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An application of MCMC simulation in mortality projection  

for populations with limited data 

Jackie Li
1
 

Abstract 

In this paper, we investigate the use of Bayesian modeling and Markov chain Monte 

Carlo (MCMC) simulation, via the software WinBUGS, to project future mortality for 

populations with limited data. In particular, we adapt some extensions of the Lee-Carter 

method under the Bayesian framework to allow for situations in which mortality data 

are scarce. Our approach would be useful for certain developing nations that have not 

been regularly collecting death counts and population statistics. Inferences of the model 

estimates and forecasts can readily be drawn from the simulated samples. Information 

on another population resembling the population under study can be exploited and 

incorporated into the prior distributions in order to facilitate the construction of 

probability intervals. The two sets of data can also be modeled in a joint manner. We 

demonstrate an application of this approach to some data from China and Taiwan.   

  

                                                           
1 Nanyang Technological University, Singapore. E-mail: JackieLi@ntu.edu.sg. 
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1. Introduction 

The Lee-Carter method (Lee and Carter 1992) and its various extensions (e.g., Lee 

2000) have been shown to perform satisfactorily for several countries’ mortality data 

when the data volume is sufficient. For many developing nations, however, there is no 

periodic collection and systematic management of death data, or annual figures are only 

available for recent periods, which are not long enough to produce sensible forecasts 

using the usual Lee-Carter approaches. To address this problem, Li, Lee, and 

Tuljapurkar (2004) have adapted the original Lee-Carter method to two countries with a 

limited number of data points at uneven intervals. Based on an a priori assumption that 

the mortality index follows a random walk with drift, the authors derived formulae for 

estimating the corresponding parameters with as few as three data points. They also 

suggested “borrowing” missing information from another population with 

characteristics similar to those of the population under study, but they did not further 

develop the borrowing strategy. Our approach here builds on these ideas. With limited 

data, we adopt two extensions (Gaussian and Poisson errors) of the Lee-Carter 

structure, and arbitrarily model the mortality index by a random walk with drift without 

sufficient observations of the underlying process. In particular, we explore how 

information regarding the variability of the death rates can possibly be “borrowed” from 

a “similar” population to facilitate the construction of probability intervals. We also 

attempt to co-model the population under study and the reference population. 

The modeling and analysis in this paper are performed under the Bayesian 

paradigm. Bayesian modeling has some distinct advantages in the context of mortality 

projection. First, certain prior or reference information, such as the experience of 

another population, can be incorporated into the modeling process in a formal manner. 

Second, both the log-bilinear structure and the random walk can be taken into account 

simultaneously within the same framework, unlike in the rather incoherent two-step 

procedure of the original Lee-Carter method. Furthermore, with the help of modern 

computing power, it is possible to implement computer-intensive methods, such as 

Markov chain Monte Carlo (MCMC) simulation, which can alleviate the problems 

associated with the analytical intractability of Bayesian models that have often arisen in 

the past. This simulation technique provides a convenient way to obtain distributions 

and construct probability intervals for the model estimates and forecasts, in which both 

process error and parameter error are allowed for.  

Some previous work on Bayesian mortality modeling was done by Czado, 

Delwarde, and Denuit (2005), who implemented a Poisson log-bilinear model with a 

deterministic trend model for the mortality index to forecast mortality and tested it on 

French male data. Pedroza (2006) formulated the Lee-Carter method as a state-space 

model, using Gaussian error terms and a random walk with drift for the mortality index, 
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to forecast U.S. male mortality. Kogure, Kitsukawa, and Kurachi (2009) considered 

both the Gaussian and Poisson formulations and compared three different model 

structures (random walk with drift, deterministic trend model, and stationary model) for 

the mortality index using Japanese male data. While these authors provided clear 

demonstrations of their approaches and examples using sufficient datasets (over 30 

years), our focus here is on those situations with a very limited amount (e.g., only a few 

years) of data. In the following sections, we apply the proposed approach to some 

mortality data from China and Taiwan. 

Despite the above-mentioned advantages, the implementation of Bayesian 

modeling and MCMC simulation is often technically and computationally demanding, 

as it involves dealing with complex mathematics and scientific programming. The high 

costs associated with acquiring the necessary knowledge may dissuade some 

practitioners from experimenting with Bayesian techniques, and may discourage wider 

applications. One current alternative is to use the specialized software WinBUGS 

(Spiegelhalter et al. 2003), in which the programming language is relatively easy to 

handle, and a straightforward specification of many Bayesian models is possible. If 

greater flexibility is needed, experts may under certain circumstances be able to develop 

their own MCMC algorithms from scratch. For example, Girosi and King (2008) 

developed a sophisticated Bayesian framework to incorporate covariates and prior 

information in order to improve mortality forecasts. But for many practical applications, 

WinBUGS offers a much more accessible platform to practitioners who are interested in 

performing Bayesian modeling, but who are unfamiliar with the underlying details. For 

the kind of models studied in this paper, only a few dozen lines of WinBUGS codes are 

generally needed. This programming efficiency is highly convenient and it greatly 

enhances the applicability and practicality of Bayesian modeling in mortality studies. In 

this work, we present an application of WinBUGS that is used to carry out MCMC 

simulation for our analysis; the codes used are noted in the appendix. Interested readers 

may also refer to Chapter 9 of Bijak (2011) for more information about Bayesian 

computing in practice.  

