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Abstract

BACKGROUND
Much of our knowledge of the epidemiology and demography of HIV epidemics in Africa
is derived from models fit to sparse, non-representative data. These often average over age
and other important dimensions, rarely quantify uncertainty, and typically do not impose
consistency on the epidemiology and the demography of the population.

OBJECTIVE
This work conducts an empirical investigation of the history of the HIV epidemic in
Uganda and Tanzania through the late 1990s, focusing on sex-age-specific incidence,
uses those results to produce probabilistic forecasts of HIV prevalence ten years later,
and compares those to measures of HIV prevalence at the later time to describe the sex-
age pattern of changes in prevalence over the intervening period.

METHODS
We adapt an epidemographic model of a population affected by HIV so that its param-
eters can be estimated using both the Bayesian melding with IMIS estimation method
and maximum likelihood methods. Using the Bayesian version of the model we produce
probabilistic forecasts of the population with HIV.
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RESULTS
We produce estimates of sex-age-specific HIV incidence in Uganda and Tanzania in the
late 1990s, produce probabilistic forecasts of the HIV epidemics in Uganda and Tanza-
nia during the early 2000s, describe the sex-age pattern of changes in HIV prevalence in
Uganda during the early 2000s, and compare the performance and results of the Bayesian
and maximum likelihood estimation procedures.

CONCLUSIONS
We demonstrate that: (1) it is possible to model HIV epidemics in Africa taking account
of sex and age, (2) there are important advantages to the Bayesian estimation method,
including rigorous quantification of uncertainty and the ability to make probabilistic fore-
casts, and (3) that there were important age-specific changes in HIV incidence in Uganda
during the early 2000s.

1. Introduction

This work makes two main contributions. The first is an empirical investigation of the
history of the HIV epidemic in East Africa. We replicate the work of Heuveline (2003)
to estimate sex-age-specific HIV incidence and prevalence in Tanzania and Uganda in
the mid-to-late 1990s using our modified version of his HIV-enabled cohort component
model of population projection (HCCMPP). Then assuming no change in incidence, we
make probabilistic forecasts of those HIV-infected populations and compare them with the
empirical estimates from the HIV/AIDS Indicator and Demographic and Health Surveys
about ten years later. The second contribution is an adaptation and implementation of the
Bayesian melding with IMIS estimation procedure (Poole and Raftery 2000; Raftery and
Bao 2010) to work with the HCCMPP. This Bayesian method has important advantages
compared to the maximum likelihood approach used by both Heuveline and ourselves in
previous work (Thomas and Clark 2011), including the ability to produce probability dis-
tributions of the estimated parameters and model outputs which can be used for inference
and projection.

HIV affects both mortality (increases) and fertility (decreases) and consequently has
important effects on population growth and the sex and age composition of a population
(UNAIDS 2009a). The fundamental process in an HIV epidemic is transmission of the
virus – how and between whom. The details of the transmission dynamics determine who
is infected and at what age, and this then determines, with a delay, who is sick and dying
at a given age. A fuller understanding of the biological and behavioral determinants of
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transmission would give us the ability to design effective prevention interventions that
target specific mechanisms, situations and people.

It follows then that the most valuable indicator of an HIV epidemic is incidence, the
ratio of new cases to those at risk of infection (Hallett, White, and Garnett 2007; Bongaarts
et al. 2008). Beyond an understanding of the dynamics of the epidemic as a whole, and
in order to design and monitor well-targeted, effective and affordable interventions, it is
necessary to refine measures of incidence by at least sex and age. The problem is that HIV
incidence is extremely difficult and expensive to measure because it involves long-term
follow up of a large number4 of HIV negative people (see for example: Mbulaiteye et al.
2002; Wambura et al. 2007). There is a promising test for recency of HIV infection being
developed and tested, but so far it is difficult to calibrate the results accurately (Parekh
et al. 2004; McDougal et al. 2006; McWalter and Welte 2009, 2010). This leaves only
one widely applicable option for learning about HIV incidence: mathematical modeling.

Mathematical and computational models of HIV epidemics (see, for example: An-
derson, 1988; Hallett et al., 2006; Cassels, Clark, and Morris, 2008; Hallet et al., 2008a,
2008b; Granich et al., 2009) represent populations and the mechanisms that transmit the
HIV from one (type of) person to another. Essentially they perform either or both of two
tasks: to estimate parameter values or to project the population forward in time in order
to make predictions or investigate different scenarios. ‘Parameters’ in this sense are vari-
ables whose values govern the behavior of the model; incidence (or something closely
related) is often a variable in these models. Used in estimation mode, the objective is to
find values of the parameters that produce model outputs that match a set of empirical
values. Because HIV prevalence is comparatively easy and cheap to measure, models are
often fit or estimated to match prevalence. In projection mode the model outputs them-
selves are the quantities of interest.

We use a mathematical model of a population with HIV to do both estimation and
projection. First we estimate the model parameters necessary for the modeled popula-
tion to closely match the HIV prevalence in a variety of study populations in Tanzania,
Uganda and Burundi (East Africa) in the early-to-mid 1990s. This provides us with the
trend and age-pattern of HIV incidence from the beginning of the epidemic up to then
that are necessary to create the age-patterns of prevalence observed in each study popula-
tion. We then move to projection mode and hold HIV incidence constant in each sex-age
group and project the populations of Tanzania and Uganda forward in time until we have
new representative measures of HIV prevalence from the HIV/AIDS Indicator and Demo-
graphic and Health Surveys, and at that time we compare our projected HIV prevalence
to the estimates from the surveys. HIV prevalence is determined by both incidence and

4‘Large’ because HIV infection is a rare event which necessitates a large number of observations to accumulate
enough infections to measure incidence rates with precision.
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survival of the infected population. Since we have no reason to believe that mortality has
increased (which would reduce HIV prevalence), declines in HIV prevalence are most
likely attributable to declines in HIV incidence.5

Estimates and outputs from models like ours often appear as single numbers without
corresponding measures of uncertainty or precision, or if they do have these, they are
constructed in an ad hoc fashion. We address this problem by employing the Bayesian
melding with IMIS method (Poole and Raftery 2000; Raftery and Bao 2010) which has the
ability to properly quantify uncertainty in the estimated parameters and all of the model
outputs, including HIV incidence, prevalence, age structures, etc. We use the estimated
probability distributions of parameters and model outputs to confirm that significant, age-
specific changes occurred in HIV prevalence and incidence in Uganda during the late
1990s.

