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Mapping the results of local statistics: 
Using geographically weighted regression 

Stephen A. Matthews1 

Tse-Chuan Yang2 

Abstract  
 
BACKGROUND 
The application of geographically weighted regression (GWR) – a local spatial statistical 
technique used to test for spatial nonstationarity – has grown rapidly in the social, health, 
and demographic sciences. GWR is a useful exploratory analytical tool that generates a set 
of location-specific parameter estimates which can be mapped and analysed to provide 
information on spatial nonstationarity in the relationships between predictors and the 
outcome variable. 
 

OBJECTIVE  
A major challenge to users of GWR methods is how best to present and synthesize the 
large number of mappable results, specifically the local parameter parameter estimates 
and local t-values, generated from local GWR models. We offer an elegant solution.  
 

METHODS 
This paper introduces a mapping technique to simultaneously display local parameter 
estimates and local t-values on one map based on the use of data selection and 
transparency techniques. We integrate GWR software and GIS software package 
(ArcGIS) and adapt earlier work in cartography on bivariate mapping. We compare 
traditional mapping strategies (i.e., side-by-side comparison and isoline overlay maps) 
with our method using an illustration focusing on US county infant mortality data. 
 

CONCLUSIONS  
The resultant map design is more elegant than methods used to date. This type of map 
presentation can facilitate the exploration and interpretation of nonstationarity, focusing 
map reader attention on the areas of primary interest. 

 
1 Associate Professor of Sociology, Anthropology and Demography, Faculty Director of the Geographic 
Information Analysis Core, Population Research Institute, Social Science Research Institute, Pennsylvania State 
University. 
2 Director, Geographic Information Analysis Core, Population Research Institute, Social Science Research 
Institute, Pennsylvania State University. 
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1. Introduction3 

Across the sciences there has been a recent emergence of techniques for examining 
local relationships in data based on analytical approaches that focus on subsets of data 
(e.g., locally weighted scatterplot smoothing (LOWESS), a technique developed by 
Cleveland 1979). Techniques for the analysis of local spatial relationships also have 
recently emerged (for an overview see Lloyd 2011).  

The conventional approach to the empirical analyses of spatial data is to calibrate a 
global model. The term ‘global’ implies that all the spatial data are used to compute a 
single statistic or equation that is essentially an average of the conditions that exist 
throughout the study area in which the data have been measured. The underlying 
assumption in a global model is that the relationships between the predictors and the 
outcome variable are homogeneous (or stationary) across space. More specifically, the 
global model assumes that the same stimulus provokes the same response in all parts of 
the study region. However, in practice, the relationships between variables might be 
nonstationary and vary geographically (Cressie 1993; Jones and Hanham 1995). Spatial 
nonstationarity exists when the same stimulus provokes a different response in different 
parts of the study region. If nonstationarity exists then there is a suggestion that 
different processes are at work within the study region.  

Standard global modeling techniques, such as ordinary least squares (OLS) linear 
regression or spatial regression methods, cannot detect nonstationarity and thus their 
use may obscure regional variation in the relationships between predictors and the 
outcome variable. Public policy inference based on the results from global models, 
where nonstationarity is present but not detected, will be variable and may be even 
quite poor in specific local/regional settings (Ali, Patridge, and Olfert 2007).  

Geographically Weighted Regression (GWR) is a statistical technique that allows 
variations in relationships between predictors and outcome variable over space to be 
measured within a single modeling framework (Fotheringham, Brunsdon, and Charlton 
2002; National Centre for Geocomputation 2009). As an exploratory technique, GWR 
provides a great richness in the results obtained for any spatial data set, and should be 
useful across all disciplines in which spatial data are utilized. Indeed, applications of 
GWR include studies in a wide variety of demographic fields including but not limited 
to the analysis of health and disease (Goovaerts 2005; Nakaya et al. 2005; Yang et al. 
2009; Chen et al. 2010), health care delivery (Shoff, Yang, and Matthews in press 

 
3 The motivation for this paper stems from reading GWR papers and seeing many generic maps of local 
parameter estimates with no reference to significance levels and a general dissatisfaction with our own 
experience with maps of parameter estimate surfaces overlaid with t-value isolines. GWR is becoming more 
popular in spatial demography and it is important to design effective and useful maps of local GWR results. 
Several papers in this special collection on spatial demography use GWR.  
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2012), environmental equity (Mennis and Jordan 2005), housing markets 
(Fotheringham, Brunsdon, and Charlton 2002; Yu, Wei, and Wu 2007), population 
density and housing (Mennis 2006), US poverty (Partridge and Rickman 2005), poverty 
mapping in Malawi (Benson, Chamberlin, and Rhinehart 2005), urban poverty 
(Longley and Tobon 2004), demography and religion (Jordan 2006), regional 
industrialization and development (Huang and Leung 2002; Yu 2006), traffic models 
(Zhao and Park 2004), the Irish famine (Gregory and Ell 2005), voting (Calvo and 
Escolar 2003) as well as environmental conditions (Foody 2003).  