 

 

2. The modified Lee-Carter method for limited data 

The original method proposed by Lee and Carter (1992) involves the main structure 

below: 

 

   txtxxtx kbam ,,  ln   ,    (1) 
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in which txm ,  is the central death rate at age x in year t, xa  describes the overall 

mortality pattern across age, xb  represents the sensitivity of the log death rate to 

changes in the mortality index tk , and tx,  is the error term with mean zero and 

variance 
2

 . The xa  parameters are first estimated by averaging txm ,ln  over time t. 

The xb  and tk  parameters are then computed by applying singular value 

decomposition (SVD) to the matrix with components , subject to two 

constraints 1x xb  and 0t tk . Finally, the tk  parameters are re-calculated in 

such a way that the fitted number of deaths and the actual number of deaths are equal 

for each year. The key strength of this method lies in its straightforwardness, as well as 

the fact that it produces a highly linear time series of tk  for the data of several countries 

(e.g., Lee and Miller 2001). This linear feature implies that a random walk with drift 

would be appropriate for modeling the tk  series: 

 

   ttt ekk  1  ,    (2) 

 

where   is the drift term and te ’s are independent and identically distributed (iid) 

error terms with mean zero and variance 
2

k . The estimated drift term ̂  is often 

negative and corresponds to a broadly linear decline of the mortality index. Future mean 

values are then projected as 1
ˆˆˆ
 tt kk  . This simple model for tk  is adopted in most 

applications in the literature.  

To allow for a situation in which there are only a limited number of data points, 

probably at uneven intervals, Li, Lee, and Tuljapurkar (2004) modified the random 

walk process for tk  above. These authors first made a strong assumption that the 

mortality index follows a random walk with drift, even without support from a 

sufficient sample size. They argued that this assumption can be justified by the 

observed patterns of mortality decline in many other countries. For example, 

Tuljapurkar, Li, and Boe (2000) showed that the mortality index is highly linear for the 

G7 countries for the period from 1950 to 1994. Let 0t , 1t , 2t , … , nt  be the points of 

time when mortality data are collected, and n can be as small as two, i.e., three data 

points. Li, Lee, and Tuljapurkar (2004) deduced from (2) that for nh 1 , 

 

   
hhhhh ttthhtt eeettkk   

... 211 111
  ,  (3) 

 

and estimated the parameters by 

 xtx am ,ln 
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     
0
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ˆVar

ttn

k




 
  .   (6) 

 

Future values of the mortality index and the log death rates are then sequentially 

simulated as (for ntt  ) 

 

      tttntt eeettkk
nnn















 



...  ˆVarˆ
21  ; (7) 

 

    
nn ttxtxtx kkbmm   lnln ,,  ,   (8) 

 

in which it is assumed that  1 , 0~   and  2 , 0~ kse   (for nts  ) are independent. 

It is also suggested that the variance of k̂  can be estimated and incorporated into (7). 

 

 

3. Use of Bayesian Lee-Carter models for limited data 

Based largely on the model setting in Kogure, Kitsukawa, and Kurachi (2009), and 

using notation similar to that of the previous section, we consider two alternative model 

specifications. The Gaussian and Poisson error structures, with the prior distributions, 

are listed below: 

 

 
hhh txtxxtx kbam ,,  ln   or  (Gaussian error structure) (9) 

 

     exp Poisson~ ,, hhh txxtxtx kbaED   ; (Poisson error structure) (10) 
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 
hhhhh ttthhtt eeettkk   

... 211 111
  ; (modified as in (3) above) (11) 

 

   2

,  , 0~  
htx  ;   (error term in (9)) (12) 

 

   2 , 0~ kth
e   ;   (error term in (11)) (13) 

 

   2 , 0~ axa   ;   (prior distribution of xa ) (14) 

 

   21  ,  ~ bnx
a

b   ;   (prior distribution of xb ) (15) 

 

   2

0  , ~    ;   (prior distribution of  ) (16) 

 

      , Gamma~2
 ;  (prior distribution of 

2

 ) (17) 

 

   kkk   , Gamma~2
 ,  (prior distribution of 

2

k ) (18) 

 

where data are collected in years 0t , 1t , 2t , … , nt ; 
htxm , , 

htxD , , and 
htxE ,  are the 

central death rate, number of deaths, and (known) exposure at age x in year ht ; 
2

a , 
2

b

, and 
2

  are the variances of the prior distributions; 0  is the mean of the drift term 

 ; an  is the number of age groups; and  ,  , k , and k  are the parameters of the 

prior distributions of the error terms’ (inverse) variances. Given the variances 
2

  and 

2

k , it is assumed that the error terms 
htx, ’s are iid across age and time, and that 

ht
e ’s 

are iid over time. The two constraints 1x xb  and 0
0

 

n

h th
k  are also set here to 

ensure that the parameters are identifiable and that the simulated results converge. Note 

that it is necessary to choose between using (9), (12), and (17) (Gaussian); or (10) 

(Poisson). 

The parameters xa , xb , and 
ht

k  in the Gaussian and Poisson error structures (9) 

and (10) are in line with those in (1). If relevant exposures and death counts data are 

available, it may be preferable to use (10) rather than (9), as the Poisson assumption is a 

natural choice for counting the number of deaths. In contrast, the homoscedastic error 

terms (12) of the Gaussian assumption may be problematic, as the log death rates at 

older ages often have higher variability than those at younger ages. One way to tackle 
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this problem is to set different variances for different age groups, as was suggested in 

Pedroza (2006), if the data volume is adequate.  

The model setting above involves two main modifications to the initial Lee-Carter 

method. First, without much support from the data being studied, the mortality index is 

arbitrarily modeled by a random walk with drift, as in Li, Lee, and Tuljapurkar (2004). 

