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Research Article

Multistate event history analysis with frailty

Govert E. Bijwaard 1

Abstract

BACKGROUND
In survival analysis a large literature using frailty models, or models with unobserved
heterogeneity, exists. In the growing literature and modelling on multistate models, this
issue is only in its infant phase. Ignoring frailty can, however, produce incorrect results.

OBJECTIVE
This paper presents how frailties can be incorporated into multistate models, with an em-
phasis on semi-Markov multistate models with a mixed proportional hazard structure.

METHODS
First, the aspects of frailty modeling in univariate (proportional hazard, Cox) and mul-
tivariate event history models are addressed. The implications of choosing shared or
correlated frailty is highlighted. The relevant differences with recurrent events data are
covered next. Multistate models are event history models that can have both multivariate
and recurrent events. Incorporating frailty in multistate models, therefore, brings all the
previously addressed issues together. Assuming a discrete frailty distribution allows for
a very general correlation structure among the transition hazards in a multistate model.
Although some estimation procedures are covered the emphasis is on conceptual issues.

RESULTS
The importance of multistate frailty modeling is illustrated with data on labour market
and migration dynamics of recent immigrants to the Netherlands.
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1. Introduction

Demographers are increasingly interested in understanding life histories or the individual
life course, with a focus on events, their sequence, ordering and transitions that people
make from one state of life to another. A multistate model describes the transitions people
experience as life unfolds. When people may change among a set of multiple states and/or
may experience repeated changes through time, a multistate event history model, also
known as multistate lifetable and increment-decrement life tables, is a proper choice. Typ-
ical examples of such processes in demography include migration, (Rogers 1975; 1995),
changes in marital status and other life course processes, (Courgeau and Lelièvre 1992
and Willekens 1999). Many other demographic applications of the multistate models
exist. Multistate models are also common in medicine and economics. In medicine, the
states can designate conditions such as healthy, diseased and death. For an overview of the
use of multistate models in biostatistics, see a.o. Commenges (1999), Hougaard (2000),
and Putter, Fiocco, and Geskus (2007). In economics the main application of multistate
models has been labour force dynamics; see Flinn and Heckman (1983), Van den Berg
(2001) and, Fougère and Kamionka (2008). Poverty dynamics and recidivism are other
important applications of multistate models. The methodology of multistate models is dis-
cussed in several books; the most important are Andersen et al. (1993), Hougaard (2000),
and Aalen, Borgan, and Gjessing (2008).

In our empirical application we focus on the return decision of labour migrants and
its relation to labour market dynamics. Many migrants only stay temporarily in the host
country. On the one hand, return migration is seen as planned and part of optimal decision
making to maximize total utility over the whole life cycle, where return migration is mo-
tivated by locational preference for the home country. On the other hand, return migration
is seen as unplanned and the result of failure either due to imperfect information about
the host country in terms of labor market prospects or the cost of living, or the inability
to fulfil the migration plans in terms of target savings. In both cases, return behaviour
is intrinsically related to the timing of labour market changes of the individual migrant.
Migrants who become unemployed are more prone to leave, but when they find a new job
again they are more prone to stay, see Bijwaard, Schluter, and Wahba (2014). Migrants
who are employed in high paying jobs have a lower probability of becoming unemployed
and can accumulate more savings while working. When these migrants have reached tar-
get savings they are more prone to leave, see Bijwaard and Wahba (2014). Labour market
dynamics may also be affected by the labour market history. These factors suggest that
return migration behaviour of labour migrants should be modeled by a multistate model.

The basic parameters of a multistate model are the transition hazard rates or intensi-
ties. These intensities may depend on the time spent in a particular state (semi-Markov
models) and on observed characteristics. Many multistate models assume that the inten-
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sities are homogeneous, conditional on these observed factors. Unfortunately, it is hardly
ever possible to include all relevant factors, either because the researcher does not know
all the relevant factors, or because it is not possible to measure all the relevant factors.
Ignoring such unobserved heterogeneity or frailty may have a large impact on inference
in multistate models. The duration dependence, the effect of the length of the duration in a
particular state on the exit rate out of this state, will be biased towards a more declining ef-
fect of the duration when frailty is ignored. The effect of covariates on the transition rates
will be biased towards zero when frailty is ignored. For univariate event history data, also
called survival data or duration data, a large literature on models with frailty exits, e.g.
Van den Berg (2001), Duchateau and Janssen (2008) and Wienke (2011). In the multistate
literature, the issue of including frailty is only in its infant phase. The few articles that
deal with frailty in multistate models are Pickles and Crouchley (1995), Govindarajulu
et al. (2011) and Putter and van Houwelingen (2011).

The purpose of this article is to provide an overview of frailty modeling for multistate
event history models. We assume that the frailty for all members, just as the effect of
observed characteristics, enters the intensity multiplicatively. Thus, we only consider the
Cox model in continuous time with frailty, in econometrics called the Mixed Proportional
Hazard model, and its multivariate extensions.

The outline of the paper is as follows. In Section 2. we start with a discussion on
the issues involved in frailty in univariate survival models. Multistate models extend the
univariate survival models in two dimensions: (1) Several people that may experience an
event may be grouped in clusters. Note that this is conceptually equal to the situation
in which for one individual several processes are followed simultaneously. In both cases
we have parallel events. (2) People may experience multiple periods of the same type
or recurrent events. In both dimensions, frailties can be independent, shared, or corre-
lated. We also discuss these issues separately for parallel and for recurrent event data.
In Section 3. frailties in a multistate setting are addressed, combining the knowledge of
the preceding section on incorporating frailties in models for parallel data and in models
for recurrent data. In Section 4. we illustrate the importance of incorporating frailty in a
semi-Markov multistate model with data on labour market and migration dynamics of re-
cent immigrants to the Netherlands. In Section 5. we briefly discuss identification issues
in multistate frailty models. Section 6. summarizes the findings.
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2. Frailty in event history models

2.1 Frailty in univariate event history models

The simplest multistate model is a univariate survival model, which considers the transi-
tion from ‘alive’ to ‘dead’, or return migration, in our running example. The observation
for a given individual will in this case consist of a random variable T , representing the
time from a given origin (time 0) to the occurrence of the event ‘death’. The distribution
of T may be characterized by the survival function S(t) = Pr(T > t). We can also
characterize the distribution of T by its hazard rate λ(t), which is the transition intensity
from state ‘alive’ to state ‘dead’, i.e. the instantaneous probability per time unit of going
from ‘alive’ to ‘dead’. The hazard rate provides a full characterization of the distribution
of T , just like the distribution function, the survival function, and the density function.

