the TFR re-
sulting from problems such as an unrepresentative sample or missing data. Measurement
errors occur randomly during the data collection process and include sampling and non-
sampling errors. Sampling errors occur if the observation is based on a subset of the pop-
ulation, and non-sampling errors are errors that are made during data collection and/or
input. Unlike sampling errors, non-sampling errors have many different sources and are
often hard to detect or control, and for many estimates of fertility rates non-sampling
errors are bigger than sampling errors (United Nations 1982).

Previous work on the quality of demographic estimates typically has not distinguished
between bias and measurement error variance. We emphasize the importance of doing so
because they can be adjusted for separately and can point in opposite directions. Some
observations may have large biases but small measurement errors while others may be
unbiased but less precise. Therefore it is important to account for bias and measurement
error variance separately. We correct bias by adjusting the observations, and we account
for differences in measurement error variance (heteroskedasticity) by weighting the obser-
vations. A biased observation with small measurement error variance is adjusted and then
assigned a high weight. An unbiased observation with large measurement error variance
is not adjusted, but gets a low weight.

Our probability model for observation ycts is:

ycts|fct ∼ N(fct + δcts, σ
2
cts) (c = 1, . . . , 7; t = 1, . . . , Tc; s = 1, . . . , nct),

where ycts is the s-th estimate of the TFR for country c in year t, fct is the unobserved
true TFR in year t for country c, δcts is the bias of observation ycts, and σ2

cts is the
observation-specific error variance. We use data quality covariates to assess the bias and
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error variance of each TFR estimate, an extension of work on differences in error variance
in child mortality rates by Hill et al. (1998) and the Interagency group for child mortality
estimation (UNICEF, WHO, World Bank and UNPD, 2007). We use linear regression to
estimate how bias and error variance depend on data quality covariates using the combined
observations from the seven countries in West Africa.

3.2 Estimating bias

Bias is estimated as a function of the data quality covariates using linear regression. The
advantage of this approach compared to indirect estimation methods is that no assump-
tions are made about the age structure of the fertility rates or the trends in fertility over
time. Multiple data sources are modeled and adjusted simultaneously, and bias is esti-
mated based on what has been observed in the seven countries in West Africa.

In order to identify bias we need an unbiased reference to which we can compare
the observations. This reference must be a series of TFR values that covers the period
of time for which there are data for the country, and must contain values whose errors
are equally likely to over- or understate the TFR. In this sense the reference is ‘fair’ and
should upon averaging provide a reasonable notion of any systematic errors (i.e. bias) in
the observations. It is not necessary for the reference to be accurate or precise, just that
its errors – however big they may be – not be systematically in one direction or the other.

Among the options we have – DHS, non-DHS surveys, censuses and the UN esti-
mates – we chose the UN estimates as our unbiased reference. The UN estimates are the
result of a cumulative process (continuous revision) of triangulation and validation using
many types of data in addition to fertility data (i.e. population counts, age structures and
mortality data) and are based on all available fertility data regardless of source. Uniquely
among the possible choices, the UN estimates cover the full period of observation for each
country. Finally, the UN estimates benefit from the accumulated expertise and knowledge
of the UN Population Division’s analysts. In contrast, the other sources of data all have
limitations that make them less suitable as the reference; either they are not available or
do not cover the whole period for each country (e.g. no DHS has ever been conducted in
Gambia), or they might be biased or flawed in one sense or another. For example, a pooled
analysis of birth histories by Schoumaker (2010, 2011) showed substantial inconsistencies
between consecutive DHS within countries, and frequent omissions and displacements of
births over the three years preceding the survey leading to large underestimates in fertility
levels, often by as much as 15%.

At first glance this seems contradictory; if the existing UN estimates are unbiased why
not just use them? Recall that our purpose is to develop an automated method as good
as or better than the UN’s current highly labor-intensive procedure that could eventually
replace it, subject to inspection and revision by the analysts. In doing this it makes sense
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to make use of the extensive work and expert knowledge of UN analysts in the past.
We do not assume that the UN estimates are correct, rather just that their errors are not
consistently either too high or too low on average. This provides a fair reference to begin
the process of characterizing bias. In this context, the UN estimates are used only as initial
baseline estimates in the multi-step process of modeling data quality, and to incorporate
expert knowledge.