One of the challenges of GWR applications, however, is the presentation and 
synthesis of the large number of mappable results that are generated by local GWR 
models. In this short paper we describe an easy-to-use mapping approach that builds on 
a paper published by Mennis (2006). We continue in the next section with an overview 
of GWR modeling and introduce some of the mappable results. Section 3 of this paper 
includes a brief review of prior mapping approaches and a description of our mapping 
approach. We include several different GWR mapping strategies as illustration. The 
paper concludes with a short discussion section.  

 
 

2. Geographically Weighted Regression (GWR) 

Briefly, GWR extends OLS linear regression models by accounting for spatial structure 
and estimates a separate model and local parameter estimates for each geographic 
location in the data based on a ‘local’ subset of the data using a differential weighting 
scheme. The GWR model can be expressed as: 

i
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where yi is the value of the outcome variable at the coordinate location i where  
denotes the coordinates of i,  and  represents the local estimated intercept and 
effect of variable j for location i, respectively. To calibrate this formula, a bi-square 
weighting kernel function is frequently used (Brunsdon, Fotheringham, and Charlton 
1998a) to account for spatial structure. The locations near to i have a stronger influence 
in the estimation of 

jβ

( , iij vuβ  than locations farther from i. In the GWR model 
localized parameter estimates can be obtained for any location i which in turn allows for 
the creation of a map showing a continuous surface of parameter values and an 
examination of the spatial variability (nonstationarity) of these parameters. 
Fotheringham, Brunsdon, and Charlton (2002) likened GWR to a ‘spatial microscope’ 
in reference to the ability to measure and visualize variations in relationships that are 
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unobservable in aspatial, global models. This modeling approach places an emphasis on 
differences across space, and the search for the exception, or local ‘hot spots.’ 

GWR is designed to answer the question, “Do relationships vary across space?” It 
is important to note that GWR approach does not assume that relationships vary across 
space but is a means to identify whether or not they do. If the relationships do not vary 
across space, the global model is an appropriate specification for the data. GWR can be 
used as a model diagnostic or to identify interesting locations (areas of variation) for 
investigation. Researchers typically use the Akaike Information Criterion (AIC) 
(Akaike 1974) to take model complexity into account, thus facilitating a comparison 
between the overall model results from a ‘global’ OLS linear regression model with 
those from the local GWR model. The AIC comparison will reveal whether an explicit 
spatial perspective significantly improves the model fit.4 A Monte Carlo approach is 
used to test for nonstationarity in individual parameters (Hope 1968, Fotheringham, 
Brunsdon, and Charlton 2002; Brunsdon, Fotheringham, and Charlton 1998a). Both 
OLS linear regression and GWR models can be estimated in the GWR software 
(National Centre for Geocomputation 2009)—current version is 4.0—as well as in 
ArcGIS 10 (Esri 2011), SAS® using Proc GENMOD (SAS 2011) and a SAS macro 
developed by Chen and Yang (2011) and R use in spgwr (R Development Core Team 
2011). We refer readers to Fotheringham, Brunsdon, and Charlton (2002) for a more 
detailed presentation of the methodology and theory behind GWR (for a brief primer 
see National Centre for Geocomputation 2009). 

 
 

3. Mapping local GWR results 

As has been implied, local and global statistics differ in several important respects, 
most notably that local statistics can take on different values at each location (see Table 
1.1 in Fotheringham, Brunsdon, and Charlton 2002:6). In GWR, the regression is re-
centered many times—on each observation—to produce locally specific GWR 
parameter results. These local GWR results combined generate a complete map of the 
spatial variation of the parameter estimates. That is, GWR results, unlike global model 
results, are mappable and ‘given that a very large number of potential parameter 
estimates can be produced, it is almost essential to map them in order to make some 

 
4 It should be noted that the repeated use of data for local estimates calculation in GWR may lead to a 
problem that AIC fails to serve as a goodness-of-fit indicator. A permutation-based approach may provide a 
solution to this issue (see Salas et al. 2010). As a rule of thumb, a difference (or reduction) of > 3 in the AIC 
between the global model and the local GWR signifies better model fit (Forthingham, Brunsdon, and Charlton 
2002:70). Fotheringham, Brunsdon and Charlton 2002, p. 95-102 discuss the use of AIC in model selection, 
comparing global models and local GWR, as well as two GWR models with different explanatory variables or 
with the same variables but different bandwidths. 
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sense of the patterns they display’ (Fotheringham, Brunsdon, and Charlton 2002:7). 
Mapping GWR results facilitates interpretation based on spatial context and known 
characteristics of the study area (Goodchild and Janelle 2004). 