A typical feature of event history analysis is the inability to observe complete event
histories. A common problem is that by the end of the observation period, some individu-
als still have not yet experienced the event of interest. This kind of incomplete observation
is known as right-censoring. The hazard function is usually the focal point of analysis.
A major advantage of using the hazard function as the basic building block is that it is
invariant to independent censoring. The most common model for the hazard rate is the
Cox or proportional hazard (PH) model, with hazard rate

λ(t|X) = λ0(t) exp(β
′X), (1)

where λ0(t) is called the baseline hazard or duration dependence and it is a function of t
alone.

In a Mixed Proportional Hazard (MPH) model it is assumed that all unmeasured fac-
tors and measurement errors can be captured in a multiplicative random term, the frailty
V . The hazard rate becomes

λ(t|X,V ) = V λ0(t) exp(β
′X). (2)

This model was independently developed by Vaupel, Manton, and Stallard (1979) and by
Lancaster (1979). The frailty V > 0 is time-independent and independent of the observed
characteristics X .

The impact of frailty in event history models differs substantially from the impact of
frailty in linear regression models. In ordinary regression models, unobserved hetero-
geneity leads to more variability of the response compared to the case when the variables
are included. In event history data, however, the increased variability implies a change in
the hazard function. When the hazard rate exhibits positive duration dependence, ignoring
frailty will make this duration dependence less pronounced or even negative. When the
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hazard rate exhibits negative duration dependence, ignoring frailty will make this negative
duration dependence stronger. Another consequence of ignoring frailty is that the effect
of a covariate is biased towards zero.

The most commonly used frailty distributions are the Gamma frailty distribution, the
log-normal frailty distribution, and the discrete frailty distribution. For more details on
these and other frailty distributions, like the Power Variance Function family of frailty
distributions that includes the important Inverse Gaussian and Stable frailty distributions
I refer to Hougaard (2000) and Wienke (2011).

The Gamma distribution is the most widely applied frailty distribution. From an an-
alytical and computational view it is a very convenient distribution. The closed form
expressions for the unconditional survival and hazard are easy to derive. The link with
random effects or mixed models makes the log-normal model very attractive. A disad-
vantage is the lack of closed form expressions. But with increasing computer power the
numerical solution of the integrals involved is not an issue anymore.

The discrete frailty model, in which it is assumed that the population consists of two,
or more, latent sub populations, which are homogeneous within, is a finite mixture model.
For example we may have (1) a high risk subpopulation that leaves fast, and (2) a low
risk subpopulation that leaves slowly, but the class identification for each individual is
unknown. In econometrics such frailty models are commonly applied in survival analysis.

2.2 Frailty in multivariate event history models

There are two typical ways multivariate event history data can arise. The first situation of
multivariate event history data is parallel event history data, in which for one individual
several processes are followed simultaneously. A typical parallel events data example is
the competing risks model of different causes of death or of exits from employment to
either unemployment or non-participation. Data in which several individuals that may
experience an event are grouped in a cluster are conceptually the same with parallel data.
Examples of such data include twin and family studies. The second situation of multi-
variate event history data is recurrent/repeated events which arises when several events
of the same type are registered for each individual, for instance child birth to a woman, or
periods of unemployment. In univariate event history models frailty captures the possible
heterogeneity due to unobserved covariates. In a multivariate setting frailty can also be
used to model associations between events, but events from different clusters are consid-
ered to be independent.

A key point for an MPH model is conditional independence, that is conditional on
the frailty v the survival times are independent. In the multivariate setting we continue
to assume the MPH structure and the conditional independence. In principle the frailty
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might be independent for each event. Then the analysis does not differ from the analysis
in a univariate setting. Here we consider the more interesting cases of (1) shared frailty
and (2) correlated frailty.

The shared frailty approach assumes that within a cluster, the value of the frailty term
is constant over time, and common to all individuals in the cluster. Examples include:
the frailty in the transition from employment to unemployment is equal to the frailty
in the transition from employment to non-participation, and the frailty in the death rate
for all members of one family are the same. This common term, creates dependence
between event times within a cluster. This dependence is always positive. The shared
frailty model, first introduced by Clayton (1978), dominates the literature on multivariate
survival models, see Hougaard (2000), Therneau and Grambsch (2000) and Duchateau
and Janssen (2008), among others.

Despite the similarity between individual frailty and shared frailty conceptually they
are different. In the univariate case, the frailty variance σ2 is a measure of unobserved
heterogeneity, while in a shared frailty multivariate case, the frailty variance is a measure
of correlation between event times within a cluster.

The shared frailty model, with a shared Gamma frailty distribution as most popular
choice, has some important limitations; see Xue and Brookmeyer (1996) for an extensive
discussion. First, the assumption that the frailty is the same for all members in the clus-
ter is often inappropriate. Second, shared frailty models only induce positive association
within clusters. However, in some situations, the event times for individuals within the
same cluster are negatively associated. For example, the reduction in the risk of dying
from one disease may increase the risk of dying from another disease. Third, the depen-
dence between survival times within a cluster is based on marginal distributions of event
times. This leads to a symmetric relationship between all possible pairs within a cluster.
It also limits the interpretation of the variance of the shared frailty model as a measure
of association between event times within a cluster, and not as a measure of unobserved
heterogeneity. Correlated frailty models allow more flexibility.

In a correlated frailty model the frailties of individuals within a cluster are correlated
but not necessarily shared. It enables the inclusion of additional correlation parameters
and associations are no longer forced to be the same for all pairs of individuals within a
cluster. We consider three different ways of generating correlated frailties: (i) additive
frailty in which the frailty is the sum of a cluster-specific and an individual-specific com-
ponent; (ii) nested frailty, in which the frailty is the multiplication of a cluster-specific and
an individual-specific component; and (iii) joint modeling of the member specific frailties
within a cluster. In all three cases the conditional survival still has an MPH structure.

The additive frailty model based on a correlated gamma distribution was introduced
by Yashin, Vaupel, and Iachine (1995). The model has a very convenient representation
of the survival function in closed form. It consists of a bivariate model clustered event
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history model with additive gamma frailty. Each frailty is constructed by adding two
components, one common to both and one individual specific. A consequence of the
model structure is that when the values of the variances of the two individual terms differ
a lot the correlation cannot be very large. Another disadvantage of the additive correlated
gamma frailty is that estimation of the model becomes very complex with increasing
cluster size.