Based on these considerations, we assume the UN TFR estimates are unbiased so that
E[uct] = fct, where uct denotes the UN estimate for country c, year t. Given this, the
bias δcts of observation ycts is the expected value of the difference dcts = ycts − uct

between the observation and the UN estimate so that E[dcts] = δcts. We estimate the
biases δcts by regressing dcts on the data quality covariates using the model

E[dcts] = xctsβ,

where the row xcts of the design matrix X contains the data quality covariates. Thus
the biases δcts can be estimated from the relationship δcts = xctsβ using least-squares
estimation.

The next question is which predictors to include in the bias regression model. There
are four data quality covariates, and each is a categorical variable that can take several
values. We code these as dummy variables and consider the possibility of including or
excluding each of them. Dummy variables for the individual DHS (each of which gen-
erates multiple observations) as well as the observation year, year of data collection and
the level of the TFR (as given by the UN estimates) are also candidates to put into the
model. To select the best model, we use a Bayesian variable selection approach (Raftery
1995). Specifically, we consider all candidate models based on possible subsets of pre-
dictors and choose the one model with the smallest value of the Bayesian Information
Criterion (BIC). The BIC is a model selection criterion that combines a negative measure
of model fit with a penalty term for the number of predictor variables in the candidate
model. This procedure is carried out using the bicreg function in the BMA package of
the statistical language R (Raftery, Painter, and Volinsky 2005), available at http://cran.r-
project.org/web/packages/BMA.

The estimated biases δ̂cts are then subtracted from the observations to get the bias-
adjusted observations

zcts = ycts − δ̂cts

∼ N(fct, ρ
2
cts), (1)

where ρ2cts is the observation-specific error variance of the bias-adjusted observation.
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3.3 Estimating measurement error variance

A similar approach is used for estimating the measurement error variances, i.e. het-
eroskedasticity, the values of ρ2cts in Eq. (1). We assume that the absolute differences
between the UN estimates and the bias-adjusted observations zcts are proportional to the
absolute differences between bias-adjusted observations and the true TFR (see Appendix
for a more detailed discussion of this approach), so that

E|zcts − uct| ∝ E|zcts − fct|.

It follows from Eq. (1) that E|zcts − fct| =
√

2
πρcts, and so

E|zcts − uct| ∝ ρcts.

We can therefore estimate the association between the data quality covariates and the
relative differences in ρcts between observations using the regression model

ρcts ∝ E|zcts − uct| = wctsλ,

where the row wcts of the design matrix W contains the data quality covariates that are
predictive of the measurement error variance, and λ is the vector of regression coeffi-
cients, such that ρcts ∝ wctsλ. Variable selection is done in the same way as for the bias
regression, and the vector of regression coefficients λ is estimated using least-squares
estimation.

Note that this approach does not guarantee positive estimates of the standard devi-
ation. However, in our experience negative estimates do not occur, and the resulting
regression model performs well. It would be possible to guarantee that negative estimates
would never occur by applying regression to the logarithms of the absolute errors rather
than the absolute errors themselves. We use the absolute residuals as the response vari-
able (rather than the squared residuals) because the results of the analysis with absolute
residuals are less sensitive to outliers.

3.4 Estimating TFR trajectories and their uncertainty

To estimate the annual country-specific TFR, we apply a local smoother (Cleveland and
Devlin 1988; Cleveland, Grosse, and Shyu 1991; Loader 1999) to the bias-adjusted TFR
estimates weighted by the reciprocals of their estimated error variances. In this procedure,
the TFR fct∗ in year t∗ is estimated by fitting a quadratic polynomial to a set of bias-
adjusted observations of the TFR that are closest to year t∗. The number of observations
in the set is determined by the smoothing parameter α of the local smoother. For α > 1, all
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observations within a country are used, while for α < 1, a proportion α of all observations
is used. The observations within the set are weighted using a tricube weighting function
such that data points that are further away from year t∗ get a smaller “distance weight”.
The smoothing parameter α is estimated by cross-validation based on the data sets for all
countries combined; α is chosen to minimize the overall mean squared error when leaving
out observations one at the time. We use the R function locfit (Loader 1999) to fit the
local smoother to the bias-adjusted TFR observations, taking into account the differences
in error variance between observations.

We assess uncertainty in the TFR trajectories using the weighted likelihood bootstrap
(Newton and Raftery 1994). This is similar to the standard bootstrap (Efron 1979) except
that where the standard bootstrap resamples data points, the weighted likelihood bootstrap
gives a positive weight to every data point. The weights are sampled from a Dirichlet
distribution. The weighted likelihood bootstrap works better in our case, because the fit
of the local smoother to resampled bootstrapped data breaks down if few or no data points
at the end points of the observation period are resampled. In the weighted likelihood
bootstrap, no data points are left out and so this problem does not arise.