2. Background

The most important indicator of an HIV epidemic is incidence, the rate at which unin-
fected members of the population become infected. The logistic and economic difficul-
ties of measuring and tracking HIV incidence motivates the use of a modeling approach
to study changes and variation in HIV incidence. Thus, we focus our attention here on the
implementation of new infections in the HCCMPP and how this relates to the more recent
empirical record. Palloni (1996) points out that in a demographic model with HIV/AIDS
the force of infection that produces the current level of prevalence should depend on the
past level of prevalence. This endogeneity of HIV incidence is not modeled directly in the
HCCMPP; instead, a simple approximation is used to provide a plausible trend in HIV
incidence. Heuveline (2003) adopted a gamma curve to determine the incidence trend, a
strategy also used in previous models of HIV/AIDS epidemics (e.g., Chin and Lwanga
1991; Salomon and Murray 2001). Additional parameters are included in the HCCMPP
to allow the risk of infection to vary by age, sex, and location, but the underlying trend is
the same. In other words, the levels are estimated and the pattern over time is fixed.

While the fixed gamma curve used by Heuveline (2003) may provide a plausible
course of development for an HIV epidemic, there has been little (if any) validation of
this assumption. In the face of such model uncertainty the usual practice is to turn to
the empirical record for guidance. In the present case, however, the available evidence

5Changes in prevalence may also arise from longer survival times resulting from increases in antiretroviral
therapy (ART) coverage. The World Health Organization estimates that ART coverage in 2007 is 33% in
Uganda and 31% in the United Republic of Tanzania (World Health Organization 2008). Increasing coverage
over time results in an upward pressure on the levels of HIV prevalence, and thus our estimates of changes in
HIV incidence should be treated as lower bounds since we assume a constant survival schedule for the infected
population.
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is fairly limited, as there are few studies that provide information on the trends of HIV
incidence in sub-Saharan Africa. Among the exceptions is Mbulaiteye et al. (2002) who
tracked HIV incidence in a cohort study carried out in Masaka, Uganda from 1989 to
1999, and found evidence of a decline over that period. However, a study by Kamali et al.
(2000) in the same area produced estimates of incidence by sex and age that illustrated
how difficult it is to identify trends and differences, given the large amount of uncertainty
around the point estimates when disaggregating the population by sex and age. In an
open-cohort study carried out at a demographic surveillance system in rural Tanzania,
Wambura et al. (2007) collected data on HIV incidence by village type, sex and age with
serosurveys conducted in 1994-1995, 1996-1997, 1999-2000, and 2003-2004.6 The three
point estimates of HIV incidence for the intervals between the serosurveys suggested dif-
ferences in the trends for men and women in roadside villages, as well as between women
living in remote rural villages and those living in roadside villages. Among men living in
roadside villages, there was a significant increase in the crude incidence rate from the first
to the second estimate, while the third point estimate did not differ from the second. A
similar trend was found for both men and women living in remote villages, but the level
of incidence was significantly lower than that of men in roadside villages for each time
period. The trend among women in the roadside villages differed significantly in each
time period with an increase followed by a decline in crude incidence. Wambura et al.
(2007) also explored HIV incidence trends by broad age groups for men and women in
different locations. Although the uncertainty around the point estimates makes it difficult
to draw conclusions, the results do motivate the hypothesis that the incidence trends may
differ by age, sex, and location.

In addition to direct measures of HIV incidence, there are other sources that provide
information about the trends over time. One suggested option is to use HIV prevalence
among women aged 15-24 years who attend antenatal clinics (UNAIDS 2009b). The
underlying logic is that these young women have only been exposed to the risk of infection
via heterosexual transmission for a short period of time, and thus those who are HIV
positive are likely to have been infected fairly recently, with a very small percentage
dying from AIDS. While this metric may serve as a useful means for monitoring the
epidemic, it provides little information about HIV incidence at older ages (see also Wawer
et al. 1997; Ghys, Kufa, and George 2006; Żaba, Boerma, and White 2000). Another
potentially helpful source of information includes the hypotheses explored with other
epidemiological and demographic models of HIV/AIDS. For example, Gregson et al.
(1997) describe the predictions of a model that fit the so-called HIV-1 hypothesis, which
posits a pattern of sexual behavior in rural areas where men are typically infected first,
6There were around 2,700 men and 3,300 women tested in each serosurvey Also, Wambura et al. (2007) com-

bined the central trading center with roadside villages in their analysis, and compared these to the remote rural
villages.
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perhaps while working in an urban center or town, and then infect their female partners.
This pattern of sexual mixing may result in different trends in HIV incidence between men
and women, or differences between urban and rural areas. Results from other models
suggest that the peak in HIV incidence occurs earlier than what is produced from the
gamma curve used in the HCCMPP (Stoneburner et al. 1996; Salomon and Murray 2001).

These various sources of information concerning the trends in HIV incidence in sub-
Saharan Africa motivate our attempt to explore new specifications of the HCCMPP. Ef-
forts to this end will be useful in helping to identify useful sources of variation in the risk
of infection, which will in turn help to formulate successful plans for interventions and
treatment.

3. Methods & data

3.1 Model

The HCCMPP is a multistate projection model, where the duration of HIV infection
serves as the state variable. It is a simple case in that individuals are only able to move
from shorter duration states to longer durations states. More general multistate models
allow individuals to make transitions between states in either direction, e.g., from married
to divorced and from divorced to married. Multistate models are used to study various
demographic processes, and there is a large body of research on the properties and ap-
plication of multistate models in demography, as well as other fields such as ecology and
economics (for more details, see Schoen 1975; Palloni 2001; Keyfitz and Caswell 2005).
A key feature of the multistate approach in the present context is that the vital demo-
graphic rates depend on the state that the individual currently occupies. In other words,
this model allows us to model the association between HIV and fertility, and HIV and
mortality.

The standard cohort component model of population projection (see for example
Pritchett 1891; Cannan 1895; Pearl and Reed 1920; Bowley 1924; Whelpton 1936; Leslie
1945; Dorn 1950) was enhanced by Heuveline (2003) to include five additional states to
accommodate the duration-specific stages of HIV infection: (i) uninfected, (ii) duration of
infection of 0–4 years, (iii) duration of infection of 5–9 years, (iv) duration of infection of
10-14 years, and (v) duration of infection of 15+ years. A time-sex-age-specific incidence
profile moves people from the uninfected to the first infected group (with a duration of
infection of 0–4 years). Once people are in the infected groups they face diminished odds
of surviving as they move to the next infected group. Infected women also experience
slightly reduced fertility rates and consequently produce fewer births. As people move
through the HIV infected duration groups, the effects of HIV become more pronounced
to reflect the intensifying nature of their infections.