The nested frailty model assumes that the clustering of the event times occurs at
multiple levels. In family studies, where we have a hierarchical clustering by family
and individual, this models seems appropriate. Sastry (1997a) suggested a nested frailty
model with two hierarchical levels in which the frailty of member j in a particular cluster
is Vj = W0 · Wj with W0 and Wj are mutually independent unit-mean gamma dis-
tributed random variables with variance η0 and η1. Thus, within each cluster the frailty
is composed of a cluster-specific component common to all cluster members times an
individual-specific component that are mutually independent. The unconditional survival
for this nested gamma frailty has a complicated form, but estimation is possible using an
EM-algorithm (Sastry 1997a; 1997b), a Bayesian procedure (Manda 2001) or penalized
likelihood methods (Rondeau, Commenges, and Joly 2003).

A very flexible way to allow for correlated frailties is by modeling the joint frailty
distribution directly. The correlated log-normal frailty model, first applied by Xue and
Brookmeyer (1996), is especially useful in modeling dependence structures. The distri-
bution can be obtained by assuming a multivariate normal distribution on the logarithm of
the frailty vector. However, the log-normal distribution does not have analytical solutions
for the unconditional joint survival and hazards, and the number of integrals to evaluate
for calculating them increases with the dimension of the multivariate normal distribution.

Assuming a joint discrete frailty distribution is another way to allow for correlation
between the frailties. However, in an unstructured discrete frailty model the number
of (additional) parameters increases fast. This dimensional burden can be reduced by
assuming a factor loading specification, e.g. 2-factor loading model in which Vj =
exp(αj1W1 + αj2W2) with W1 and W2 are binary mutually independent variables on
(−1, 1) with pk = Pr(Wk = 1).

2.3 Frailty in recurrent events models

Another extension of the univariate survival model is that an individual can experience
the same event several times, e.g. become repeatedly unemployed. Reviews of models
for such recurrent event data appeared in Cook and Lawless (2007). Recurrent data can
be represented in different ways depending on the timescale that is used; (i) gap time, or
clock reset time; (ii) total time, or clock forward time, see e.g. Kelly and Lim (2000).
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Related to the choice of the time scale are the risk-interval and the risk set. The risk
interval corresponds to the time interval where an individual is at risk of experiencing an
event. The risk set is the collection of individuals which are at risk at a certain point in
time. In the gap-time representation, time at risk starts at 0 after an event and ends at
the time of the next event. Hence, time is reset to zero after each event. In the total-time
formulation, the length of the time at risk is the same as in the gap-time representation.
The difference is that the starting time of the at-risk period is not reset to zero after an
event but it is put equal to the actual time since the beginning of the observation period.

Based on the choice of the risk set, the three most common approaches to recurrent
events are the independent increment model of Andersen and Gill (1982), the marginal
model of Wei, Lin, and Weissfeld (1989), and the conditional model of Prentice, Williams,
and Peterson (1981); see Kelly and Lim (2000) for a comparison. For the marginal and
conditional models, each occurrence of the event is modeled as a separate event, while the
independent increment model assumes that the occurrence of an event of one individual
is independent of the number and timing of previous events. The independent increments
model is usually defined in total time, but it can also be formulated in gap time. This
model assumes that the gap times are generated from a renewal process. In essence, the
marginal model treats the consecutive event times as if they come from an unordered com-
peting risk setting, with the number of occurrences at the number of competing events.
The marginal model can only be formulated in total time. The conditional model assumes
that an individual cannot be at risk for the second occurrence of an event until the event
has occurred for the first time.

Nielsen et al. (1992) discuss how to include frailty in the independent increments
model. In Chapter 9 of his seminal book, Hougaard (2000) also discusses shared frailty
models for recurrent events in which the frailty is shared over time. Frailty models spe-
cially designed for recurrence data are considered in detail in Oakes (1992), Duchateau
et al. (2003) and Bijwaard, Franses, and Paap (2006). For recurrent events the frailty
variation is not a group variation, but a variation between individuals, and the variation
described by the hazard function is not an individual variation but a variation within indi-
viduals. The interpretation of the frailty variance also depends on the time scale and risk
sets used.

The arguments for correlated frailty models also apply for recurrent events. An exten-
sion of the correlated frailty model that is particularly relevant for recurrent events is the
time-dependent frailty model. Often events that occur close in time are highly correlated,
while events that occur further apart are less correlated. To model such kind of serial de-
pendence, Yau and McGilchrist (1998) define a dynamic frailty model that assumes that
the frailties on subsequent intervals follow an autocorrelation process of order one.
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3. Frailty in multistate models

A multistate model is defined as a stochastic process, which at any point in time occupies
one of a set of discrete states. The class of multistate models includes both recurrent
and multivariate event history data. For example, in labour force dynamics, multiple
(un)employment periods are recurrent events and the states are multivariate because from
a state of employment an individual can either become unemployed or leave the labour
market. In that respect special cases of a multistate model are the multivariate parallel
and recurrent models in the previous section. Thus, including frailty in multistate models
follows the lines of the previous sections. Before introducing multistate models with
frailty we explain the main concepts of multistate models.

3.1 Multistate model concepts

The most commonly applied multistate model in biostatistics is the illness-death model
(Putter, Fiocco, and Geskus 2007). This model is depicted in Figure 1. In this class of
models individuals start out healthy, the initial state 1. From a healthy state they may
become ill (state 2) or they may die (state 3). Ill individuals may die or recover and
become healthy again. Most concepts of multistate event history analysis can be explained
using this simple model.

Figure 1: Illness-death model

Health

'

&

$

%
-

λ12(t)

@
@
@
@
@
@
@
@
@
@R

λ13(t)

Illness

'

&

$

%

�
λ21(t)

�
�
�
�
�
�
���

λ23(t)

Death

'

&

$

%
Figure 1: Illness-death model
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Multistate modeling is closely related to Markov chain theory and many of its terms
originate from the theory of Markov chains and processes. Most multistate models have
three states: the initial state(s), the states in which an individual can enter the study;
absorbing states, states that represent an endpoint from which the individual cannot leave
or one is not interested in what happens after this state has been reached; intermediate
or transient states are all other states. In an illness-death model death is an absorbing
state and illness is an intermediate state. The multistate event history model is defined in
hazard/transitions rates. We denote the hazard of making a transition from state i to state
j (i 6= j) at t by λij(t).