To sample B bootstrap replicates from our data, the weighted likelihood bootstrap
works as follows. For b = 1, . . . , B we cycle through the following steps:

1. For each country c, sample bootstrap weights p
(b)
cts for observation ycts from the

distribution
(p1, . . . , pm) ∼ Dirichletm(1, . . . , 1),

where m =
∑Tc

t=1 nct is the total number of observations in country c. The
Dirichletm(1, . . . , 1) distribution is uniform in the sense that it gives equal proba-
bility to all values of the vector (p1, . . . , pm) such that p1 + . . .+ pm = 1, and all
pi’s are positive.

2. Estimate the biases δ
(b)
cts using weighted regression, based on the data set of all

countries and

ycts ∼ N

(
fct + δcts,

σ2

p
(b)
cts

)
,

where σ2 is the error variance for all observations combined. The bias-adjusted
observations are given by z

(b)
cts = ycts − δ̂

(b)
cts.

3. Estimate the differences in error variance ρ
(b)
cts using weighted regression, based on

the data set of all countries and

z
(b)
cts ∼ N

(
fct,

ρ
2(b)
cts

p
(b)
cts

)
.
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4. Estimate the TFR by fitting the local smoother to the bias-adjusted observations
z
(b)
cts, taking into account the differences in error variance ρ

(b)
cts and the bootstrap

weights p(b)cts. The distance weights and the local neighborhoods in the local smoother
vary by bootstrap replicate too, because the smoothing parameter α is re-estimated
within each bootstrap replicate.

3.5 Model validation

We validated the method using cross-validation in which some observations are excluded
while the method is applied to the remaining observations. We then assess how well the
resulting predictive distributions agree with the excluded observations. More precisely,
we assess whether the predictive distributions are calibrated, meaning that the prediction
intervals contain the truth the right proportion of the time. We use the following mea-
sures of calibration: (a) the proportion of excluded observations that fall outside their
prediction intervals, (b) the average bias of the estimated TFR compared to the excluded
observations, (c) the standardized absolute prediction error, and (d) the probability inte-
gral transform histogram of the excluded observations.

The prediction intervals for the left-out observations ycts are based on

ycts ∼ N(f̃ct + δ̃cts, ν̃
2
cts). (2)

In Eq. (2), f̃ct is the median TFR (which gives a more robust estimate of the TFR level
when outliers are present than does the mean), δ̃cts is the estimated bias and ν̃2cts is the
estimated total variance, all estimated from the training data set and the data quality co-
variates of observation ycts. The predictive variance of the observations is

ν̃2cts = Var(f̃ct) + ρ̃2cts,

where the variance of the TFR Var(f̃ct) and the observation-specific error variance ρ̃2cts
are estimated from the training data set.

With respect to the estimated TFR, the bias in the set of excluded observations is
estimated by the mean of the differences between a bias-adjusted excluded observation
and the estimated TFR. The standardized absolute prediction error (SAPE) for observation
ycts is defined by:

SAPEcts =

√
π

2

|ycts − δ̃cts − f̃ct|
ν̃cts

.

If our modeling assumptions hold, the mean expected SAPE is equal to 1 because E|ycts−
δ̃cts − f̃ct| =

√
2/πν̃cts. A larger value of the mean SAPE indicates that the left-out
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observations are more spread out than expected, while a smaller value says they are less
spread out.

Our last calibration criterion is the probability integral transform (PIT) histogram. The
probability integral transform for the excluded observation ycts is

PITcts = Φ

(
ycts − δ̃cts − f̃ct

ν̃cts

)
,

where Φ(·) is the cumulative distribution function of the standard normal distribution.
From Eq. (2) it follows that the PIT values should be approximately uniformly distributed
between 0 and 1 if our model is valid. Calibration is assessed using the histogram of the
PIT values of the excluded observations, which should be approximately uniform. For a
histogram with H bins, each bin with width 1/H should contain about a proportion 1/H
of the PIT values and thus have height 1. The summary criterion for model comparison
in terms of PIT values is given by the area of the PIT histogram that is located above one,
as this represents the deviation from uniformity of the PIT values (Berrocal, Raftery, and
Gneiting 2007). We call this the “PIT area”. If the TFR estimates are unbiased, a smaller
value of the PIT area means a better calibrated model. For more complete details of our
method, see Alkema (2008).