748 http://www.demographic-research.org



Demographic Research: Volume 27, Article 26

We have created a Leslie matrix representation of this model that allows us to run the
model easily and allow some additional formal manipulation (Thomas and Clark 2011).
We start with a base population count by sex and age, a set of underlying mortality and
fertility rates, all from the United Nations (UN), and a set of parameters for the HIV inci-
dence profile, and we multiply the column vector containing our population by the Leslie
matrix. We divide both time and age into five-year periods, so one multiplication moves
the population forward in time and age by five years. To go twenty years forward we mul-
tiply the population vector times the four Leslie matrices that represent the corresponding
four five-year periods. The result is a new column vector for each sex containing the age-
and HIV status-specific counts of the population twenty years in the future. From this
we can calculate HIV prevalence by dividing the total HIV+ population count in a given
sex-age group by the total population count in that same sex-age group.

If the starting population, vital rate schedules and HIV incidence parameters are fixed,
the HCCMPP can be used in the traditional way to project an HIV-infected population for-
ward in time. Alternatively, the HCCMPP can be used to estimate the values of unknown
parameters. When used to estimate, the general idea is to vary the unknown parameters
until a set of values are found that create a population that matches some set of criteria.

To estimate the HIV incidence parameters, we start with a reasonable base popula-
tion and vital rates for the early 1980s (from the UN) and project the population forward
ten to fifteen years until the mid 1990s when HIV prevalence measures began to become
available (for small populations within Burundi, Tanzania, and Uganda). We then calcu-
late the predicted HIV prevalence from the model and compare it to what was actually
measured, and we adjust the incidence parameters until we have a close match to sex- and
age-specific prevalence.

We have two methods for doing this: a maximum likelihood approach analogous to
Heuveline (2003) (see also Thomas and Clark 2011) and the new Bayesian melding with
IMIS technique described below in Section 3.3. Using either method we identify the most
likely set of HIV incidence parameter values that, together with our assumptions about
the base population and vital rates, produce the sex-age-specific HIV prevalence observed
in the mid 1990s (or something very similar), and, additionally, measures of uncertainty
around those point estimates. The Bayesian approach is particularly useful in that the
parameters can be directly interpreted in a probabilistic framework.

To project an HIV-infected population forward in time, the model is run with known
values for all the parameters. This produces a predicted population corresponding to the
base population and the sequence of parameter values used to govern the dynamics of the
population over time (it is possible to change parameter values as time goes by to reflect
changing vital rates or HIV incidence). We use the model in this way to produce proba-
bilistic forecasts of the populations of Tanzania and Uganda (DHS data with information
on HIV prevalence for Burundi are not available at the time of writing). We make predic-
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tions using the predictive (posterior) distribution of parameter values from the Bayesian
estimation method, which yields a distribution of forecasts of the population at some time
in the future, and from this distribution we can make probabilistic statements about how
likely a given future population is. The result is that the most likely sets of parameter
values translate into the most likely set of populations (net of assumptions about trends in
parameter values over the projection period).

Our extensions and assessment of the model are based primarily on HIV infection,
and thus we focus our attention on the model parameters related to incidence. Consider
HIV-negative women in the five-year age group a at time t1 in a population located in
region r. In the HCCMPP, the proportion of these women who are alive and HIV-positive
five years later at time t2 is denoted by if,a,t1,r and can be decomposed as

if,a,t1,r = 1− exp {−Γt2−t1 Hr jf,a} , (1)

where subscript f refers to females, Γt2−t1 captures the trend in HIV incidence between
times t1 and t2, Hr is a population-specific parameter that determines the size of the
epidemic in region r, and jf,a is the age-specific parameter for females that measures
incidence relative to women aged 25-29 years for whom the value is fixed at one (hereafter
age-specific relative incidence ratio). The corresponding model input for males, im,a,t1,r
has the same decomposition, with women aged 25-29 years again serving as the reference
group. This decomposition allows the level of HIV incidence to vary by age and sex, as
well as across populations in different locations, but the general shape of the trend through
time will be the same. The value for the trend in HIV incidence between times t1 and t2
is calculated from the gamma distribution as follows

Γt2−t1 =

∫ t2

t1

xα−1 e−x/β

(α− 1)! βα
dx, (2)

where α and β are parameters taking only positive values. The parameters jf,a, jm,a,
and Hr are estimated using data compiled by Heuveline (2003), but the time trend is
fixed and determined by Equation 2 with α = 5 and β = 3. It should also be noted that
an initial year t0 needs to be chosen for when the country-specific epidemic began. This
year is assumed to be the date when HIV prevalence reached 1% in the general population,
and the corresponding values for the countries in our analysis are taken from the United
Nations (1998).

We extend the work of Heuveline (2003) by exploring several different specifications
for the trend in HIV incidence Γt2−t1 using two basic approaches. The first approach
simply involves estimating the parameters of the gamma curve, α and β, along with
the other HCCMPP parameters. This approach is then extended by estimating separate
gamma curves for men and women, with sex-specific reference groups aged 25-29 (i.e.
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jf,25−29 = 1 and jm,25−29 = 1 ). The second strategy is to include an additional
parameter for each of the first four projection periods and to estimate them in conjunction
with the other HCCMPP parameters. Again, we explore two specifications that include a
single trend shared by women and men as well as sex-specific trends.

Forecasts of HIV prevalence are made using each of these specifications for incidence,
and the corresponding predictive performance is assessed by comparing the forecasts to
the observed levels of HIV prevalence in the HIV/AIDS Indicator and Demographic and
Health Surveys for Tanzania and Uganda.

3.2 Data

Three compilations of data are used in this analysis, the first of which is taken from Heuve-
line (2003) who reviewed the epidemiological literature and compiled data on HIV-related
outcomes from populations located in East Africa.7 For the current analysis, we use only
those data from Burundi, Tanzania, and Uganda to limit the geographic heterogeneity
across the local epidemics. The types of outcomes include: HIV test results in a general-
population sample; HIV test results in an antenatal clinic (ANC) patient sample; HIV test
results in all or a sample of births from HIV+ mothers; HIV test results during a follow-
up of an HIV- sample; and survival during a follow-up of HIV+ individuals. These data,
which are used to estimate the HCCMPP parameters, were all collected before 1998 with
the majority collected during the 1990s and a few from the late 1980s. The outcomes
are differentiated by age and sex, and were collected in rural, semi-urban or urban loca-
tions. After calibrating the model with the data collected before 1998, we then use the
HCCMPP to make forecasts of sex-age-specific HIV prevalence in Tanzania and Uganda,
and compare the forecasts to the levels observed in the HIV/AIDS Indicator Surveys and
Demographic and Health Surveys collected in 2004 and 2007 for Tanzania, and in 2004
for Uganda (neither source of data is available for Burundi). The third compilation of data
is taken from the United Nations global demographic estimates (2007) , which provides
the basic model inputs needed to make the forecasts. The HCCMPP requires an initial age
distribution for women and men as well as sex-age-specific rates of fertility and mortality
for the uninfected populations in each country over time. All of these model inputs are
treated as fixed (i.e. not estimated) in our analysis.