Just as for recurrent events, the choice of the time scale in a multistate model has
important implications for the analysis. In a total time representation the event times, t,
correspond to the time since the individual entered the initial state. The time keeps moving
forward, both when intermediate events occur or when the individual returns to the initial
state. In a gap time representation, the event times correspond to the time since the entry
in state i. The time is reset to zero each time an individual makes a transition. Gap time is
also called sojourn time, clock reset time and backward recurrence time. The time scale
chosen has implications for the risk set that defines who are at risk for a particular event,
for a transition within a multistate framework.

Another important choice in relation to the risk set is whether a Markov model is
assumed. In a Markov model the transition rate only depends on the state an individual is
in, not on the time an individual has been in that state nor on any other events that occurred
before entering that state. Thus, multistate models in gap time representation cannot be
Markov models as the time scale itself depends on the history before the current state has
been reached. If it is assumed the gap times depend on the history of the process only
through the present state, the resulting multistate model is a Markov renewal model. In
a semi-Markov model the transition rate from one state to another state also depends on
the time the individual has spent in that particular state. A semi-Markov model in total
time representation is also possible, but only with an additional time scale, measuring the
sojourn time. In a Markov model the transition rate may depend on the time since entry.
This is called a time-inhomogeneous Markov model. Including such time dependence in
a semi-Markov model implies an additional time scale, measuring the time since entry.
We restrict to uni-time scale multistate models with a semi-Markov model in gap time
representation. Thus, we assume duration dependence in the transition rates. The duration
dependence measures the effect of the length of stay in a particular state. It is rather
straightforward to extend this model to let the transition rates depend on the order or
occurrence of the particular state, recurrent events effects, by allowing for occurrence
specific duration dependence and for occurrence specific covariate effects. We restrict
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to mixed proportional hazard type transition rates and assume that, conditionally on the
value of the frailty, the semi-Markov property holds.

3.2 Frailty in the illness-death model

We illustrate the choices involved in including frailty in multistate models by using the
illness-death model. In the illness-death model we have four transitions rates

λ12(t|X12, v12) = v12λ012(t) exp(β12X12) from healthy to ill (3)
λ13(t|X13, v13) = v13λ013(t) exp(β13X13) from healthy to death (4)
λ21(t|X21, v21) = v21λ021(t) exp(β21X21) from ill to healthy (5)
λ23(t|X23, v23) = v23λ023(t) exp(β23X23) from ill to death, (6)

where X12, X13, X21 and X23 are the observed individual characteristics. The included
covariates might be different for each transition. The baseline hazards λ012(·), . . . , λ023(·)
depend on the sojourn time in the state, and might be equal for the same origin state. Here
we focus on the choice of the frailty distribution. When all the frailties are mutually
independent the model reduces to two independent competing risks models. From the
healthy state, the competing states the individual can move to are illness and death. From
the illness state the individual can either move to healthy or to death. In both cases the
competing risks are uncorrelated and the frailty variance is a measure of unobserved het-
erogeneity within the origin-destination combination.

An illness-death model with shared frailty model by origin state implies equal frailties
from the healthy state v1 = v12 = v13 and equal frailties from the illness state v2 = v21 =
v23. The frailty variance is in this case a measure of correlation between events times from
either healthy to illness or to death or from illness to healthy or to death.

Concerning correlated frailty models, we have the choice between three different
ways of generating correlation between the linked transitions: an additive frailty model,
a nested frailty model or a joint frailty model. With correlation based on origin states,
we have two sets of mutually independent correlated frailties, the frailties of the healthy
state, v12 and v13, and the frailties of the illness state, v21 and v23. With correlation
based on destination states, we have three sets of mutually independent correlated frail-
ties: the frailty to the healthy state, v21, the frailty to the illness state, v21 and the frailties
to the death state, v13 and v23. When all four frailties are correlated, we can use four-
dimensional frailty models. Note that the additive gamma frailty models become very
complex for four dimensional frailties. For the discrete correlated frailty models, a two-
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factor loading model specification would leave the parameter space manageable without
putting too much restriction on the correlations. An advantage of the discrete model is
that it also allows for negative correlations among the unobserved factors. In the proto-
typical application of the illness-death model in biostatistics, describing the transitions of
patients, this possibility might sound redundant, as factors increasing the rate into illness
usually also increase the death rate. However, when the illness-death model is applied to
socio-economic transitions, restricting to positive correlation can be very restrictive. For
example, labour migrants who are more likely to become unemployed (“ill”) are often
less likely to find a new job again (“healthy”).

So far we have ignored possible recurrent behaviour in the model. In the illness-death
model, only the health and illness state might be recurrent. But the transition rates to
death from these two states may also change with reoccurence. Of course, a simple way
to allow for such dependence is to include as an additional covariate the number of times
an individual has been in the state. Recurrence may also affect frailties. When the frailties
are shared over the occurrences, the possible models are basically the same as mentioned
above, with the only difference is that the baseline duration and the regression function
are stratified by occurrence. When the frailties are independent over the recurrence, i.e.
each recurrence has a separate frailty, the model is just a repeated version of the model
above. When allowing a more flexible correlation the possible frailty structures becomes
rather large. In principle an extension of the autocorrelated frailty model of Yau and
McGilchrist (1998) to the illness-death model is possible. We assume that the frailty is
shared or independent over the occurrences.

3.3 General multistate models with frailty

For general multistate models beyond the simple illness-death model, many alternative
correlation structures for the frailties are possible. In principle, a multistate model has
three dimensions; the origin states, the destination states and the recurrent events of a
particular state. The hazard from state i to state j (i 6= j) for the kth time is

λijk(t|X,Vijk) = Vijkλijr0(t) exp(β
′
ijkXijk).

Of course, it is allowed to put restrictions on the duration dependence, on the observed
characteristics or on the effect of the observed characteristics on the hazard. For example,
the duration dependence might be shared for all exits of one origin state, λijr0(t) =
λir0(t), the observed characteristics might be shared over all recurrent events, Xijk =
Xij , and the effect of these factors might only depend on the destination state βijk = βj .
Here we only focus on the correlation structure of the frailties.
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Table 1: Possible correlation structures of frailty in a multistate model