4. Results

4.1 Bias regression

The covariates selected for the bias regression model are: the recall period of the observa-
tion, its estimation method and the observation year. The results for the complete data set
are given in Table 2. A positive coefficient represents a positive bias of observations with
that covariate, indicating that the observations are on average higher than the UN estimate.
For the seven countries in West Africa, retrospective estimates that refer to periods more
than 5 years in the past have a positive bias of more than one child, compared to recall
periods of less than 5 years (where positive estimates indicate that the observation was
higher than the UN estimate). The regression coefficient is 1.07 children, if the midpoint
of the period before the survey is between 5 and 10 years (PBS 5−10) and 1.30 children if
the period is more than 10 years (PBS 10+). The regression coefficients for PBS 5-10 and
PBS 10+ are not significantly different when taking into account their standard errors.
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Compared to indirect estimates, direct observations have a negative bias of almost
half a child. Bias is positively associated with the observation year: the longer ago the
observation, the more negative its bias. The first observation was in 1954, and in that
year the bias started with a large negative value of −0.74 for indirect estimates with recall
period less than 5 years, and the bias became less negative at the rate of 0.02 children per
year.

Table 2: Estimated coefficients in the bias regression model
(standard errors and t-values are corrected for heteroskedasticity
using the heteroskedasticity consistent (HC3) estimator by
MacKinnon and White (1985). Heteroskedasticity and autocorre-
lation consistent estimates are not reported but were of the same
order of magnitude)

Coefficient Std. Error t-value

Intercept −0.74 0.15 −4.8
PBS 5 - 10 Years 1.07 0.09 12.4
PBS 10+ Years 1.30 0.10 13.3
Direct −0.45 0.11 −4.0
Year - 1954 0.02 0.004 5.1

The estimated bias for each outcome category and different years are given in Table 3.
Note that the first observation with a recall period of more than 5 years is in 1961. The
most recent estimate with a period before survey of more than 10 years is in 1994, and
likewise in 1999 for a retrospective period between 5 and 10 years. The bias is essentially
zero for indirect estimates in 1994 with a recall period of less than 5 years.

The bias regression model estimates confirm known problems with TFR observations
mentioned in the literature, such as shifting of births, recall bias, age misreporting and
other data reporting issues in retrospective fertility estimates (Ewbank 1981; Machiyama
2010; Pullum 2006; United Nations 1982). Shifting births back in time can explain the
negative bias of direct estimates in the most recent five year period before the survey.
The shifting back of births often occurs across a boundary five years before a survey
because the structure of the survey instrument requires the interviewer to ask additional
questions about children born within five years of the survey date. This effect leads to an
underestimate in the direct estimate of the TFR for the preceding five year period.

Bias also increases with the recall period of the observation, as can be seen by reading
the table from left to right. The positive bias of observations with longer recall periods
is surprising at first sight, but is in line with the data in Figure 2, in which almost all
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observations with long recall periods (long horizontal lines) were higher than the UN es-
timates. There are three possible explanations for the positive bias of observations with
longer recall periods. The first is back-shifting of births; back-shifting births will increase
the observations for the second most recent period before the survey. Second, differences
in survival rates could partly explain the positive bias of retrospective estimates because
the estimates are based on the birth histories of the women who survived until the year
of the survey. Thus a positive correlation between fertility and female survival results in
overestimation of the total fertility rate. This effect might be compounded by a poten-
tial adoption effect, in which adopted children or step-children are reported as biological
children, especially in Sahelian countries with a high proportion of polygamous unions.

Table 3: Estimated biases for different observation years and outcome
categories (using unrounded estimates of the regression coefficients
from Table 1)

Period Before Survey
Obs. year Direct < 5 Years 5 - 10 Years 10+ Years

1954 Yes −1.19
No −0.74

1961 Yes −1.06 0.01 0.24
No −0.61

1970 Yes −0.89 0.18 0.40
No −0.44

1980 Yes −0.70 0.37 0.59
No −0.25

1994 Yes −0.44 0.63 0.85
No 0.01

1999 Yes −0.35 0.73
No 0.11

2004 Yes −0.25
No 0.20
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Lastly, some of the positive bias of retrospective estimates seem to be due to overesti-
mates of the age-specific fertility rates in the older age groups. As explained in Section 2,
the TFR is based on the age-specific fertility rates in each period. The age-specific rates
for the unobserved older age groups in observations with a long recall period are extrap-
olated from the observed fertility outcomes in younger age groups in that period and the
age patterns in the most recent period. However, if age patterns are changing over time,
i.e. if fertility is declining more slowly in the younger age groups, then this extrapolation
technique will give overestimates in the older age groups in the past.