The future values of tk ’s (simulated as ttt ekk  1 ) and txm , ’s for ntt   are then 

generated in the simulation process. Apart from the ample evidence of the linearity of 

many other populations, it would, from a pragmatic point of view, be difficult to justify 

the use of more complicated models (e.g., higher-order ARIMA) if there are only a few 

data points in the time series. Second, the log-bilinear structure and the random walk 

are treated in a more coherent manner under the Bayesian framework than in the 

original two-step estimation procedure. Another advantage is that since the process 

distributions and the prior distributions are all handled within the same framework, both 

process error and parameter error are automatically allowed for when the posterior 

distributions and the probability intervals are deduced. 

Note that, by using the trick in Li, Lee, and Tuljapurkar (2004), the distributions of 

the log death rates in (9) (or the number of deaths in (10)) are specified only for those 

few years when data are actually collected. Accordingly, the random walk with drift is 

formulated as in (3), in which the sum of the error terms is modeled as a single normal 

random variable itself (see Appendix). From an empirical perspective, we realize that, 

with WinBUGS, if all of the years during the period under consideration are fully 

specified in the original way instead and the missing data are treated as variables, the 

number of variables involved increases significantly, and it becomes very difficult for 

the simulation process to reach convergence. For example, for the Taiwanese data 

studied in the next section, more than 1,600 additional variables are needed for the 

missing years if the latter (original) approach is taken. Relevant exposures data are also 

lacking if the Poisson error structure (10) is used. Hence, we choose to specify only 

those years with data, as in Li, Lee, and Tuljapurkar (2004). In this way, computation 

efficiency is much improved and the degree of convergence is satisfactory. On the other 

hand, by developing a new MCMC algorithm, the multiple imputation technique may 

be adopted to allow for the missing values across time, as was suggested in Pedroza 

(2006). 

Compared to Kogure, Kitsukawa, and Kurachi (2009), we use more diffuse prior 

distributions. The variances 
2

a  and 
2

b  are taken as 10 times the sample variances of 

xâ ’s and xb̂ ’s (by SVD), respectively. The terms   and k  are set to be 2.01. Note 

that taking these close to two gives a large variance, since 

     21Var
222  kkkk  . For the other parameters, we follow Kogure, 

Kitsukawa, and Kurachi (2009) and make use of (4), (5), and (6). 
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Under the Bayesian framework, the key step is to find the posterior distribution of 

the unknown parameters and quantities given the data. The posterior density function is 

derived from      θθθ fff  || DD  , where f denotes a density function, θ represents 

the unknown parameters and quantities, and D stands for the data. However, due to the 

complexity of the models considered, it is difficult to obtain an explicit expression for 

the posterior density. A practical solution is to utilize MCMC simulation, in which 

samples are simulated from a Markov chain that has the stationary distribution equal to 

the posterior distribution. Inferences can then be made from the simulated distribution. 

The MCMC simulation technique used in WinBUGS is called Gibbs sampling. As was 

discussed above, the model specification is straightforward in the WinBUGS platform. 

For example, the Poisson error structure (10) can simply be coded as 

“d[i,j]~dpois(lambda[i,j])” and “lambda[i,j]<-e[i,j]*exp(a[i]+b[i]*k[j])”, and also the 

prior distribution (16) as “mu~dnorm(mu0,invsigma2.mu)”, which are fairly self-

explanatory in their meaning. More details on programming and implementation can be 

found in the appendix and in Spiegelhalter et al. (2003). 

The initial values for the simulation are assigned randomly by a built-in function in 

WinBUGS. We also try using the SVD estimates and the values given by (4) and (5) as 

the initial values, and the results are similar. 

 

 

4. An illustration with Taiwanese mortality data 

The data on the number of deaths and exposures (by single age with two sexes 

combined) from Taiwan from 1970 to 2008 are collected from the Human Mortality 

Database (HMD). For illustration purposes, we apply the Poisson error structure (10) to 

the data of 1970, 1980, and 1990, as if the data were only available for these three 

particular years. The death rates are projected for the period from 1991 to 2008 under 

the Bayesian framework as described previously, and the projected figures are then 

compared with the actual observations.  

Figure 1 plots the log death rates against age for 1970, 1980, and 1990, as well as 

the survival curve. We can see that mortality has generally declined over time, and that 

the improvement has been uneven at different ages. There has also been a continual 

rectangularization of the survival curve. The observed patterns of these data form an 

initial basis for the projection from 1991 to 2008. Accordingly, the top panels of Figure 

2 show the parameter estimates (i.e., sample means) of xa , xb , and 
ht

k  (markers), and 

the actual values of life expectancy at birth (the zigzag increasing trend), with their 

projections (solid lines) and 95% prediction intervals (inner pair of dashed lines), which 

were generated by applying the Bayesian model to the data of 1970, 1980, and 1990. 
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Note that only the narrowest pair of prediction intervals are of concern for now. For 

comparison, the bottom panels of Figure 2 set out the matching results produced from 

using the full set of data from 1970 to 1990 and the ML (maximum likelihood) 

estimates. It is interesting to observe that although the xa  and xb  parameter estimates 

are by nature less stable in the former case (with only three years of data) than in the 

latter (with 21 years of data), the patterns of the two cases are broadly similar. 

Moreover, since the estimation of the drift term depends largely on the starting and 

ending values 
0t

k  and 
nt

k , we can see that there is not much difference in the projected 

mortality index and in the projected life expectancy between the two cases. The 

implication is that the extra 18 years of data of the latter case do not really add much 

content to the computation of the mean forecasts, given the same length of the fitting 

period and a highly linear series of the mortality index. With as few as three data points, 

sensible mean forecasts could still be made.   