Origin-destination Recurrent structure
structure independent shared
Fully ρ

(
vijk, virk

)
= 0 ρ

(
vijk, virk

)
= 0

independent ρ
(
vijk, vmjk

)
= 0 ρ

(
vijk, vmjk

)
= 0

ρ
(
vijk, vmrk

)
= 0 ρ

(
vijk, vmrk

)
= 0

ρ
(
vijk, vijg

)
= 0 ρ

(
vijk, vijg

)
= 1

Shared ρ
(
vijk, virk

)
= 1 ρ

(
vijk, virk

)
= 1

over origin ρ
(
vijk, vmjk

)
= 0 ρ

(
vijk, vmjk

)
= 0

ρ
(
vijk, vmrk

)
= 0 ρ

(
vijk, vmrk

)
= 0

ρ
(
vijk, vijg

)
= 0 ρ

(
vijk, vijg

)
= 1

Shared ρ
(
vijk, virk

)
= 0 ρ

(
vijk, virk

)
= 0

over destination ρ
(
vijk, vmjk

)
= 1 ρ

(
vijk, vmjk

)
= 1

ρ
(
vijk, vmrk

)
= 0 ρ

(
vijk, vmrk

)
= 0

ρ
(
vijk, vijg

)
= 0 ρ

(
vijk, vijg

)
= 1

Fully ρ
(
vijk, virk

)
= 1 ρ

(
vijk, virk

)
= 1

shared ρ
(
vijk, vmjk

)
= 1 ρ

(
vijk, vmjk

)
= 1

ρ
(
vijk, vmrk

)
= 1 ρ

(
vijk, vmrk

)
= 1

ρ
(
vijk, vijg

)
= 0 ρ

(
vijk, vijg

)
= 1

Correlated ρ
(
vijk, virk

)
= ρij,ir ρ

(
vijk, virk

)
= ρij,ir

over origin ρ
(
vijk, vmjk

)
= 0 ρ

(
vijk, vmjk

)
= 0

ρ
(
vijk, vmrk

)
= 0 ρ

(
vijk, vmrk

)
= 0

ρ
(
vijk, vijg

)
= 0 ρ

(
vijk, vijg

)
= 1

Correlated ρ
(
vijk, virk

)
= 0 ρ

(
vijk, virk

)
= 0

over destination ρ
(
vijk, vmjk

)
= ρij,mj ρ

(
vijk, vmjk

)
= ρij,mj

ρ
(
vijk, vmrk

)
= 0 ρ

(
vijk, vmrk

)
= 0

ρ
(
vijk, vijg

)
= 0 ρ

(
vijk, vijg

)
= 1

Fully ρ
(
vijk, virk

)
= ρij,ir ρ

(
vijk, virk

)
= ρij,ir

correlated ρ
(
vijk, vmjk

)
= ρij,mj ρ

(
vijk, vmjk

)
= ρij,mj

ρ
(
vijk, vmrk

)
= ρij,mr ρ

(
vijk, vmrk

)
= ρij,mr

ρ
(
vijk, vijg

)
= 0 ρ

(
vijk, vijg

)
= 1

With independent frailty, we have for each origin-destination-recurrence pair, vijk,
an independent frailty, and all frailties are uncorrelated. This is, for example, the case
when all transitions in a labour-dynamics return migration multistate model are only cor-
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related through observed characteristics. Table 1 provides the possible tractable correla-
tion structures when changing the dependence in all three dimensions. The first column
gives the correlation structure when the frailties are independent over the recurrences and
the second column when the frailties are shared over the recurrences. When the frailties
are shared over recurrences, the correlation between two frailties of different occurrence,
ρ
(
vijk, vijg

)
, is one. When the frailty is shared over the origin state and independent

over recurrences, i.e. all destinations from one origin share the same frailty but not over
recurrences, then the frailty distribution only depends on the origin state i and the corre-
lation between two frailties from the same origin, ρ

(
vijk, virk

)
, is one. For example, this

amounts to dependence of the transition hazards to unemployment, non-participation and
abroad from employment for a particular employment period, but independence of these
hazards for different employment periods. When the frailty is shared over the destination
state and independent over recurrences, i.e. hazards to one particular destinations share
the same frailty but not over recurrences, then the frailty distribution only depends on
the destination state j and the correlation between two frailties to the same destination,
ρ
(
vijk, vmjk

)
, is one. When the frailty is shared over origin, destination and recurrence

states we have only one frailty value for each individual and therefore the correlation is
one.

When the frailties are correlated over origin states the frailties from the same origin
i to different destinations j and r are correlated and depend on the destination state, i.e.
ρ
(
vijk, virk

)
= ρij,ir. When the frailties are correlated over destination states the frailties

to the same destination j from different origins i and m are correlated and depend on the
origin state, i.e. ρ

(
vijk, vmjk

)
= ρij,mj . When the frailties are correlated over both origin

and destination states the correlation is defined in all possible origin-destination combina-
tions, e.g. ρ

(
vijk, vmrg

)
= ρij,mr. The first situation, correlated over origin, implies that

the hazard from employment to unemployment, from employment to non-participation
and from employment to living abroad are correlated through the frailty term, while the
hazards from unemployment to either employment, non-participation or moving abroad
are uncorrelated with the out-off-employment hazards. In the second situation, correlated
over destination, the hazards to employment, from unemployment, from non-participation
and from abroad are all correlated through frailty. In the third situation, full correlation,
the hazards from employment, from unemployment, from non-participation and from liv-
ing abroad to all other states are all correlated through the frailty.

Multistate models with correlated frailty can become very complex, with many (frailty)
parameters. Of course, the choice of the correlation structure in a multistate model de-
pends on data availability and on the questions one wants to answer. For high dimensional
multistate models, including correlated frailties also extends the parameters space. By
using factor loading models, it is possible to reduce the dimension of correlated frailty
distribution a great deal, without loosing much flexibility. Consider a M -factor loading
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model with frailty

vijk =

M∏
m=1

exp
(
α
(m)
ijk ·W

(m)
ijk

)
, (7)

where W (1)
ijk , . . . ,W

(M)
ijk are M binary variables mutually independent on (−1, 1) with

pijk = Pr(Wijk = 1). For example, in a 2-factor loading model each frailty can at-
tain four different values, {eα1+α2 , e−α1+α2 , eα1−α2 , e−α1−α2}. In general, anM -factor
loading model allows for 2M possible values for each frailty. In Table 2 we display the
restrictions on the factor loading and number of factors implied by the alternative corre-
lation structures of Table 1.