Figure 3 shows the age-specific fertility rates in age groups 35-39 and 40-44 in Sene-
gal. The observations plotted in black are observed age-specific fertility rates, while the
red dots represent rates based on the extrapolation method. The extrapolated estimates
tend to be much higher than the observed rates, causing positive bias in the TFR. The bias
regression gives the average bias for TFRs based on longer recall periods for all seven
countries. Note that our method corrected this bias without knowing in advance that it
existed or what caused it.

Figure 3: Illustration of positive biases in observations with longer recall
periods in Senegal: Age-specific fertility rates for (a) 35-39 and
(b) 40-44 year age groups with observed rates in black, extrapo-
lated rates in red, and the recall period from the midpoint of the
observation to the survey year given by the horizontal line
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Figure 4(a) shows the outcomes of the bias regression model for the TFR in Burkina
Faso. The observations in Burkina Faso are plotted with grey dots and the UN estimates
are given by the black circles. The black dots are the bias-adjusted observations when
all the observations in the data are used in the bias regression model. The bias-adjusted
observations show a more coherent trend than the uncorrected observations.

Figure 4: Illustration of bias adjustment and difference in error variance for
Burkina Faso: (a) UN estimates (black circles) and observations
ycts (grey dots) with the bias-adjusted observations ycts − δ̂cts
(black dots), (b) Bias-adjusted observations (black dots) with the
95% confidence interval for the TFR based on a single observa-
tion, [ycts − δ̂cts − 2ρ̂cts, ycts − δ̂cts + 2ρ̂cts], shown for two
observations (vertical black lines)

4.2 Error variance regression

The best-fitting error variance regression model includes the following variables: collec-
tion year after 1995, recall period up to one year and DHS in Mauritania in 1990. The
estimated measurement standard deviations ρ̂cts for the different outcome categories are
given in Table 4. The indicator for data collection year is included because residual plots
show that the error variance is higher for observations that were collected before the mid
1990s, indicating that data quality improved after 1995. If an observation was based on
one year of data before the survey was collected, its error variance increased. This effect
might be explained by differences in error variance by source: all observations within one
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year before the survey are from censuses and other surveys, not from DHSs. The DHS in
Mauritania in 1990 had higher error variance than the other DHS (see Discussion).

The larger the standard deviation of an observation within a certain category, the less
informative that observation is about the TFR and the wider the confidence interval for
the TFR based on that observation alone. The confidence intervals for the TFR based
on the estimated standard deviations are given for two observations in Burkina Faso in
Figure 4(b), with recall periods of less than one year, and 1-5 years respectively. The
comparison illustrates the fact that the bias-adjusted observation that is farther away from
the general trend (with a recall period of less than one year) has a larger estimated error
variance, as expected.

Table 4: Results of error variance regression: estimated measurement
standard deviations, ρ̂cts for different outcome categories

Observations from DHS Mauritania (1990)
No Yes

Category No. obs. ρ̂cts No. obs. ρ̂cts

PBS >1, Before 1995 104 0.42 9 0.85
PBS 0-1, Before 1995 51 0.74 0 -
PBS >1, After 1995 42 0.23 0 -
PBS 0-1, After 1995 11 0.55 0 -

These results underscore the importance of distinguishing between bias and variance.
For example, we find that direct estimates made in 1999 on the basis of retrospective
data (PBS > 5 years) have large bias but low variance, so our method adds a bias adjust-
ment to these estimates but then gives the adjusted estimates higher weights. In contrast,
indirect estimates with short recall periods made before 1995 had little or no bias, but
larger variance. Our method does not adjust these estimates at all, but gives them smaller
weights.

4.3 TFR estimates

The TFR estimates and their uncertainties for each country are shown in Figure 5. The
grey lines in the plots are a random sample of TFR trajectories produced by the local
smoother fits in the weighted likelihood bootstrap. The solid black line is the TFR es-
timate from our method and the dashed lines show the annual 95% confidence intervals
(based on the 2.5% and 97.5% percentiles of the sample of TFR trajectories). The UN
estimates are plotted on the same figure as a solid grey line with squares.
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Figure 5: Median estimates and confidence intervals for the TFR. The an-
nual median estimates are shown by the solid line and the annual
95% confidence intervals (CI) by vertical lines. The grey lines
are a random sample of TFR trajectories produced by the local
smoother fits in the weighted likelihood bootstrap. The observa-
tions are displayed as black dots and the UN estimates by the grey
line with squares
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In general the UN estimates are within or close to our 95% confidence intervals except
for lower UN estimates in Senegal from 1970 through the mid 1990s. We estimate a larger
increase in fertility in the 1960s than the UN for Niger and Senegal and a smaller increase
for Burkina Faso. For the Gambia, the UN estimates show a steeper decline during the
second half of the observation period. The results illustrate the fact that our estimates are
not the same as the UN estimates, even though our method assumes the UN estimates to
be unbiased. The average difference between the UN estimates and ours is zero — our
definition of unbiased.