Nevertheless, when the variability of the model forecasts is of concern, there are 

two potential drawbacks to using only a few years of data of one single population 

spanning a period of only around 20 years. First, the few years of data may not be 

sufficient for providing a reasonable estimation of the variability of the mortality index. 

As shown in the top panel of Figure 2 (page 13), the estimated 1970k , 1980k , and 1990k  lie 

in an almost perfectly straight line. The resulting value given by (5) is then very small, 

and does not truly reflect the underlying variability of the 
ht

k  series. Second, since the 

focus is on one population only and the fitting period is not very long, the possibility of 

a major shift in the trend in mortality improvement could be overlooked. The life 

expectancy plot in the top panel of Figure 2 (page 14) reveals the potential significance 

of these problems. For the earlier part of the projection period (from 1991), the actual 

life expectancy trend moves outside the 95% prediction intervals a few times; for the 

later period, there is a significant underestimation of life expectancy and the prediction 

bounds completely fail to capture the observed trend. The width of the bounds is only 

about one year at 2008. At the single age level, Figure 3 also shows that the actual log 

death rates (the zigzag decreasing trends) turn out to have declined more quickly than 

had been projected (solid lines) at several ages, and the 95% prediction intervals (inner 

pair of dashed lines) are unable to cover the actual values in a number of years.  
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Figure 1: Log death rates and survival curve – Taiwan 
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Figure 2: Parameter estimates of xa , xb , and 
ht

k  and life expectancy at birth – 

only 3 years of Taiwan data of 1970, 1980, and 1990 (top) vs. 21 years 

of Taiwan data from 1970 to 1990 (bottom) 
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Figure 2: (Continued) 
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Figure 2: (Continued)  
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Figure 2: (Continued) 

 

 
Note:  For the projections on pages 13 and 14, the solid straight lines represent the sample means / projected values. The inner pair 

of dashed lines refers to the 95% prediction intervals without adjustment. The middle pair of dashed lines and the outer pair of 

dotted lines refer to the intervals after adjusting for 
2

k  and then 
x  respectively.   
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To deal with these problems, certain references can be drawn from another 

population which has more data available and is believed to possess similar attributes. 

Continuing with the hypothetical example above with only three years of Taiwanese 

data, we make use of Japanese data from 1970 to 1990 (from the HMD) and examine 

the estimated mortality index and the rate of change in mortality rates. We have chosen 

Japan as the source of extra information because historical factors, cultural interactions, 

trade, and geographical proximity connect Japan and Taiwan. In addition, Japan is the 

world leader in life expectancy, and useful insights could be gleaned from its 

experience. We start by attempting to “borrow” information that will allow us to adjust 

the variability of the death rates (and also to incorporate the possibility of a major shift). 

But this information is not for modifying the mean values, which are based solely on 

the few years of Taiwanese data. As was discussed previously, these few data points 

would still form a reasonable basis for projecting the mean values if the mortality index 

is assumed to be highly linear. 

When comparing the Taiwanese data (three years) with the Japanese data (21 

years), the first thing we discover is that the estimated value of ||  k  of the latter, 

computed from using (4) and (5), is 4.44 times of that of the former. (In fact, the similar 

ratio comparing the full set of Taiwanese data to only the three years considered is 

4.18.) The implication is that if the variability of the Japanese mortality index offers a 

reasonable indication of the underlying variability of the Taiwanese index, the “true” 

value of 
2

k  for the Taiwanese case should be around 20 times the value that was 

initially estimated based on the three years of data used. Accordingly, we revise the 

relevant parameters of the prior distributions and fit the Bayesian model again. As 

expected, there is virtually no change in the mean forecasts after these adjustments are 

made. As illustrated in the top panel of Figure 2 (page 14), however, the observed trend 

of life expectancy now lies mostly within the new, wider prediction intervals (middle 

pair of dashed lines), except for a few years in the later part of the projection period. 

Note that the width of the new bounds is around two years at 2008.  
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Figure 3: Actual log death rates vs. projected values with 95% prediction 

intervals – Taiwan 
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Figure 3: (Continued) 
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Figure 3: (Continued) 
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Figure 3: (Continued) 

 
 

Note: The zigzag decreasing trends represent the actual values, and the solid straight lines represent the projected values. The 

inner pair of dashed lines refers to the 95% prediction intervals without adjustment. The middle pair of dashed lines and the 

outer pair of dotted lines refer to the intervals after adjusting for 
2

k  and then 
x  respectively. 
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As an alternative, we have also tested co-modeling the two datasets and aligning 

their  k  ratios. In particular, (10) to (11), (13) to (16), and (18) are applied to the 

two datasets simultaneously (with two different sets of notation for differentiation). For 

the Taiwanese data, the following modifications are made: 

 

 

















0

2 

0
0

 
 , ~

tt

r

n


  ;  (prior distribution of  )  (19) 

 

  2 2  rk    ,       (20) 

 

in which r  is the  k  ratio of the Japanese data. Effectively, the information of the 

underlying variability of the Japanese mortality index “flows through” the Bayesian 

mechanism to influence the assessment of the variability of the Taiwanese mortality 

index. The resulting prediction intervals are found to be of a similar width (not shown 

here) to those produced by the above approach of revising the constant parameters of 

the priors, and the computation time increases because we are dealing with a larger data 

volume.  