Consider, for example, a discrete frailty 2-factor loading model. Table 2 shows that
when a separate model is defined for each origin, i.e. separate Wi’s for each origin,
the frailty is shared over recurrence and correlated or shared over origin. The frailty is
shared over the origin states when the factor loadings are the same for each destination,
α
(m)
ij = α

(m)
i . Similarly, when we have a 2 factor model with factor loadings depending

on the origin and destination state, the frailties are fully correlated over the origin and
destination states. Note that for these factor loading models, the shared frailty models
are nested in the correlated frailty models. A fully shared model is nested in a fully
correlated model, and a shared over the origin model is nested in a correlated over origin
states model. This implies that testing the equality of the relevant α’s is a test on correlated
versus shared frailties.
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Table 2: Restrictions implied by correlation structure on factor loadings and
number of factors for a discrete frailty factor loading model

Origin-destination Recurrent structure
structure independent shared
Fully α

(m)
ijk = α(m)

ijk α
(m)
ijk = α(m)

ij

independent W
(m)
ijk = W (m)

ijk W
(m)
ijk = W (m)

ij

Shared α
(m)
ijk = α(m)

ik α
(m)
ijk = α(m)

i

over origin W
(m)
ijk = W (m)

ik W
(m)
ijk = W (m)

i

Shared α
(m)
ijk = α(m)

jk α
(m)
ijk = α(m)

j

over destination W
(m)
ijk = W (m)

jk W
(m)
ijk = W (m)

j

Fully α
(m)
ijk = α(m)

k α
(m)
ijk = α(m)

shared W
(m)
ijk = W (m)

k W
(m)
ijk = W (m)

Correlated α
(m)
ijk = α(m)

ijk α
(m)
ijk = α(m)

ij

over origin W
(m)
ijk = W (m)

ik W
(m)
ijk = W (m)

i

Correlated α
(m)
ijk = α(m)

ijk α
(m)
ijk = α(m)

ij

over destination W
(m)
ijk = W (m)

jk W
(m)
ijk = W (m)

j

Fully α
(m)
ijk = α(m)

ijk α
(m)
ijk = α(m)

ij

correlated W
(m)
ijk = W (m)

k W
(m)
ijk = W (m)

Notes: Origin state i 6= m, destination state j 6= r and recurrent event k 6= g. Factor discrete model: vijk =∏M
m=1 exp

(
α

(m)
ijk ·W

(m)
ijk

)
with W = {−1, 1} and Pr(W

(m)
ijk = 1) = p

(m)
ijk .

4. Empirical illustration

The labour market performance of immigrants has received ample attention in the empir-
ical literature. Neglected, however, is the question as to what extent the labour market
performance affects the return migration of migrants. Labour market transitions and re-
turn migration of immigrants are intertwined, and should, therefore, be analysed in con-
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junction. We address these issues by using a unique administrative panel for the entire
population of recent migrants and estimate a multistate model on the labour market and
migration dynamics of these migrants.

To this end we use administrative data from the Netherlands, where we observe all
immigrants who have entered the country between 1999 and 2007. Our data comprise the
entire population of immigrants who entered during our observation window of 1999–
2007, and after merging in other administrative registers, we obtain a panel. In addition
to the date of entry and exit, the administration also records the migration motive of the
individual. Either the motive is coded according to the visa status of the immigrant, or the
immigrant reports the motive upon registration in the population register. See Bijwaard
(2010) for an extensive descriptive analysis of the various migration motives. Here we
focus exclusively on 94,270 labour migrants, which comprise about 23% of all non-Dutch
immigrants in the age group 18–64 years.

This immigration register is linked by Statistics Netherlands to the Municipal Regis-
ter of Population (Gemeentelijke Basisadministratie, GBA) and to their Social Statistical
Database (SSD). The GBA contains basic demographic characteristics of the migrants,
such as age, gender, marital status and country of origin. From the SSD we have infor-
mation, on a monthly basis, on the labour market position, income, employment sector,
housing and household situation.

4.1 Four states model for labour market and migration dynamics

We are interested, per se, in the labour market and the migration dynamics, the timing
of the transitions and the time between transitions. Since we observe immigrants from
the time they enter until the end of our observation window, and since we focus on those
employed immigrants at entry, an immigrant potentially faces different risks of exiting
his/her first state of employment and multiple durations. We define the following four
states: (e) Employed in the Netherlands; (u) Unemployed and receiving benefits in the
Netherlands; (n) Out of the labour market (and not receiving benefits = non-participating)
in the Netherlands (NP); (a) Living abroad. Table 3 reports the observed transitions
among these three labour market states and the living abroad state. Note that by the
end of the observation window, 1-1-2008, all migrants are categorized in one of the four
states.
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Table 3: Spell dynamics of the labour migrants (# 94,270)

Percentage ending in
# of spell employed UI NP Abroad

Employed 124058 43% 5% 42% 10%
Unemployed (UI) 11898 49% 14% 33% 4%
Non-participation (NP) 56559 38% 9% 14% 39%
Abroad 45578 6% 0.2% 2% 92%

Source: Statistics Netherlands, based on own calculations.

Many employment spells are still continuing by the end of the observation period.
For the majority of employment spells that end in a transition the migrant leaves the
labour market, becomes non-participating. Many non-participation spells end abroad,
while many unemployed return to employment. A third of the unemployed receiving
benefits leave the labour market. Very few migrants leave the country directly from a
state of unemployment. When a migrant leaves the country, they usually remain abroad;
they are still abroad at the end of the observation period.

Figure 2: Development of SES of labour immigrants arriving in 1999
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By definition all labour migrants start in the employed state at entry. Soon after arrival
some migrants move to the other states. Some may return and some may move on to
another state. But the migrant is always in one of the four states. In Figure 2 we depict
the raw development over time of the distribution over the four states for the 1999-entry
cohort, the labour migrants who arrived in 1999. The proportion abroad continuously
increases. Six years after arrival more than 50% of the migrants have left the country.
The remaining migrants are either employed or non-participating. Only a few migrants
get unemployment benefits, possibly because they have not yet gained any benefit rights
in the Netherlands.

We view the migrant behavior as a semi-Markov process, with individuals moving
between the four states. These states are mutually exclusive and exhaust all possible
destinations.2 A migrant may leave a state i = {e, u, n, a} for any of the other destination
states. The 4-state multistate model is depicted in Figure 3.