For all countries except the Gambia, the median width of the 95% confidence intervals
is about 0.35 children. The confidence intervals for the TFR are wider for the years before
the mid 1970s than afterwards. The Gambia has the most uncertainty about past levels of
the TFR because of the scarcity of data, particularly the absence of a DHS, and the extent
to which the observations vary. For the Gambia the median width of the 95% confidence
intervals is 0.74 children, about twice as wide as for the other countries. The confidence
intervals are narrowest around 2000 and in the mid 1970s because these were periods with
more observations.

4.4 Method validation and comparison

Our method takes account of the differences in data quality between data sources, but
one can ask whether this actually improves the estimates. We assess this by comparing
our method with a method that is the same except that it does not adjust or weight the
observations for data quality. We will refer to the method that takes account of bias and
difference in measurement errors as the corrected method, and to the method that treats
all observations equally as the uncorrected method.

Figure 6 shows the confidence intervals for the TFR for both methods in the seven
countries in West Africa. The two methods differ most at the start of the observation
period, with the uncorrected method giving lower estimates than the corrected method.
For most countries the uncorrected method peaks in the mid 1980s at a TFR that is higher
than the estimate from the corrected method. In the Gambia, the only country without
a DHS, the uncorrected method gives lower estimates than the corrected method for all
years. The confidence intervals are generally much narrower for the corrected method —
on average 40% narrower. In most cases the UN estimates are inside the 95% confidence
intervals of both methods.
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Figure 6: 95% Confidence intervals for the TFR for the corrected method
(grey) and the uncorrected method (black). The solid line shows
the annual median estimates and the 95% confidence intervals are
plotted with dashed lines. The observations are displayed as black
dots and the UN estimates by the grey line with squares.
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To validate the methods, we left out different subsets of the observations, implemented
the methods without them, and then compared the resulting predictive distributions with
the observations themselves. The subsets excluded for this cross-validation exercise were:
(i) random subsets of observations (10 different subsets of 50 observations each) and (ii)
one DHS at a time (there were 22 DHS in all). Leaving out one survey at a time and
then examining the way the excluded observations fit into the uncertainty assessment is
the most realistic scenario in terms of adding “new” observations to the data set that are
independent of the observations that are already in the data set. We did this for both
methods.

The results are summarized for the two excluded categories in Table 5. The average
bias was 0.03 children or less for both categories for the corrected method and larger for
the uncorrected method, reaching 0.21 children for the excluded DHSs. Uncertainty is
slightly underestimated in the corrected method, as shown by the standardized absolute
prediction error (SAPE) which is larger than one for both outcomes, and by the propor-
tions of observations that fall outside the prediction intervals.

Table 5: Validation results for the corrected and uncorrected methods: Bias
(the average difference between excluded observations and the me-
dian TFR estimate), SAPE (the standardized absolute prediction
error), PIT area (the area above one in the PIT histogram), and the
proportion of excluded observations that fall outside their 80% and
95% prediction intervals

Proportion of observation
Excluding Method Bias SAPE PIT area <80 >80 <95 >95

50 Observations Corrected −0.02 1.06 0.05 0.08 0.11 0.04 0.04
Uncorrected −0.06 1.00 0.11 0.12 0.04 0.03 0.01

DHS Corrected 0.03 1.23 0.14 0.14 0.13 0.04 0.07
Uncorrected 0.21 1.08 0.19 0.07 0.14 0.01 0.04

The PIT histograms in Figure 7 do not show any systematic lack of calibration for the
corrected method, but they clearly indicate the bias in the uncorrected method. This is
confirmed by the better values of the PIT area for the corrected method compared to the
uncorrected method. Overall we conclude that our corrected method is reasonably well
calibrated, and that accounting for data quality is worthwhile in that it removes the sys-
tematic bias in the uncorrected method and reduces the width of the confidence intervals,
while yielding calibrated uncertainty statements.
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Figure 7: Histograms of the outcomes of the probability integral transforms
for the excluded observations when leaving out one DHS at a time
for the corrected and the uncorrected method

5. Discussion

We have proposed a new approach for estimating the TFR over time from multiple data
sources of varying quality, and we have applied it to seven West African countries. Our ap-
proach consists of four steps: bias adjustment, estimation of measurement error variance,
local smoothing of the bias-adjusted values with weights based on the error variance, and
uncertainty assessment using the weighted likelihood bootstrap. We evaluated the results
by cross-validation and found our method to be reasonably well calibrated. Comparison
to a similar method that excludes the first two steps shows that taking account of data
quality removes bias and reduces the average width of the confidence intervals.