Despite the improvement above in dealing with the overall variability by adjusting 

the priors, the effects at the single age level are still not that satisfactory. Figure 3 

illustrates that the new prediction bounds (middle pair of dashed lines) are only 

marginally wider than previously for the younger ages; and while the differences are 

more prominent for the older ages, the unexpectedly large drop in death rates for ages 

80 and over (not shown here) causes a significant breach of the lower bound. It is the 

latter case of older ages that increasingly contributes to rising longevity: based on our 

calculations on the Taiwanese data, those aged 50 and above are responsible for 51% of 

the increase in life expectancy from 1970 to 1980, and this proportion rises to 65% for 

the period from 1980 to 1990 (75% for 1990-2008). In fact, we find that the key 

contributors have been moving to progressively higher age groups over time for many 

populations. It is important to make a special allowance for these old ages where 

necessary when seeking to make a more reliable forecast of future mortality and life 

expectancy.  

The corresponding results via the initial Li, Lee, and Tuljapurkar (2004) approach 

are also provided in Figure 4 for further comparison. Though the two sets of results are 

obtained from using different error structures (Poisson vs Gaussian) and are not directly 

comparable, we can see that the Bayesian prediction intervals in Figure 3 (inner and 

middle pairs of dashed lines) are generally wider than those shown in Figure 4 (inner 

and outer pairs of dashed lines). This difference shows why it is advantageous that both 

process error and parameter error are taken into account naturally within the Bayesian 



Demographic Research: Volume 30, Article 1 

http://www.demographic-research.org 21 

paradigm, particularly when data are limited. Table 1 also provides some numerical 

results of the two cases for illustration.   

The second thing we realize is that the annual rate of decline of death rates from 

1970 to 1990 is on average about 1.5% higher for Japan than for Taiwan, and this 

advantage is spread fairly evenly across different age groups. It is possible for other 

populations to learn from Japan’s experience and catch up with its pace to some extent 

(at least in certain age groups) in the longer run. Hence, to further improve the results, 

in addition to the adjustments above (revising the priors), we modify the projection 

formula ttt ekk  1  with the following: 

 
   

xt

x

t

x

t ekk  1  ,  (specific to age x)    (21) 

 

in which  2, 0~ xx   is independent of the other variables and represents a “shock” 

to the original drift term  . In this way, the mean forecasts remain more or less the 

same, but the variability can be adjusted so as to allow for the possibility of a major 

shift in mortality decline at certain ages. For demonstration purposes, we arbitrarily set 

the values of 
2

x  so that the 99th percentile of xxb   equals the difference in the annual 

rate of decline of death rates between Japan and Taiwan from 1970 to 1990. Roughly 

speaking, we make an a priori assumption that, in general, it is possible for Taiwan to 

make up some of this difference after 1990, but that there is only a 1% chance of 

Taiwan completely catching up with the staggering pace of improvement observed in 

Japan. The corresponding results are also shown in Figures 2 and 3. We can now see 

that most of the observed values, including those for ages 80 and over, lie well within 

the revised prediction bounds (outer pair of dotted lines), although the intervals seem to 

be somewhat too wide for some of the older ages, particularly for the upper bound. The 

width of the bounds for life expectancy is about five years at 2008. With more 

information about the population or from other relevant sources, it may be possible to 

refine the prediction intervals by, for example, restricting the addition of x  to only 

specific ages, or truncating the normal distribution of x  from above.           
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Figure 4:  Actual log death rates vs. projected values with 95% prediction 

intervals via the Li, Lee, and Tuljapurkar (2004) approach – Taiwan  
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Figure 4:  (Continued) 
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Figure 4:  (Continued) 
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Figure 4:  (Continued) 

 

 
Note: The zigzag decreasing trends represent the actual values, and the solid straight lines represent the projected values. The 

inner (outer) pair of dashed lines refers to the 95% prediction intervals before (after) adjusting for 
2

k .  
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Table 1: 95% prediction intervals of the projected log death rates in 2008 

simulated from the Bayesian approach and the Li, Lee, and 

Tuljapurkar (2004) approach – Taiwan  

 Bayesian approach Li, Lee, and Tuljapurkar (2004) 

Age Not adjusted Adjusted Not adjusted Adjusted 

10 (-8.77,-8.12) (-8.80,-8.12) (-8.49,-8.44) (-8.60,-8.33) 

20 (-7.41,-7.00) (-7.42,-6.99) (-7.21,-7.17) (-7.28,-7.10) 

30 (-7.09,-6.71) (-7.11,-6.71) (-6.97,-6.92) (-7.07,-6.82) 

40 (-6.26,-5.95) (-6.27,-5.95) (-6.11,-6.09) (-6.16,-6.04) 

50 (-5.73,-5.46) (-5.77,-5.44) (-5.63,-5.58) (-5.76,-5.45) 

60 (-4.82,-4.61) (-4.87,-4.57) (-4.76,-4.70) (-4.89,-4.57) 

70 (-3.90,-3.71) (-3.96,-3.66) (-3.81,-3.75) (-3.94,-3.62) 

80 (-2.72,-2.53) (-2.75,-2.51) (-2.68,-2.64) (-2.76,-2.56) 

 

 

From this rather hypothetical example, we can see that the Bayesian framework is 

flexible in allowing for different extents of variability when constructing prediction 

intervals for the model forecasts. The experience of another population can be readily 

incorporated into the modeling process by adjusting the parameters of the prior 

distributions, modeling the two sets of data simultaneously, or adding a “shock” 

component to the drift term of the mortality index. As was mentioned earlier, we 

suppose that the supplementary data are relevant only for the underlying variability, but 

not for the mean values.  