3.3 Estimation

Maximum Likelihood. We implement a standard maximum likelihood estimation pro-
cedure described in full elsewhere (Thomas and Clark 2011). This procedure produces

7The specific locations are Fort Portal, Uganda; Gulu, Uganda; Masaka, Uganda; Mara, Tanzania; Mwanza,
Tanzania; Bujumbura, Burundi; Mangochi, Malawi; Lusaka, Zambia; Mposhi, Zambia; and Mutasa, Zimbabwe.
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point estimates for each of the model parameters and standard 95% confidence intervals,
but does not provide a statistically sound method for making probabilistic projections.
Bayesian Melding. In the Bayesian framework, parameters are treated as random vari-
ables. Prior beliefs about the parameters are quantified in the form of a joint probability
density p(θ), where θ is a vector of parameters for which we will make inference. The
data y are brought in by specifying a likelihoodL(y|θ), which is the probability of the ob-
served data for a given value of the parameters. Using Bayes’ Theorem and the marginal
density of the data p(y), we can update our prior beliefs to obtain the posterior distribution

p(θ|y) =
L(y|θ)p(θ)

p(y)

∝ L(y|θ)p(θ), (3)

which is used to make inferences about θ.8

Bayesian melding (Poole and Raftery 2000) was designed for problems in which a
deterministic model, such as HCCMPP, is used in the likelihood function. Let M repre-
sent the model which transforms a set of parameter inputs θ into a set of model outputs
φ = M(θ). As described above, the Bayesian approach requires a prior density for the
model inputs p(θ) and a likelihood for the outputs and the data L(M(θ)). These two
sources of information are combined to produce the following posterior distribution for
the model inputs

p(θ|y) ∝ L(y|M(θ))p(θ).

Inference is performed by sampling from p(θ|y) and summarizing the resulting pos-
terior sample. Furthermore, we can run HCCMPP for each set of inputs in the posterior
sample to obtain a posterior sample of the model outputs p(φ|y). Sex-age-specific HIV
prevalence is the model output that interests us because we can use it to assess fore-
casts. Note that the posterior sample reflects the distribution of model outputs, and thus
the quantiles of the posterior sample can be used to make probabilistic statements about
the values of the model outputs. This feature of the Bayesian framework is used to as-
sess probabilistic forecasts of HIV prevalence by comparing these predictive intervals to
observed data.
Bayesian Melding Estimation. In our implementation of Bayesian melding with the
HCCMPP we specify independent uniform priors that are relatively uninformative and
thereby place most of the influence with the observed data. We use a beta-binomial likeli-
hood to allow for heterogeneity across the different types of data and geographic regions

8Equation 3 arises from the fact that p(y) does not depend on θ , so the posterior distribution only needs to be
known up to a constant and is thus proportional to the product of the likelihood and the prior.
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from which they are collected. The beta-binomial distribution is a mixture of binomial
distributions n ∼ binomial(N, π), with the mean of the binomials following a beta dis-
tribution Nπ ∼ beta(a, b). We adopt the re-parameterization π ∼ beta(µ,M) of the beta
distribution used by Grassly et al. (2004), where µ = a/(a+b) andM = a+b. The extra
variation in the beta-binomial distribution (relative to the binomial) is determined by M ,
and the mean and variance of n are Nπ and {1 + (1 +N)/(M + 1)}π(1−π)/N , respec-
tively. In our application the M parameter is estimated along with the other HCCMPP
parameters. The likelihoods for each age, sex, and location are treated as independent and
multiplied together to produce a total likelihood.

With the HCCMPP it is effectively impossible to derive the analytic form of the pos-
terior distribution because of the complexity of the model. We address this in the standard
way by drawing a sample from the posterior distribution and carrying out inference for
the model parameters by summarizing the posterior sample. The posterior distribution is
estimated by resampling from an initial sample drawn from the importance sampling dis-
tribution using weights that identify sample members that have relatively high posterior
probabilities. A transparent way to implement this approach is the sampling importance
resampling (SIR) algorithm suggested by Rubin (1987, 1988) which uses the likelihood
function to form the resampling weights. In this case the prior distribution serves as the
importance sampling distribution. Bayesian melding has been successfully implemented
with the SIR algorithm in the past (see for example Poole and Raftery 2000; Alkema,
Raftery, and Clark 2007), but with HCCMPP the SIR approach did not work. Because the
HCCMPP has so many parameters, samples from the prior distribution failed to cover im-
portant regions of the posterior distribution, resulting in a poor approximation. A similar
problem often occurs if the posterior distribution is multimodal or concentrated in curved
manifolds (Raftery and Bao 2010).

A more efficient approach is incremental mixture importance sampling (IMIS) which
was originally introduced by Steele, Raftery, and Emond (2003); Steele, Raftery, and Ed-
monds (2006) and further developed for posterior distributions of continuous parameters
by Raftery and Bao (2010). IMIS is an iterative technique that builds up an importance
sampling distribution by adding new points in areas of high posterior probability at each
step, based on the idea of defensive mixture distributions developed by Hesterberg (1995).
This feature of IMIS ensures that the target distribution (the posterior in our case) is ad-
equately covered by the importance sampling distribution, resulting in much greater ef-
ficiency than SIR. The following steps outline the IMIS algorithm we use to implement
Bayesian melding. We refer to this version of the algorithm as IMIS-opt because it in-
cludes steps that require the use of a function optimizer.9

9In our work with the HCCMPP, we use the optim routine in the R programing language (R Foundation for
Statistical Computing 2010).
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1. Begin by drawing B0 = d ∗ 1, 000 inputs θ1, . . . , θB0 from the prior distribution
p(θ), where d is the dimension of θ. Calculate the importance weights

w
(0)
i ∝ Li∑B0

i=1 Li

where Li is the likelihood for the ith input.
2. Use the input with the maximum weight as the starting value for an optimization

routine that maximizes the log likelihood using 100 function evaluations. If the
local optimum has a likelihood larger than any other input from the prior, then save
the local optimum, θopt1 , and calculate the inverse of the Hessian matrix, Σopt1 . If
the Hessian does not yield a positive definite covariance matrix, then use the matrix
of first derivatives of the likelihood times the prior (evaluated at the local optimum)
to create a new information matrix by adding it to the precision matrix of the prior
distribution, and using the inverse of this new matrix as the covariance matrix.

3. For i = 2:D exclude the starting points and the fraction of inputs 1
D that have the

smallest Mahalonobis distance to θopt(i−1). Of the remaining inputs, choose the one

with the largest weight as the new starting point for obtaining θopti . The extent to
which the parameter space is searched is partially determined by the parameter D.
Larger values of D indicate a more thorough search of different areas of the param-
eter space for local maxima. In our work, we use a value of 10 for the parameter
D.