We have focused here on the estimation of period TFR rather than cohort TFR because
that is what the UN has published for many years. This is because most data are collected
cross-sectionally and so lend themselves to the estimation of period TFRs. To reconstruct
a full cohort history one needs full birth histories, which are often unavailable for the
whole time period since 1950, and, if they are available, they are truncated for older
women and incomplete for younger ones. Moreover, there is a greater focus on recent
fertility and especially its pace of decline, because the UN uses its period TFR estimates
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as a basis for the projection of future population size, by breaking down the projected
TFR in each period into age-specific fertility rates for that period. For this purpose, period
TFRs are more appropriate than cohort TFRs, even if the latter were available.

Our method has been developed for an aggregate rate (the TFR) while often age-
specific rates are needed. The method could be applied directly to age-specific fertility
rates, but this has the disadvantage that adherence to overall patterns is not guaranteed. A
possible alternative would be to use our present method in combination with age-specific
fertility schedules.

There are several limitations to our study. The main drawback of our estimation
method is that it requires an “unbiased” data source in order to predict bias and measure-
ment error variance. This data source does not have to be perfect or even of high quality,
but it is required to have no systematic tendency to substantially over- or underestimate
the TFR. We used the existing UN estimates for this purpose. We did this because the UN
estimates are the only source of data that cover the entire period of observation for each
country, and because they are the result of a continuous process of refinement that uses
other types of data, including exogenous information about the proximate determinants of
fertility (Bongaarts and Potter 1983) to validate the estimates. Another possibility would
be to use the DHS data with short recall periods as the unbiased data source. A problem
with this is, however, that some DHS could be flawed, and that the DHS do not cover the
entire time period required in each country.

Given that we used the UN estimates as an unbiased data source, what would be
the consequence of potential biases in the UN estimates on our TFR estimates? If the
UN estimates were consistently biased upwards in all countries, or consistently biased
downwards in all countries, the estimated bias corrections for the observations would be
incorrect, and so the estimated TFR would be incorrect-biased in the same direction as
the UN estimates. Given the approach that the UN uses to estimate the TFR, we feel that
this is unlikely.

In our error variance regression analysis, we assumed that the absolute differences
between the bias-adjusted observations and the UN estimates are, on average, proportional
to the differences between the true TFR and the bias-adjusted observations in the error
variance regression. If this assumption does not hold, the estimates of the differences
in the measurement error variances (ρ2cts) would be biased. We think our assumption is
reasonable because we expect the errors in the UN estimates to be small compared to the
data errors (see Appendix).

Despite the limitations of our study, our validation exercise shows that our confidence
intervals are reasonably well calibrated. This finding indicates that either our assump-
tions were reasonable, or that violations of our modeling assumptions were in opposite
directions and cancelled each other out.

Because our method is automated, the results need to be carefully reviewed. This
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process can lead to new insights or extract implicit “expert information”, as we found for
the positive biases in the observations with longer recall periods, as illustrated in Figure
3. An expanded dataset, covering more countries and more data sources, could enrich
this analysis and provide new insights on some of the biases. The modeling approach
could be improved by taking into account additional fieldwork covariates, such as inter-
viewer and supervisor effects, time and duration of interview, background characteristics
of interviewers (Johnson et al. 2009), length of training of interviewers, ratios of re-
spondents/interviewers, interviewers/supervisors and sample size/duration of fieldwork,
as well as logistic problems and budget cost. Note however, that while many of these
covariates can be obtained for DHS, they are often unavailable for other data sources.