On the other hand, prior information or subjective beliefs regarding the mean of 

the drift term may also be used to help determine the mean forecasts if the value given 

by (4) is deemed to be too optimistic or pessimistic. (In effect, ignoring the error terms, 

0 xb  refers to the “average” annual rate of change of death rates at age x. Since 

1x xb , an  0  then roughly refers to the overall annual rate of change of death 

rates.) In such cases, it may be possible to adjust 0  directly, or, alternatively, to co-

model the limited dataset with a sufficient, related one jointly. One option is to adopt 

the idea in Carter and Lee (1992) and modify (10) as follows:  

 

    exp Poisson~ ,,,,,, tixixitxitx kbaED   ; (Poisson error structure) (22) 
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in which there is a common mortality index tk  for the two populations, and the new 

subscript i indicates the particular population being referred to, e.g., i = 1 for Taiwan 

and i = 2 for Japan. As the volume of the Japanese data is much larger than that of the 

Taiwanese data used, the estimation of the common mortality index is largely 

determined by the former, which would influence both the mean and the variability of 

the projected mortality decline of the latter. Compared to all of the previous 

adjustments, incorporating a common mortality index provides a more coherent and 

systematic way to spread the information of the reference population to the population 

with limited data. But in this way, the projected mean values would also be affected. 

Figure 5 shows that while the projected mortality improvement and prediction intervals 

are in line with the actual figures for the older ages, there is significant overestimation 

of mortality decline for the younger ages. These effects are in line with our earlier 

observation that the death rates of Japan (1970-1990) decreased at a faster pace than 

those of Taiwan for different age groups. To use this co-modeling approach properly, a 

decision must be made about whether the population under investigation would follow 

the past trends of the reference population, and if so, for which age groups this would 

occur. 

 

Figure 5:  Actual log death rates vs. projected values with 95% prediction 

intervals using a common mortality index – Taiwan  
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Figure 5:  (Continued) 
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Figure 5:  (Continued) 
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Figure 5:  (Continued) 
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Figure 5:  (Continued) 

 
 

Note: The zigzag decreasing trends represent the actual values, and the solid straight lines represent the projected values. The 

dashed lines refer to the 95% prediction intervals. 
 

 

5. Application to Chinese mortality data 

The death rates of five-year age groups (by sex) of China from 1964 to 2000 are 

obtained from Banister and Hill (2004). The data are available for four periods: 1964-

1982, 1982-1990, 1990-2000, and 1999-2000. Due to data limitations and for ease of 

computation, these death rates are treated here as having been collected in 1973, 1986, 

1995, and 1999, respectively. The Gaussian error structure (9) is applied to these four 

years of data, since the numbers of deaths and exposures are not provided along with 

the death rates. The future death rates and life expectancy at birth are then projected for 

31 years from 2000 to 2030. We also exploit the previous Taiwanese and Japanese data 

to provide additional information for the underlying variability of the Chinese data in a 

manner similar to the approach used in the last section.   

The log death rates and the survival curve are plotted separately for females and 

males in Figure 6. As we can see, mortality has decreased substantially for both sexes 

during the period, and a rectangularization of the survival curve has taken place. While 

these four years of data determine the mean forecasts for 2000 to 2030, other 

experience can be used to help assess whether the underlying variability is sufficiently 
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allowed for. We compare the Chinese data with the whole set of Taiwanese data and 

find that their values of ||  k  are indeed very close; the latter is only around 1.1 

times larger. This observation suggests that an adjustment of 
2

k  does not seem 

necessary here. Moreover, we realize that the differences in the annual rate of the 

decline of death rates between the two populations vary for different ages, with the rate 

being about 0.7% higher for China at ages zero to 59, but 0.4% higher for Taiwan at 

ages 60 and above. If the comparison is made with the Japanese data instead, the two 

figures become 0.4% and 1%, respectively. As was discussed earlier, the contribution of 

the older ages to rising longevity has become increasingly important over time. We 

therefore adjust the projection formula again as in (21) for ages 60 and above only, 

using the 1% difference based on the Japanese data.   

Figure 7 displays the parameter estimates (markers) and observed life expectancy 

(the zigzag increasing trend), with their projections (solid lines) and 95% prediction 

intervals (dashed lines before adjustment; dotted lines after adjustment). For 

comparison, the projected values of life expectancy from UNdata (circles) are also 

shown. We can see that for both females and males, the UNdata figures are lower than 

our projections, and move closer to the lower bounds over time. In particular, our 

projected values at 2030 are 81 for females and 77 for males, compared to the UNdata 

figures of 79 and 75, respectively. For both sexes, the width of the bounds at 2030 is 

four years before adjustment and is around six years after adjustment. As a further 

comparison, Taiwanese life expectancy figures (crosses) are also calculated and 

included in Figure 7. It is interesting to note that the projected values of life expectancy 

of China and Taiwan move almost in parallel over the period, with the latter being six 

years higher than the former for females, and more than three years higher for males.  
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Figure 6: Log death rates and survival curve – China, females (top) and  

males (bottom)  
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Figure 6: (Continued) 
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Figure 7: Parameter estimates of xa , xb , and 
ht

k  and life expectancy at birth – 

China, females (top) and males (bottom) 
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Figure 7: (Continued) 
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Figure 7: (Continued) 
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Figure 7: (Continued) 

 

 
 

Note: For the projections on pages 37 and 38, the solid straight lines represent the sample means / projected values. The dashed 

(dotted) lines refer to the 95% prediction intervals before (after) adjustment. The UNdata Chinese figures and the calculated 

Taiwanese figures are shown as circles and crosses respectively (page 38).  
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6. Concluding remarks 

In this paper, we examine a Bayesian approach to adapting some extensions of the Lee-

Carter method in order to deal with situations in which mortality data are available for a 

few years only. Under the Bayesian framework, we employ MCMC simulation to 

project future mortality and life expectancy and construct probability intervals for the 

projected values. The specialized software WinBUGS used in this work provides an 

efficient way to program Bayesian models and perform MCMC simulation. 