4. For each saved local optimum, indexed by s, sample B = 400 new inputs, Hs,
from a multivariate Gaussian distribution with center θopts and covariance matrix
Σopts . This step is included to help ensure that new areas of the parameter space are
explored for points with high posterior probabilities.

5. For k = 1, 2, . . . repeat the following steps until a stopping criterion is satisfied.
(a) Form the posterior sampling weights

w
(k)
i ∝ Li p(θi)

q(k)(θi)

where q(k)(θ) = B0
Nk
p + B

Nk

∑D∗+k−1
s=1 Hs, Nk is the total number of inputs

at stage k, and D∗ is the number of saved local optima.
(b) Take the input with the maximum weight, θk, as the center of a multivariate

Gaussian distribution, HD∗+k. Use the d ∗ 100 inputs with the smallest dis-
tance, with respect to the covariance of the prior distribution, from the mean
to calculate the weighted covariance matrix, Σ(k), with weights that are pro-
portional to the average of the importance weights and 1

Nk
. Sample B new

inputs from HD∗+k.
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(c) If the expected number of unique points

Q̂(w) =

Nk∑
i=1

(1− (1− wi)M )

is greater than M ∗ (1− 1
e ), then stop iterating and re-sample M inputs with

replacement from θ1, . . . , θNk
with weights w1, . . . , wNk

. In our application
to HCCMPP, we set M = 3, 000 which requires the expected number of
unique points to be 1,896.

The first step in the IMIS-opt algorithm is essentially the same as the SIR algorithm,
except that with the latter approach the resampling is done with weights proportional
to w

(0)
i . The additional optimization steps (2 - 4) in the IMIS-opt algorithm seek to

cover areas in the posterior sampling space that have high posterior probability (relative
to the prior). Given several local optima, the algorithm then proceeds by adding new
components to the sampling function that are centered around the inputs with the largest
weights, with the local neighborhoods providing the covariance information.

3.4 Calibration & validation

Our assessment of the HCCMPP is based on an attempt to accurately forecast sex-age-
specific HIV prevalence in Tanzania, as measured in the 2004 and 2007 DHS. The first
step in this assessment involves calibrating the model to adequately reproduce the first
twenty years of the HIV epidemic in this country. We use data collected before 2000
from urban and rural areas located in Burundi, Tanzania, and Uganda to estimate the HC-
CMPP parameters. Observations from these other countries were included to increase
the stability and precision of our parameter estimates, and seemed reasonable given the
close proximity of these countries. After calibrating the model to the local epidemic in
East Africa, these estimates are then used to make HCCMPP forecasts of the levels of
HIV prevalence observed in the 2004 and 2007 DHS in Tanzania. The Bayesian melding
framework which we employ for parameter estimation and forecasting yields a posterior
distribution of HIV prevalence by age and sex. These distributions allow us to assess
the accuracy of the HCCMPP forecasts by comparing the observed coverage of the pre-
dictions with the nominal coverage. For example, we expect half of the observed levels
of HIV prevalence to fall within the 50% prediction intervals, and similarly for the 80%
and 95% prediction intervals reported here. Because our forecasts take into account un-
certainty in HIV incidence but not the vital rates, our forecasts understate the amount of
uncertainty around future levels of HIV prevalence – i.e. the coverage of our forecasts
will be slightly too low.
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4. Results

4.1 Parameter estimates: Maximum likelihood and Bayesian Melding

The different trends in HIV incidence used with the HCCMPP to forecast HIV prevalence
are shown in Figure 1. Each trend in the plot shows the estimated probabilities of infection
over a five-year period for the reference group in Rakai, Uganda (only the posterior means
are shown for the estimated trends). For the models where the incidence trend is the same
for women and men, only the estimated probabilities for women aged 25-29 are shown.10

In our specifications where the trend is sex-specific, separate trends are shown in the plot
corresponding to the sex-specific reference group aged 25-29. The vertical line indicates
the last period for which we use data to estimate the model parameters. HIV incidence
is assumed to stabilize during this time period, 15–19 years into the epidemic, and the
corresponding level of incidence is used to forecast subsequent levels of HIV prevalence.

The most striking feature in Figure 1 is how the trend from the fixed gamma curve,
which was used in the original analysis (Heuveline 2003), reaches a level that is much
higher than the estimated trends during the period 15–19 years into the epidemic. Con-
versely, when the trend in HIV incidence is estimated, the level of incidence is higher
during the initial period of the epidemic and the peak occurs earlier than the trend from
the fixed gamma curve. A second finding is that when separate curves are estimated
for men and women, the trends appear to be different, for both the gamma and non-
parametric specifications. Among those aged 25–29, estimated incidence based on the
non-parametric trend is higher for men during the first five years of the epidemic, with a
cross-over in the subsequent projection period, and convergence during the period 15–19
years into the epidemic. This cross-over of the incidence trends for men and women is
consistent with the HIV-1 hypothesis described by Gregson et al. (1997), which posits a
pattern of HIV transmission in rural areas where men are typically infected first, perhaps
while working in an urban center or town, and then infect their female partners at a later
point in time. The sex-specific trends estimated using gamma curves, however, suggest
that the trend for men and women follow the same pattern and that only the levels are
different. A final note is that these differences and cross-overs are only suggestive since
there is uncertainty around the point estimates shown in Figure 1.

10In the models where a single HIV incidence trend is used, the shape of the curve will be exactly the same for
men and women, but the levels may be different.
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Figure 1: Example HIV incidence trends: Rakai, Uganda
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are used to make forecasts to compare with data from the DHS surveys.

Figure 2 displays the estimated sex-age-specific relative HIV incidence rate ratios
obtained using the fixed gamma curve incidence trend. These describe how the risk of
acquiring HIV changes with sex and age. This set of incidence profiles is estimated jointly
using all of the populations in the estimation procedure. Results from the maximum
likelihood (ML) and Bayesian melding (BM) estimation methods are very similar to each
other and to Heuveline’s (2003) estimates. Both sets of estimates for women, top panel
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of Figure 2, show that the risk of infection increases significantly from the 15–19 age
group to the 20–24 age group, with the latter experiencing the highest level of incidence.
The risk of infection then declines until reaching a fairly stable level after age 35. There
are also very few differences between the ML and BM estimates for men, shown in the
bottom panel of Figure 2. With either approach, the estimated risk of infection for men
is relatively low among those aged 15-19 and clearly increases among the next two older
age groups. Uncertainty makes it difficult to identify differences in the risk of infection
among men between the ages of 25 and 49, but the ML and BM results seem to suggest
that men in their fifties experience a lower risk of infection than men aged 25-34. For both
women and men, the ML and BM intervals around the point estimates increase with age,
which is expected given the increasingly smaller number of observations at older ages.