Figure 3: Multistate model for labour-migration dynamics
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2 The mortality rate for the age range 18–64 is small enough to ignore deaths.
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We use a competing risks hazard model for each origin-destination pair. We assume
that recurrence of the states does not directly affect the frailty or the duration dependence,
they are shared over recurrence. Recurrence influence on the hazard is captured by in-
cluding the labour-migration history in the covariates. Define the random variables Tij
that describe the time since entry in i for a transition from i to j. We assume a (mixed)
proportional hazard model for which the intensity for the transition from j to k is:

λij(t|Xij(t), vij) = vijλ0ij(t) exp
(
β′ijXij(t)

)
(8)

where Xij(t) = {Xij(s)|0 ≤ s ≤ t} is the sample path of the observed characteristics
up to time t, which is, without loss of generality, assumed to be left continuous. For
the baseline duration λ0ij(t) we assume that it is piecewise constant on eleven intervals;
every six months and beyond five years. Let the intervals Im(t) = I(tm−1 ≤ t <
tm) for m = 1, . . . ,M + 1 with t0 = 0 and tM+1 = ∞ be the intervals on which
we define the piecewise constant intensity. Then, the baseline intensity is λ0ij(t) =

eβ0ij ·
∑M+1
m=1 e

αmijIm(t), with α1ij = 0. Thus β0ij determines the intensity in the first
interval. The α’s determine the difference in intensity at each interval compared to this
first interval. The baseline intensity for a duration of t ∈ [tm−1, tm) is higher than the
baseline intensity to leave for a duration of t < t1 if αmij > 0 and lower if αmij < 0.

We use three different frailty models: (1) a PH model, a model without frailty (PH);
(2) uncorrelated MPH model with a two-point discrete frailty (MPH); and (3) a two-factor
loading correlated frailty over the origin state (correlated MPH). The covariates included
in the model refer to demographic (gender, age-dummies, martial status and age of chil-
dren), country of origin-dummies, individual labour market characteristics (monthly in-
come, employment sector-dummies), labour market history and migration history. We
control for business cycle conditions by including the national unemployment rate, both
at the moment of first entry to the country and the time-varying monthly rate. The un-
employment rate at entry captures the ‘scarring effect’ of migrants, while the running
unemployment rate captures the impact of the business cycle on the transition intensities.
With the abundant information on the migrants, the model contains many parameters. We
used maximum likelihood estimation in STATA to estimate all the coefficients.3 Here we
only discuss the parameter estimates of the transition from employed to abroad, λea(t)
and, focus on the differences induced by the alternative frailty assumptions.4

3 The code is available upon request. The standard errors are calculated using the outer-product of the gradient
vector in the estimated parameter vector. Other alternative estimation procedures for event history models with
frailty are: the Expectation-Maximization (EM) algorithm, penalized partial likelihood, and Bayesian Markov
Chain Monte Carlo methods.
4 All estimation results are available from the author. Related multistate models on similar data are estimated

by Bijwaard (2009) and Bijwaard and Wahba (2014). Bijwaard (2009) discusses calculation of the marginal
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Table 4: Parameter estimates transition from employed to abroad, λea(t)

spacespace Independentspace Correlated
space PHspace MPHspace MPH

female space−0.314∗∗ space−0.377∗∗ space−0.382∗∗
self-employed space−0.781∗∗ space−0.976∗∗ space−1.118∗∗
income < 1000 space 0.692∗∗ space 0.917∗∗ space 0.971∗∗

income 1000–2000 space 0.155∗∗ space 0.206∗∗ space 0.237∗∗

income 3000–4000 space 0.178∗∗ space 0.182∗∗ space 0.174∗∗

income 4000–5000 space 0.152∗∗ space 0.169∗∗ space 0.163∗∗

income 5000–6000 space 0.306∗∗ space 0.321∗∗ space 0.334∗∗

income > 6000 space 0.319∗∗ space 0.349∗∗ space 0.376∗∗

married space−0.147∗∗ space−0.175∗∗ space−0.220∗∗
divorced space−0.297∗∗ space−0.383∗∗ space−0.427∗∗
repeated entry space 0.382∗∗ space−0.388∗∗ space−0.346∗∗
repeated unemployment space−0.376∗∗ space−0.303∗ space−0.419∗∗
Unemployment rate at entryspace 0.101∗∗ space 0.108∗∗ space 0.107∗∗

Unemployment rate space 0.060∗∗ space 0.039∗∗ space 0.040∗∗

α2 (6–12 months) space 0.641∗∗ space 0.792∗∗ space 0.848∗∗

α3 (12–18 months) space 0.694∗∗ space 0.945∗∗ space 1.036∗∗

α4 (18–24 months) space 0.834∗∗ space 1.151∗∗ space 1.269∗∗

α5 (24–30 months) space 0.648∗∗ space 1.032∗∗ space 1.175∗∗

α6 (30–36 months) space 0.750∗∗ space 1.198∗∗ space 1.363∗∗

α7 (36–42 months) space 0.417∗∗ space 0.924∗∗ space 1.112∗∗

α8 (42–48 months) space 0.480∗ space 1.038∗∗ space 1.248∗∗

α9 (48–54 months) space 0.352∗∗ space 0.966∗∗ space 1.200∗∗

α10 (54–60 months) space 0.263∗∗ space 0.921∗∗ space 1.180∗

α11 (> 60 months) space−0.095∗ space 0.669∗∗ space 0.987∗

constant (β0) space−6.118∗∗ space−5.937∗∗ space−5.850∗∗

Source: Statistics Netherlands, based on own calculations.

The estimated duration dependence and covariate effects of λea(t) are reported in
Table 4. As expected, ignoring frailty biases the hazard of leaving the country towards

effects of the MPH in a multistate model with uncorrelated frailties. Bijwaard and Wahba (2014) estimate and
discuss an extension of the multistate model of this paper in which the wage earned while employed is also
correlated with the transition rates.
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negative duration dependence. According to the PH model, the hazard of leaving the
country from a state of employment five years after entry, α11, has returned to the level
of the hazard in the first six months, while according to the MPH model the hazard is
then almost twice as high and according to the correlated MPH model, even 2.7 times
as high. Thus, in the model without frailty, the migrants seem to become less prone to
leave the longer they are in the country, while in the models with frailty this is much less
the case. Allowing for correlation among all the three competing frailties starting in the
employed state; employed to abroad, vea, employed to unemployed, veu, and employed
to non-participation, ven, increases the hazard duration dependence, the α’s, of leaving
even more.

The estimated duration dependence implies that the intensity of leaving increases with
the duration of employment up till 3 years. After 3 years of employment in the host
country, the intensity to leave slightly decreases. Including frailty has for some covariates
a substantial effect. The effect of repeated entry even changes sign when allowing for
frailty. Most covariate effects become more pronounced after allowing for frailty.5

Table 5 shows the comparison of the models. Of course, extending the parameter
space of a model can never decrease the likelihood. We therefore include the AIC and
BIC, which both penalize the number of included parameters. The results clearly show
that the multistate model has many parameters: 786 using a PH model, 810 using an MPH
model and 814 using a correlated MPH model. We can conclude that the correlated MPH
model is the preferred model, because it has the lowest AIC and, except for the transition
from abroad, the lowest BIC.