Specifically, we demonstrate how other mortality experience can be utilized to help 

determine the underlying variability of the population under study, through revising the 

parameters of the prior distributions, modeling two populations simultaneously, and 

adding a “shock” component to the drift term in the projection formula. We also 

experiment with the use of a common mortality index for co-modeling two datasets. 

The simulated results of the mean values and prediction intervals based on some 

Taiwanese and Chinese data look reasonable in general. We realize that even with only 

a few years of data, the parameter estimates display proper patterns, and sensible mean 

values can still be projected assuming a linear mortality index. Our approach here 

would be useful for certain developing nations, helping them to better understand the 

potential risk of underestimating longevity and allowing them to undertake more 

informed planning of public policies and social benefits. It also provides a flexible way 

for insurance companies that have operations in new markets to properly assess the 

longevity risk embedded in their products.  

Future research will include co-modeling two or more populations using different 

model structures within the Bayesian paradigm. To cite a recent example, Cairns et al. 

(2011) incorporated the age-period-cohort model into a Bayesian framework designed 

for modeling a large population jointly with a small sub-population. One major 

challenge for academics and practitioners is how to strike a balance between the 

sophistication and the practicality of using Bayesian models. On one hand, while it is 

desirable for experts to develop their own computation algorithms and to build more 

flexible models for fully Bayesian modeling, the process is time-consuming and 

technically demanding. On the other hand, WinBUGS offers a user-friendly platform 

for formulating Bayesian models, but this software does not support certain overly 

complicated model specifications. Further research is required to design a form of 

Bayesian analysis which is both flexible and ready for use in practice. 
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Appendix 

In this appendix, we present the WinBUGS codes used for the Taiwanese example 

above, and provide some technical details of the MCMC simulation process. The codes 

are listed as follows (whole left column and then right column): 

 

model; mu~dnorm(mu0,invsigma2.mu) 

 invsigma2~dgamma(alpha,beta) 

{  

 for(j in 1:18){ 

for(i in 1:90){ k[j+3]<-mu+k[j+2]+w[j+2] 

for(j in 1:3){ for(i in 1:90){ 

d[i,j]~dpois(lambda[i,j]) m[i,j]<-exp(a[i]+b[i]*k[j+3]) 

lambda[i,j]<-e[i,j]*exp(a[i]+b[i]*k[j]) }} 

}}  

 for(j in 3:20){ 

for(i in 2:90){ w[j]~dnorm(0,invsigma2) 

a[i]~dnorm(0,invsigma2.a) } 

b[i]~dnorm(0.01111,invsigma2.b)  

} for(j in 1:18){ 

a[1]~dnorm(0,invsigma2.a) x[j]<-log(m[90,j])-log(m[89,j]) 

b[1]<-1-sum(b[2:90]) y[j]<-(log(m[90,j]+0.55)-log(m[89,j])-21*x[j])/(-210) 

 for(i in 91:110){m[i,j]<-m[90,j]*exp(x[j]*(i-90)-y[j]*(i-

90)*(i-89)/2)} 

k[2]<-10*mu+k[1]+w[1] lx[1,j]<-1 

r1<-invsigma2/10 for(i in 2:111){lx[i,j]<-lx[i-1,j]*exp(-m[i-1,j])} 

w[1]~dnorm(0,r1) for(i in 1:110){ae0[i,j]<-lx[i,j]*(1-0.5*(1-exp(-m[i,j])))} 

 ae0[111,j]<-lx[111,j]*(1-0.5) 

k[3]<-10*mu+k[2]+w[2] e0[j]<-sum(ae0[1:111,j]) 

r2<-invsigma2/10 } 

w[2]~dnorm(0,r2)  

 } 

k[1]<-(0-30*mu-w[1]-sum(w[1:2]))/3  
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The notation used in the codes can readily be matched against (10) to (11), (13) to 

(16), and (18). More specifically, we denote the following (i and j referring to x and th 

respectively; 19700 t , 19801 t , 19902 t ): 

d[i,j] = 
htxD , ,  e[i,j] = 

htxE , , (i = 1-90 refer to x = 0-89; j = 1-3 refer to th = 

1970, 1980, 1990)  

a[i] = xa , invsigma2.a = 
2

a , b[i] = xb , invsigma2.b = 
2

b , (i = 1-90 refer to x = 

0-89) 

k[j] = 
ht

k , (j = 1-21 refer to th = 1970, 1980, 1990 and then t = 1991-2008) 

w[1] =   2

0121  , 0~...
100 kttt tteee   , r[1] =   21

01


 ktt  , 

w[2] =   2

1221   , 0~...
211 kttt tteee   , r[2] =   21

12


 ktt  , 

w[3] = 12te , w[4] = 22te , … , w[20] = 182te , invsigma2 = 
2

k , 

mu =  , mu0 = 0 , invsigma2.mu = 
2

 , alpha = k , beta = k , 

m[i,j] = txm , , (i = 1-110 refer to x = 0-109; j = 1-18 refer to t = 1991-2008) 

in which the two constraints 1x xb  and 0
2

0
 h th

k  are imposed by 

transforming them into: 

 


00 1
x xbb ; 

       3......22
2111000 2121021 ttttttt eeeeeetttk   . 