Bayesian melding (BM) has been used in previous analyses involving deterministic
models of population dynamics and HIV/AIDS that include less than five parameter in-
puts (Poole and Raftery 2000; Alkema, Raftery, and Clark 2007). A key finding in this
paper is the successful implementation of BM in a relatively high dimensional parameter
space using the incremental mixture importance sampling (IMIS) algorithm introduced by
Raftery and Bao (2010). We are able to perform statistical inference and to make prob-
abilistic projections using models that range from the simplest with 29 parameters up to
the most complicated with 36 parameters. The IMIS algorithm proved to be much more
efficient than the sampling importance resampling (SIR) technique (Rubin 1987, 1988)
that has been used in previous work to implement BM (e.g., Poole and Raftery 2000;
Alkema, Raftery, and Clark 2007).11

11Posterior samples of size 3,000 typically include less than 100 unique points when SIR is used to implement
BM, as opposed to posterior samples obtained from IMIS that generally include around 1,500 or more unique
points. For more details about the relative efficiency of these two approaches see Raftery and Bao (2010).
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Figure 2: Estimated age schedules of HIV incidence

0.0

0.5

1.0

1.5

Age Group

R
at

io
 to

 W
om

en
 A

ge
d 

25
−

29

a. Women

15−19 20−24 25−29 30−34 35−39 40−44 45−49 50−54 55−59

●

●
●

●

● ●

● ●
●

● Maximum Likelihood Estimate
Bayesian Melding Estimate

0.0

0.5

1.0

1.5

Age Group

R
at

io
 to

 W
om

en
 A

ge
d 

25
−

29

b. Men

15−19 20−24 25−29 30−34 35−39 40−44 45−49 50−54 55−59

●

●

● ●

● ●

●

●
●

Notes: These estimates are obtained using the fixed gamma curve incidence trend. The incidence of women aged
25-29 is given by the value of the incidence trend multiplied by a population-specific scale factor. All other
sex-age categories in this figure are referenced to women aged 25-29 in a straightforward multiplicative
sense, i.e. men aged 20-24 experience HIV incidence a little over 50% as great as women aged 25-29.
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the point estimates cover the 95% confidence intervals for the results and the 95% credible intervals for the
Bayesian results.
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4.2 Model fit

Having been able to successfully implement BM with various specifications of the model,
we are left with the task of choosing among the different models that are distinguished
by the trend in HIV incidence. Palloni (1996) pointed out that in a demographic model
with HIV/AIDS the force of infection that produces the current level of prevalence should
depend on the past level of prevalence, and thus the trend in HIV incidence is endogenous.
To make this problem tractable with HCCMPP, Heuveline (2003) assumes an incidence
trend based on a gamma curve, a strategy also used in previous models of HIV/AIDS
epidemics (e.g., Chin and Lwanga 1991; Salomon and Murray 2001), and treats it as a
fixed model input. While the gamma curve may yield a plausible trend, there is at least
some uncertainty around this part of the model. In our analysis, we relax the assumption
of a fixed gamma curve by estimating the trend in HIV incidence and allowing it to vary by
sex and in functional form (see Section 3 for more details about the implementation and
estimation). The estimated trends are discussed in the previous section, and here we focus
on the comparison of the following five models included in the analysis: (i) fixed gamma
curve, (ii) estimated gamma curve, (iii) sex-specific estimated gamma curves, (iv) non-
parametric curve, and (v) sex-specific non-parametric curves. Given the seemingly large
differences between the trends shown in Figure 1, it is natural to be concerned with the
relative merit of each model. One standard criterion is how closely each model fits the
data. A simple metric for assessing model fit is the sum of squared residuals. According
to this measure, there are only slight differences across all of the models with the values
ranging from a high of 0.225 for the HCCMPP with the fixed gamma curve to a low of
0.201 for the model with the sex-specific non-parametric trends. An alternative measure
for comparing models is Bayes factor (Jeffreys 1939; Kass and Raftery 1995), which is
easily calculated from the IMIS approach taken here (Raftery and Bao 2010). The model
comparisons based on Bayes factor, with equal prior probabilities given to each model,
favor the HCCMPP with the fixed gamma curve over all of the other models, but the
evidence is fairly weak since all of the values for the Bayes factors are less than 1.1 –
generally, values greater than 3 indicate important differences between the models being
compared (Raftery 1995). Although the evidence is weak, it is interesting to note that the
Bayesian model comparison favors the simplest model with the fixed gamma curve, which
is also the model that is the best at predicting future observations – another important
criterion for evaluating the relative merit of different models.

4.3 Model validation: Calibration and predictive performance for Tanzania

We validate our model by examining its predictive performance in Tanzania. We estimate
the model using high quality data collected by small community-based studies in Tan-
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zania, Uganda and Burundi in the mid 1990s. There was little change in the prevalence
of HIV in Tanzania from the mid 1990s until the mid 2000s (Asamoah-Odei, Calleja,
and Boerma 2004; UNAIDS 2009a), and consequently, if we use our estimated parameter
values from the mid 1990s, we should be able to forecast the sex-age distribution of HIV
prevalence in the mid 2000s accurately and with reasonable confidence.

Sex-age-specific HIV prevalence measured by the HIV/AIDS Indicator and Demo-
graphic and Health Surveys in Tanzania in 2004 and 2007 serve as the targets for our
forecast. To produce the forecast we use the best-fitting fixed gamma trend in overall
HIV incidence (see Figure 1 for the gamma trends in HIV incidence) and hold it con-
stant from year fifteen of each projection (roughly the year 2000 in calendar time). We
use our estimated distributions of HIV incidence by sex and age with no modifications
for the duration of the forecast. The distribution of forecasted values of HIV prevalence
is generated by making multiple draws from the estimated joint parameter distribution
and projecting the population forward for each of those with a constant overall incidence
trend; see Figure 1. The result is a sex-age-specific distribution of HIV prevalence val-
ues at various times in the 2000s that we can use to compare with the empirical values
measured by the surveys.

To assess the accuracy and calibration of the forecast, we take the predicted distri-
butions for sex-age-specific HIV prevalence for Tanzania12 and calculate the quantiles of
the 50%, 80%, and 95% credible intervals and compare these to the corresponding ob-
servations from the HIV/AIDS Indicator and Demographic and Health Surveys. Table 1
displays these ‘coverage’ results. There is one row for each of the overall HIV incidence
trends that we tried and three sets of columns for the 50%, 80% and 95% credible inter-
vals. Each of these contains the percent of the empirical observations that fall below the
lower limit, within the central interval and above the upper limit. Reading the first row
of the table, we find that 11% of the observations fall below the 25th percentile, 43% fall
between the 25th and 75th percentiles and 46% above the 75th percentile, etc.