5 We also carried out formal tests on equivalence of the parameters in the PH versus MPH model and on the
equivalence of the parameters in the MPH versus the correlated MPH model. From these tests we can conclude
that allowing for frailty significantly, on a 5%-level, changes the covariate effects and the duration dependence.
Further allowing for correlation among the frailties only significantly changes the duration dependence.
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Table 5: Model comparison

# of parameters log-likelihood AIC BIC
From Employed
PH 249 –359860 720218 722641
MPH 255 –359538 719586 722066
cMPHa 256 –359252 719016 721506
From Unemployed
PH 165 –37427 75183 76402
MPH 171 –37310 74962 76224
cMPHa 172 –37290 74925 76195
From Non-participation
PH 183 –205288 410942 412579
MPH 189 –199903 400184 401875
cMPHa 190 –199724 399829 401528
From Abroad
PH 189 –25474 51326 52975
MPH 195 –25465 51321 53023
cMPHa 196 –25459 51311 53021

Notes: a Correlated MPH.

Another test on the MPH and correlated MPH models is to check the significance
of the variance and the correlation. For both the uncorrelated and the correlated frailty
model we find that the frailty variance is significant on a 5%-level. In the correlated
model we also find significant positive correlation between the three competing frailties
from the employed state, see Table 6.6 This implies that employed migrants who are more
prone to become unemployed or non-participating are also more prone to leave. For each
origin state we also tested whether the α’s, the factor loadings, of each factor are equal.
When the factor loadings are equal it implies that a shared frailty model, which restricts
the correlation to one, is sufficient. However, for all four origin states, we reject this
hypothesis.

6 These correlations are derived from the 2 factor loading model and the standard errors are calculated using
the delta method.
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Table 6: Correlation between the unobserved heterogeneity terms

veu ven vue vun

veu –
ven 0.999∗∗ –
vea 0.940∗∗ 0.939∗∗

vue –
vun −0.997∗∗ –
vua −0.470∗∗ 0.539∗

vne vnu vae vau

vne –
vnu 0.996∗∗ –
vna −0.685∗∗ −0.735∗∗
vae –
vau 0.994∗∗

van 0.312∗ 0.214∗

Notes: ∗p < 0.05 and ∗∗p < 0.01.

These results indicate that for these data of recent labour migrants to the Netherlands
it is important to include frailties and to allow these frailties to be correlated. More details
on the data and on other analyses using these data on return behaviour and labour mar-
ket transitions can be found in Bijwaard (2010), Bijwaard (2009), Bijwaard and Wahba
(2014) and Bijwaard, Schluter, and Wahba (2014).

5. Identification issues in multistate frailty models

Associated with frailty models is a general identification problem of the logical possibil-
ity of decomposing the individual contributions to the average survival probability of the
baseline duration dependence, the unobserved frailty, and the observed characteristics,
given the observed data. Identifiability refers to the ability to uniquely estimate the pa-
rameters of the duration dependence, the regression function and the frailty distribution.
More specifically, if the proportional hazard model were not identified, then it would be
logically impossible to separate the individual contributions of duration dependence and
frailty. In the econometric literature, the case of the univariate MPH model has been in-
vestigated in detail. Elbers and Ridder (1982) and Heckman and Singer (1984b) have
established the identification of the MPH model under certain conditions, for an overview
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see Van den Berg (2001). The most important assumptions here are that the frailty has a
finite mean and we have some exogenous variation in the observed characteristics. Ridder
and Woutersen (2003) show that bounding the duration dependence hazard away from 0
and ∞ at the start is also sufficient for nonparametric identification of the MPH model,
and with this assumption the finite mean assumption can be discarded.

Honoré (1993) shows that both the frailty distribution and the duration dependence are
identified with multivariate event history data under much weaker assumptions. All shared
frailty models are identified without additional information, such as observed covariates
or parametric assumptions about the duration dependence. Furthermore, the duration
dependence may depend on observed covariates in an unspecified way, and the frailty
and the observed covariates may be dependent. This identifiability property holds for a
broader class of frailty models, including correlated frailty models.

A caveat of multistate data is that such data is more sensitive to censoring. With
univariate event history data, many types of censoring can be captured by standard adjust-
ments to the likelihood function, see Andersen et al. (1993) and Klein and Moeschberger
(2003). With sequential events, either recurrent or from different types, one has to be
more careful. Consider two consecutive events with time t1 and t2, and where the data
are subject to right-censoring at a fixed time after the starting point or the first event. Then
the moment at which t2 is right-censored is not independent from t2 itself. For example,
individuals with a large value of frailty will, on average, have a short time until the first
event. As a result the time until the second event will start relatively early. This implies
that the time until the second event will often be censored after a relatively longer period
(or not censored at all). Thus, t2 and its censoring probability are both affected by frailty.
It may also happen that the process or some of the processes are not observed from the
origin. With left-censoring, not to be confused with left-truncation, the analysis is more
complicated, see Heckman and Singer (1984a) and Commenges (2002). In a Markov
multistate model, defined in the time since the start of the process, in which censoring
is independent of previous events and uses the same time scale, the censoring issues are
similar to censoring issues in univariate event history models, see Andersen et al. (1993)
and Aalen, Borgan, and Gjessing (2008).

A cautionary note should be given that for all these situations, identification is only
possible when the model is a correctly specified mixed proportional hazards model. It
is impossible to distinguish between a misspecified proportional hazard model and a
correctly specified mixed proportional hazards model, see Putter and van Houwelingen
(2011) for a discussion.
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6. Summary and concluding remarks

This article has provided an overview of multistate event history models with frailty, with
an emphasis on semi-Markov multistate models with a mixed proportional hazard struc-
ture. The literature on this subject is continuing and growing, and with the increased
computer power the complexity of the models will not discourage researchers from using
them. We have shown that ignoring frailty can have a large impact on the parameters
of interest for the transition hazards, the duration dependence and the effect of observed
covariates on the hazard. We discuss how different correlation structures of the frailties
in a multistate model can be achieved.

Obviously, I did not intend to cover exhaustively all aspects of multistate frailty mod-
els. Many issues we did not address receive ample attention in the literature. An important
observation is that the literature is highly segmented into mathematical research, biostatis-
tical research, econometric research and demographic research. Although different terms
are used, the problems addressed are similar, and the solutions are often very similar
too. I advocate looking beyond the borders of your own research discipline to grasp the
knowledge of the other fields.
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