Note that as the death rates are more volatile from age 90 onwards, we only 

include the data of ages zero to 89 in the modeling process. Accordingly, we use an 

approach similar to that of Coale and Guo (1989) to extend the death rates to age 109 

for each year t (≥ 1991), assuming 55.0,89,109  tt mm  based on our observations of 

other populations. The method is as below: 

ttt xmm  ,88,89 lnln , tttt yxmm  ,89,90 lnln , tttt yxmm 2lnln ,90,91  , …, 

tttt yxmm 20lnln ,108,109  , (note: tx  here is a rate of change, but does not mean 

age x) 

which imply that 

  21021lnln ,88,109 tttt xmmy  , tttt yxmm  ,89,90 lnln , 

tttt yxmm 32lnln ,89,91  , … , 
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tttt yxmm 21020lnln ,89,109  , 

in which tx  and ty  are denoted as x[j] and y[j] in the codes (j = 1-18 referring to t 

= 1991-2008). Then for a particular year t, we estimate life expectancy at birth as:  

, ...  ...    0 110110 5.00 22 5.00 11 5.00 5.00 5.1100 5.20 5.10 5.0

 

0 
00 pppppppppppdspe s  



where  tsss mpp ,0 01 exp   (integer s) and    exp1  5.01 ,5.0 txx mp  . The 

term 0ps  is denoted as lx[i,j] and 0



e  as e0[j] in the codes (i = 1-111 referring to s = 0-

110; j = 1-18 referring to t = 1991-2008).  

In the MCMC simulation process, we discard the first 5,000 iterations, and store 

every 100
th

 iteration afterwards to contribute to the required statistics. In effect, 5,000 

samples are collected for computing the parameter estimates and constructing 

probability intervals. In this way, we find that the autocorrelations between the 

simulated samples are minimal and that the level of convergence is satisfactory. For 

example, the autocorrelation plots (top) and the history plots (bottom) of the drift term 

and life expectancy at 2008 are shown below. Convergence is further assured by the 

fact that all of the Monte Carlo errors are less than 2% of the sample standard 

deviations. In an earlier work, Cairns et al. (2011) also take every 50
th

 iteration in their 

MCMC simulation in order to reduce the degree of autocorrelation between successive 

samples. Empirically, we also realize that when the prior distributions of   and 
2

k  are 

adjusted to allow for higher variability, the thinning of 100 iterations may need to be 

increased to minimize the autocorrelations (particularly between the simulated samples 

of the drift term  ).  

To check the reasonableness of the simulation results, the MCMC parameter 

estimates are compared with the ML (maximum likelihood; see Brouhns, Denuit, and 

Vermunt 2002) estimates (using the same set of data), and they are found to be in 

agreement with each other. More precise prior choices are also tested, such as using the 

ML estimates of 
2

a  (or 
2

b ) and setting 1.2k . The sample means of the results are 

basically not affected, and the resulting changes in the sample variances are immaterial 

(unless the prior distributions of   and 
2

k  are adjusted). Moreover, we have tested 

both the ML estimates and the different values generated by the WinBUGS built-in 

function as the initial values. The corresponding results are very similar, and 

convergence is readily achieved.   
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mu

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 

e0[18]

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

mu

iteration

5001 6000 8000 10000

   -1.8

   -1.7

   -1.6

   -1.5

   -1.4

e0[18]

iteration

5001 6000 8000 10000

   76.5

   77.0

   77.5

   78.0

   78.5
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In the codes, instead of simulating from a Poisson distribution, the future death 

rates are generated from using  txxtx kbam  exp,  . This procedure serves as a 

practical alternative since the “future” exposures in the projection period (1991-2008) 

are supposed to be “unknown” at the end of the fitting period (1970-1990). To examine 

the significance of this matter, we treat the actual exposures of the projection period as 

“estimated” figures and take them as “given.” We then model the future number of 

deaths with a Poisson distribution and carry out the simulation again. The resulting 

prediction intervals for the log death rates are only marginally wider than previously, 

and there is effectively no change in the prediction intervals for life expectancy. These 

results are in line with the findings in Lee and Carter (1992), which suggest that for life 

expectancy forecasts, it is reasonable to focus on the errors of the mortality index but 

not those of the age-specific death rates, because of substantial cancellation across 

different ages. (We also test the Gaussian error structure (9) on the Chinese data with 

and without assuming an error term for the future death rates, and observe that the 

differences in the prediction intervals for the death rates and life expectancy are trivial.) 

It appears that if the purpose is to forecast life expectancy, this is a practical and 

convenient way to simply generate the future death rates with the formula above. On 

the other hand, if more accurate prediction bounds are required for the death rates in the 

short run, the future exposures may first be estimated in some way and then taken as 

given. The future number of deaths in the projection period can then be modeled with a 

Poisson distribution, consistent with the fitting period. 

There is a final note regarding the revised projection formula 
   

xt

x

t

x

t ekk  1 . As was discussed, the term x  represents a “shock” to the drift 

term   and allows for the possibility of a major shift in mortality decline. For 

convenience, the x ’s of different ages are assumed to be perfectly correlated in the 

modeling process; i.e., a major shift, if it happens, affects all ages in conjunction 

(although to different extents).    
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