The statistical output of GWR software typically includes a baseline global model 
result (parameter estimates), GWR diagnostic information, a convenient parameter 5-
number summary of parameter estimates that defines the extent of the variability in the 
parameter estimates (the 5-number summary is based on the minimum, lower quartile, 
median, upper quartile, and maximum local parameter estimates reported in the GWR 
model) and Monte Carlo test result for nonstationarity in each parameter. Even with the 
5-number summary of parameter estimates and the formal Monte Carlo test, if the 
researcher wants to better understand and interpret nonstationarity in individual 
parameters it is necessary to visualize the local parameter estimates and their associated 
diagnostics. GWR models estimate local standard errors, derive local t-statistics, 
calculate local goodness-of-fit measures (e.g., R2), and calculate local leverage 
measures. The output from GWR includes data that can be used to generate surfaces for 
each model parameter that can be mapped and measured, where each surface depicts the 
spatial variation of a relationship with the outcome variable.  

One of the main challenges for users of GWR is the presentation and synthesis of 
the large number of results that are generated in local GWR models. Partly due to 
journal/publication limitations on the use of color, a number of the early GWR papers 
used grey-scale maps. As parameter estimates and t-values can take on both positive 
and negative numbers, designing effective grey-scale maps showing local GWR was a 
major challenge. More recently the use of divergent color schemes (Brewer 1994, 1996) 
represents a major improvement in visualizing GWR results (see Mennis 2006). As 
Mennis (2006:172) notes a main issue is that ‘the spatial distribution of the parameter 
estimates must be presented in concert with the distribution of significance, as indicated 
by the t-value, in order to yield meaningful interpretation of results.’ Mapping only the 
parameter estimate alone is misleading, as the map reader has no way of knowing 
whether the local parameter estimates are significant anywhere on the map. Indeed, 
even cross-reference to elements in the 5-number summary of parameter-estimates table 
(e.g., the lower and upper quartile range of parameter estimates) and the Monte Carlo 
test results does not provide the map reader with sufficient information to be able to 
discern the areas where local parameter estimates have significant local t-values.  
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To better illustrate, we visualize the results of a GWR model where the county-
level infant mortality rate is the outcome variable and social disadvantage (a composite 
variable) is the main predictor.5 Social disadvantage is a composite variable we have 
used in prior research (Yang, Teng, and Haran 2009; Chen et al. 2012). The Monte 
Carlo test results indicated that the association between social disadvantage and infant 
mortality is nonstationary across place. A rudimentary, but unsatisfactory strategy is to 
present two maps, one map showing the local parameter estimates for social 
disadvantage and the other map showing the local t-values for the same variable (see 
Figure 1a & 1b). 

A more sophisticated approach is to overlay specific t-values (e.g., +/- 1.96) as 
isolines (or contour lines) on top of the parameter estimate surface (see Figure 2).6 The 
isolines can be defined for any set of data values (e.g., values that correspond to levels 
of statistical significance).7 The isoline method allows the map reader to read both the 
approximate parameter estimate and the t-value for any location on the map. In our 
example the isolines are relatively easy to interpret, but if the range of local t-values is 
wide, it may be difficult to read exact values, specifically when the isolines follow 
complex paths or are spaced relatively close together.  

Another issue, common to all cartographic design, is the placement of text labels 
attached to the contour lines. In current GIS software these decisions can be automated 
based on optimum text-placement criteria, but this does not guarantee that the 
placement of text will not obscure salient areas of the map. The isoline approach places 
more burden on the map reader to recognize and then potentially eliminate from further 
consideration those parts of the map where the local t-value is not significant. That is, 
this map form does not place visual emphasis on the parts of the surface where local 
parameter estimates are significant. In our own work we have experimented with the 
isoline overlay approach, but in many of our applications we also wanted to show the 
basic outline of geographic areas (e.g., states or counties in US-based applications). 
When faced with such decisions regarding our own map design, the addition of isolines 
more often than not contributed to potential chartjunk (Tufte 1983) and possibly more 
confusion for the map reader. We required a more elegant mapping design for our 
GWR applications. 