The forecast using the fixed gamma for the overall trend in HIV incidence clearly pro-
duces the best calibrated results (the observed coverage comes closest to what we expect),
and the calibration is acceptable. 92.9% of observations fall within the 95% credible in-
terval with an even 3.6% below and above. Calibration deteriorates slightly as the credible
intervals shrink, and there is a slight tendency to understate prevalence, as indicated by
the fact that more observations fall above the prediction intervals than expected. Alto-
gether the calibration results for Tanzania indicate that the model is reasonably accurate
and represents uncertainty in a way that corresponds to empirical observation.

Figure 3 displays the the forecast errors for Tanzania 2004 and 2007 and Uganda

12These predicted distributions are specific to the years when the AIDS Indicator and Demographic and Health
Survey data were collected.
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2004, again using the best-fit fixed gamma trend in overall HIV prevalence with a con-
stant value for years after 2000. Each plot contains the distribution of forecast errors by
age group summarized with a boxplot. If the forecasts were well-calibrated these boxplots
would describe compact distributions centered at zero. Each forecast error is the residual
between the observed and forecast values (observed – forecast). The distributions arise
because there is a distribution of predicted values for each sex-age category. Our fore-
casts take into account uncertainty in HIV incidence but not underlying vital rates, and
consequently we expect that uncertainty will be slightly underestimated.
Tanzania. Our earlier assessment suggests that the forecasts of the observed levels of
HIV prevalence in Tanzania are reasonable. This is reflected in the left two columns of
plots in Figure 3, in which the boxplot for every age group is centered near zero with
comparatively short tails. The only systematic deviations from zero are in the age range
30–44 for women and ages 40–44 (2004) and 35–39 (2007) for men. For those ages the
forecast appears to be slightly too low. Overall the forecast errors for Tanzania are small
– a few percentage points – and the error distributions contain small variation and are
centered close to zero.
Uganda. The forecast errors for Uganda (rightmost column of plots in Figure 3) clearly
reveal the extent and age-pattern of the decline in HIV incidence over the intervening
decade. Compared to Tanzania, the forecast error distributions are much more variable
and deviate from zero in a systematic age-dependent way. The greater variability likely
corresponds to the greater geographic variability in the Ugandan data sources used to
estimate the model parameters, including four different sites (Fort Portal, Gulu, Masaka,
and Rakai) in both rural and urban areas. For women the 99th percentile of the error
distributions does not include zero until age 30. For younger ages the forecast errors are
very significantly negative (the forecast overstates prevalence) with a clear trough in the
25–29 age group at a median error of about –22%. This trough relaxes slowly through the
older age groups toward a constant median error of about –5% in the age range 45–59.
This striking age-pattern indicates that HIV incidence fell most dramatically in the 15–24
age group (reflected in the later and older drop in prevalence in the 25–34 age group) by
perhaps more than 20%. Further, there must have been significant reductions in incidence
at all other ages, particularly at 25–34 years old.
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Figure 3: HIV prevalence forecast error distributions
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Table 1: Empirical coverage of the Bayesian prediction intervals for HIV
prevalence

50
%

Pr
ed

ic
tio

n
In

te
rv

al
80

%
Pr

ed
ic

tio
n

In
te

rv
al

95
%

Pr
ed

ic
tio

n
In

te
rv

al
H

IV
In

ci
de

nc
e

Tr
en

d
<

25
%

[2
5%

,7
5%

]
75

%
<

<
10

%
[1

0%
,9

0%
]

90
%
<

<
2.

5%
[2

.5
%

,9
7.

5%
]

97
.5

%
<

fix
ed

ga
m

m
a

cu
rv

e
%

of
O

bs
er

va
tio

ns
10

.7
%

42
.9

%
46

.4
%

3.
6%

75
.0

%
21

.4
%

3.
6%

92
.9

%
3.

6%
(2

.6
)

(4
.9

)
(7

.5
)

es
tim

at
ed

ga
m

m
a

cu
rv

e
%

of
O

bs
er

va
tio

ns
10

.7
%

10
.7

%
78

.6
%

3.
6%

25
.0

%
71

.4
%

3.
6%

50
.0

%
46

.4
%

(1
.7

)
(3

.0
)

(4
.2

)
es

tim
at

ed
se

x-
sp

ec
ifi

c
ga

m
m

a
cu

rv
es

%
of

O
bs

er
va

tio
ns

10
.7

%
10

.7
%

78
.6

%
3.

6%
28

.6
%

67
.9

%
3.

6%
53

.6
%

42
.9

%
(1

.8
)

(3
.3

)
(4

.8
)

no
n-

pa
ra

m
et

ri
c

tr
en

d
%

of
O

bs
er

va
tio

ns
10

.7
%

10
.7

%
78

.6
%

3.
6%

39
.3

%
57

.1
%

3.
6%

57
.1

%
39

.3
%

(2
.0

)
(3

.7
)

(5
.4

)
se

x-
sp

ec
ifi

c
no

n-
pa

ra
m

et
ri

c
tr

en
ds

%
of

O
bs

er
va

tio
ns

10
.7

%
25

.0
%

64
.3

%
3.

6%
67

.9
%

28
.6

%
3.

6%
89

.3
%

7.
1%

(3
.1

)
(5

.7
)

(8
.4

)

N
ot

es
:

R
es

ul
ts

fo
r

Ta
nz

an
ia

fo
r

va
rio

us
sp

ec
ifi

ca
tio

ns
of

th
e

H
IV

in
ci

de
nc

e
tre

nd
.

N
um

be
rs

in
pa

re
nt

he
se

s
ar

e
m

ea
n

in
te

rv
al

w
id

th
s

m
ea

su
re

d
in

pe
rc

en
ta

ge
po

in
ts

.
Th

er
e

ar
e

28
ob

se
rv

at
io

ns
.

764 http://www.demographic-research.org



Demographic Research: Volume 27, Article 26

For Ugandan men the situation is similar, but the magnitude of the errors is slightly
less and the age-pattern is different. The trough for men is wider covering about ages 30–
44, but not quite as low, reaching a minimum of approximately –19%. The trough also
begins to develop at older ages, only showing strong deviation from zero in the 20–24 age
group. Similar to women, the 99th percentile of the error distributions does not include
zero until age 35. The age-pattern of deviations in the male errors indicate a reduction
in incidence over a broad range of ages from roughly 20–29 to 40–49, with the largest
reductions over roughly ages 20–44.

4.4 Conclusions

Using some of the early measures of HIV prevalence from community-based studies in
Tanzania, Uganda and Burundi during the early to mid 1990s, we estimate the age profile
of HIV incidence that is consistent with underlying vital rates and the observed age pattern
of HIV prevalence. We apply the new Bayesian melding with IMIS estimation procedure
to ‘fit’ the HIV enabled cohort component model of population projection created by
Heuveline (2003). Our results corroborate both his and our own earlier work using a
maximum likelihood estimation procedure. The age profile of incidence is younger and
more focused for women with peaks in the 20-24 year age group for women and 25-29
year age group for men.