Other approaches to estimate the TFR in developing countries with imperfect data
could be considered, such as the Multiple-Indicator Multiple-Cause method (Bollen 1989).
More generally, a different (e.g. parametric) function could have been chosen to model
the TFR over time, and biases and differences in error variance could have been estimated
simultaneously while estimating the trend in the TFR in each country. This is an area
for future research. While such an approach sounds promising for overcoming some of
the limitations of our proposed method, it would be difficult to use in the countries under
consideration in this article. First, it is not clear how to decide on an appropriate func-
tional form to describe changes in the TFR over time. More importantly, it is not possible
to estimate biases in observations without specifying, a priori, which set of observations
are to be treated as unbiased. Our method overcomes these difficulties by using a local
smoother to model the TFR, and by using the UN estimates only as an initial estimate.
Moreover, as explained above, in our current approach we were able to extract implicit
“expert information” from the UN estimates, which would not be trivial in a standard
framework.

Our method for fertility could be adapted to simultaneously account for bias and dif-
ferences in measurement error variance in the estimation of mortality rates. Current at-
tempts to do this fall short in various ways. Rajaratnam et al. (2010) use Gaussian process
regression to estimate child mortality for all countries of the world. In their approach,
data quality is taken into account by estimating average biases in observations from vital
registration systems, and by estimating sampling and non-sampling variability for dif-
ferent sources. This approach neither allows for bias in observations from other sources
nor acknowledges differences in bias or non-sampling variability between observations
from the same source. In past estimates of under-five mortality by the Interagency Group
for Child Mortality Estimation (UNICEF, WHO, World Bank and UNPD, 2007) and Hill
et al. (1998) data quality was taken into account by assigning a weight to each observation
which depended on its data quality covariates (e.g. data collection processes) and expert
judgment, but this approach did not adjust for bias in the different data sources. We hope
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future work will explore the possibility of adapting and applying our method to mortality
estimation techniques.
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Appendix

Our probability model for observation ycts is:

ycts|fct ∼ N(fct + δcts, σ
2
cts) (c = 1, . . . , 7; t = 1, . . . , Tc; s = 1, . . . , nct), (3)

where ycts is the s-th estimate of the TFR for country c in year t, fct is the unobserved
true TFR in year t for country c, δcts is the bias of observation ycts, and σ2

cts is the
observation-specific error variance. The corresponding model, written in matrix notation,
is given by:

y|f ∼ N(f + δ,Λ),

or similarly,

y = f + δ + ε,

ε ∼ N(0,Λ),

where y is the vector of observations ycts, f the corresponding vector of true values of
the TFR, δ the vector of corresponding biases, Λ a matrix with corresponding σ2

c,t,s on
the diagonal, and ε the vector of measurement errors.

Let u be a vector of UN estimates, where the ith entry corresponds to the ith obser-
vation in vector y. We assume that

u|f ∼ N(f ,Γ),

or similarly

u = f + η,

η ∼ N(0,Γ),

where the errors in the UN estimates are denoted by vector η with covariance matrix Γ.
The difference between the observations and UN estimates is given by:

d = y − u = δ + ε− η,

and we assume
E[dcts] = xctsβ,

such that
d ∼ N(Xβ,Π), (4)
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where each row in design matrix X corresponds to the data quality covariates of obser-
vation ycts and covariance matrix Π is given by

Π = Λ+ Γ− 2Cov(ε,η).

β is estimated using least-squares estimation, and estimates of its standard errors are
corrected for heteroskedasticity using the heteroskedasticity consistent (HC3) estimator
by MacKinnon and White (1985). Standard errors of the β̂’s based on various corrections
for autocorrelation (off-diagonal elements in Π) were of similar magnitude.

The least-squares estimate for d is given by d̂ = Hd, where H = X(X ′X)−1X ′

and
(d− d̂) ∼ N(0, (I − H)Π(I − H)).

The estimated biases d̂ are subtracted from the observations to get the bias-adjusted
observations zc,ts. In vector notation:

z = y − d̂,

= (y − d) + (d− d̂),

= u+ (d− d̂),

= f + η + (d− d̂),

such that

z − u ∼ N(0, (I − H)Π(I − H)), (5)

z − f ∼ N(0, (I − H)Π(I − H) + Γ+ 2Cov(η,d− d̂)). (6)

To estimate the variance of z, we assume that the absolute differences between the
UN estimates and the bias-adjusted observations zcts are proportional to the absolute
differences between bias-adjusted observations and the true TFR, or, equivalently, that the
standard deviation of (zi−ui) is proportional to the standard deviation of zi and thus (zi−
fi), for bias-adjusted observation i = 1, . . . I . Biases from violating this assumption are
expected to be small if the errors in the UN estimates (η) and their covariance matrix Γ are
small compared to the data errors. Alternative approaches to estimating the variance of z
could be considered but would require additional assumptions about Γ and the correlation
between η and ε, as well as a more involved estimation procedure.
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