 
 

                                                           
5 This simple model includes other controls (e.g., race/ethnic composition). 
6 We note that Byrne, Charlton, and Fotheringham (2009) use an adjustment to take advantage of the 
dependency between local GWR models based on a Bonferroni style adjustment for multiple hypotheses 
testing.  
7 Mennis (2006) used data classes corresponding to significance levels (.10 and .01) in his bivariate maps – 
see Figure 6b, p. 176.  
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Figure 1a: Social disadvantage local parameter estimate map 

 
 
 

Figure 1b: Social disadvantage local t-value map 
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Figure 2: Social disadvantage overlay of t-value as isolines on parameter 
estimate map  

  
 

Mennis (2006) reminds GWR users that bivariate choropleth mapping is a viable 
approach for mapping the GWR parameter estimate and the local t-values 
simultaneously. Bivariate choropleth mapping was first introduced by Olson (1981); see 
also Eyton (1984) and Dunn (1989). Further Mennis combines a bivariate choropleth 
mapping with masking approaches that effectively limit the presentation of results to 
only those areas of the study area (the map) where t-values are significant. We adapt the 
approach of Mennis (2006).8  

Briefly, in ArcGIS 10 (Esri 2011) we create the surface of estimated coefficients 
and the local t-values for a selected parameter, social disadvantage. Within ArcGIS 10 
it is trivial to set up a mask in one data layer (i.e., the local t-values) and to order this to 
be visually above or on top of another data layer (i.e., the local parameter estimate). The 
t-value data layer is set up so that data values lying between -1.96 and +1.96 are 
masked out (showing white on Figure 3) while data values smaller than -1.96 or greater 
than +1.96 are set to 100% transparency. Transparency means that the data stored in 

                                                           
8 Our approach is based on the integrated use of GWR 3.0/4.0 and ArcGIS 10. Please contact the authors for a 
full description of the process and a tutorial document based on a sample data set. The tutorial document 
walks the user through different stages of the process from GWR output file results through to final map 
construction (the main stages in the process include the conversion of e00 files into coverage files, use of 
Spatial Analyst to create raster surfaces, and setting up the map design/template specifications).  
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another data layer below will be seen unobstructed. Whereas Mennis uses a data 
classification scheme based on standard-deviation and N-class methods (based on 
optimal methods for maximizing within-class homogeneity) we use a continuous 
bivariate color scheme for the parameter estimate surface. In Figure 3 the significant 
positive parameter estimates are represented by shades of blue, while the significant 
negative parameter estimates are shades of green. This map design facilitates map 
interpretation and immediately allows the map reader to identify locations of potential 
interest. We have used this map design in two prior papers (Chen et al. 2012; Shoff, 
Yang, and Matthews in press 2012). 

 
Figure 3: Social disadvantage with new mapping approach 

 
 
 

4. Discussion 

Fotheringham and colleagues developed GWR into a convenient, yet powerful, 
technique that explores spatial nonstationarity and provides mappable statistics to 
visualize the spatial patterns of the relationships between dependent and independent 
variables (Brunsdon, Fotheringham, and Charlton 1996; Brunsdon, Fotheringham, and 
Charlton 1998a, 1998b; Fotheringham, Brunsdon, and Charlton 1997; Fotheringham, 
Charlton, and Brunsdon 1998; Fotheringham, Brunsdon, and Charlton 2002). GWR has 
recently been identified as one of the geostatistical methods that should be promoted in 

http://www.demographic-research.org 159
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health studies in light of the locality of health outcomes (Young and Gotway 2010). 
Moreover, it is argued that GWR can potentially make significant contributions to 
health research, such as allowing researchers to better understand the etiology and 
spatial processes, offering informative results beyond global models to facilitate place-
specific health policy formation, and enabling scholars to explore questions that cannot 
be answered with traditional (global) analytical models. As we reported above, GWR is 
a useful exploratory technique in all demographic-related disciplines where spatial data 
are used, and in applications where spatial nonstationarity is suspected (and should be 
checked for).  

Like other analytic methods, GWR has limitations, including issues associated 
with multicollinearity, kernel bandwidth selection, and multiple hypothesis testing 
(Wheeler and Tiefelsdorf 2005; Wheeler 2007, 2009; Cho et al. 2009; Jiang, Yao, and 
Wheeler 2010; Wheeler and Páez 2010). Some of these issues have been addressed 
(Wheeler 2007, 2009). GWR is generally regarded as a useful tool for exploring spatial 
nonstationarity and interpolation (Páez, Long, and Farber 2008; Wheeler and Páez 
2010) but further testing is required (Páez, Farber, and Wheeler 2011). 

In this brief paper we reviewed some standard but ultimately poor approaches to 
visualizing local parameter estimates. We offer a fairly simple map format based on the 
inherent strengths of a GIS and sound cartographic design that allows for two variables, 
specifically both local statistics – the parameter estimate and the t-value – to be mapped 
together, by laying one layer file above another layer. Using masking and transparency 
techniques on the local t-value layer we allow only the significant parameter estimate 
values to be visualized. This mapping template allows the map reader to focus on the 
primary areas of interest in the map. This approach represents a significant 
improvement over mapping all local parameter estimates irrespective of whether or not 
they are significant.9 
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9 In practice we generate maps for the local parameter estimates that are identified as being nonstationary 
based on the 5-number summary and the more formal Monte Carlo test. 
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