The Bayesian estimation framework provides an advantage compared to maximum
likelihood techniques because it enables us to quantify uncertainty in estimated parame-
ter values in a statistically valid way that can be interpreted and manipulated in a fully
probabilistic framework. Most important to us, however, is the opportunity to produce
probabilistic projections – true forecasts – of the HIV-affected populations. This allows
us to validate our model in one more way by comparing (probabilistic) forecasts of HIV
prevalence with empirical measures of prevalence in Tanzania. There was little change in
HIV incidence in Tanzania between the mid 1990s and early 2000s, and we are able to
predict, with reasonably calibrated accuracy, age-specific HIV prevalence in Tanzania in
the early 2000s by forecasting forward with no change in our estimated HIV incidence
pattern.

We use one further advantage of the Bayesian framework to compare models with
different specifications of the trend in HIV incidence. The Bayesian framework allows us
to use Bayes factors to compare the models and determine that the simple fixed gamma
curve originally specified by Heuveline produces better forecasts compared to a variety
of more flexible specifications with more parameters – the Bayes factor takes into ac-
count the number of parameters, effectively penalizing models with larger numbers of
parameters (degrees of freedom).

Finally, we use the probabilistic forecast of HIV prevalence for Uganda to characterize
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the age-pattern of reductions in prevalence resulting from the well-documented declines
in HIV incidence that took place in Uganda between the early 1990s and mid 2000s. This
age pattern of change in HIV prevalence reflects the earlier and younger changes in HIV
incidence that were required to reduce the HIV+ fraction of the population.

5. Discussion

5.1 Summary

This paper makes two main contributions, the first is to validate the HCCMPP developed
by Heuveline (2003). We find that the model can produce accurate forecasts of age- and
sex-specific HIV prevalence in Tanzania, and that an assumption of a stabilized trend in
HIV incidence provides estimates of the extent of the decline in the risk of HIV infection
in Uganda. In order to produce accurate forecasts with the HCCMPP for other countries in
sub-Saharan Africa, the model may require new modifications to capture the geographic
heterogeneity in the HIV epidemics across this region. Other potential sources of vari-
ability not captured by the model are the uncertainty around the start date of the epidemic
and around vital rates. Including these as estimated model inputs may be useful in terms
of improving the predictive performance of HCCMPP and applying it to other countries.
Despite these issues, it is impressive how well the model does when considering the dif-
ferences between the data used to calibrate it (i.e. estimate the HCCMPP parameters) and
the data used to validate the model forecasts. The former were collected from relatively
small community-based studies while the latter were collected from nationally represen-
tative samples.

The second contribution is to use a new Bayesian estimation technique designed for
deterministic models. We have shown that the IMIS algorithm (Raftery and Bao 2010) can
be used successfully to implement the Bayesian melding estimation approach with the 30+
parameter HCCMPP model. This suggests that the approach could be used more generally
to enable demographers to quantify, in a statistically rigorous way, the uncertainty around
both parameter estimates and model outputs in many of the deterministic models they
use. With respect to the CCMPP (HIV-enabled or not), the ability to quantify uncertainty
around demographic projections is useful in a fundamental sense. This allows decision-
makers to define the probability of extreme outcomes, with respect to the levels of HIV
prevalence and incidence, and make informed cost-benefit and risk tolerance decisions in
a valid probabilistic framework. Furthermore, probabilistic projections produced using a
CCMPP-type model and Bayesian melding with IMIS can be used to validate the model
by comparing forecasts to observed values. The Bayesian framework can also be used to
compare competing model specifications using Bayes factors.

Finally, we attempt to shed some light on the likely pathways that epidemics follow as
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they mature by using data to estimate the trends in HIV incidence. Our results suggest that
the gamma curve used by Heuveline (2003) in the original work with HCCMPP provides
the best predictive performance of sex-age-specific HIV prevalence in Tanzania.

5.2 Recommendations

1. Because HIV incidence is such an important indicator of an HIV epidemic, and
because it is so difficult to measure HIV incidence empirically, epidemiologists,
demographers and statisticians should prioritize further development of mathemat-
ical models and statistical procedures that allow us to estimate HIV incidence with
uncertainty. To be of practical use to decision makers in the small areas where
interventions are implemented and evaluated, these techniques should attempt to
provide estimates of incidence by time, sex and age.

2. Given the success of Bayesian melding with IMIS applied to the 30+ parameter
HCCMPP and the inherent advantages of the Bayesian framework, epidemiologists
and demographers should consider applying this and similar procedures to other
models and estimation procedures common to their disciplines.

3. We have successfully produced probabilistic forecasts of HIV epidemics taking
into account uncertainty in HIV incidence. Using a similar Bayesian framework,
future work on both HCCMPP and regular non-HIV CCMPP should incorporate
uncertainty in vital rates and migration to produce probabilistic forecasts that take
into account all major sources of uncertainty.

4. The Bayesian framework gives us the ability to conduct Bayesian model compar-
ison using Bayes factors. This ability should be used to investigate the effects
of interventions by comparing models that do and do not model the intervention.
Bayesian model comparison will tell us if the intervention model fits the data bet-
ter than the non-intervention model, and if so, the parameter estimates and model
outputs will tell us what the effects are and how effective the intervention is.

5.3 Ideas for future work

While the HCCMPP appears to be a useful tool for helping to monitor and study HIV epi-
demics, there are several areas in which the model could be improved. For example, while
the fixed gamma curve used to represent the trend in HIV incidence is simple and easy
to work with, it does not acknowledge the fundamental endogeneity of HIV incidence
identified by Palloni (1996). Future work with the HCCMPP should modify the model
so that HIV incidence depends on the current and past levels of prevalence. Another
obvious area of improvement is the need to account for the increases in the coverage of
antiretroviral therapies (ART). Given an estimate of ART coverage for a particular pop-
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ulation, this share of the infected population should experience improved survival and
fertility prospects, and a diminished likelihood of infecting others, relative to those who
are HIV+ but not receiving ART. Additional modifications could include the ability to
model potential interventions related to male circumcision and microbicides (McNeil Jr.
2010). Building in these features would make the HCCMPP more realistic, and poten-
tially improve the model’s prospects for successfully monitoring and forecasting HIV
epidemics. However, in order to add these new features, the overall model would have
to be made simpler to require fewer parameters, in order to ensure that the whole thing
remains identifiable and tractable enough to estimate. This could be done by modeling
existing parameters and defining (a smaller number of) new hyper parameters to govern
those models and/or by collapsing across age groups in which there is little meaningful
variation.
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