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Formal Relationship 24

The force of mortality by life lived is the force of increment by life left
in stationary populations

Tim Riffe1

Abstract

BACKGROUND
The age distribution and remaining lifespan distribution are identical in stationary popu-
lations. The life table survival function is proportional to the age distribution in stationary
populations.

OBJECTIVE
We provide an alternative interpretation of the life table when viewed by remaining years
of life.

CONCLUSIONS
The functions describing the mortality of birth cohorts over age are identical to the func-
tions describing the growth of death cohorts as time to death decreases in stationary pop-
ulations.

1. Relationship

Age can be defined as chronological, a (time since birth), or thanatological, y (time until
death). In a stationary population, decrement over chronological age, as described by
the life table, is identical to increment over thanatological age. Define the chronological
force of mortality, µ(a), and the thanatological force of increment, µ?(y). We have:

(1) µ(a) = µ?(y) for a = y .
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2. Proof

Chronological age structure equals thanatological age structure in a stationary population
(Brouard 1989; Vaupel 2009):

(2) c(a) = g(a) ,

where c(a) is the stable chronological age structure expressed as a proportion, and g(a)
is the proportion of the population with a remaining years of life. Using a to index
chronological age and y to index thanatological age (time left until death), equation (2) is
the same as:

(3) c(a) = c?(y) for a = y ,

where c?(y) refers to the stable thanatological age structure. c(a) is proportional to the
survival function, l(a), which means that c?(y) is proportional to some thanatological
function, l?(y), a stationary thanatological cumulative increment function. To untangle
how this is so, it helps to be explicit about what l(a) represents. A birth cohort is a group
of individuals that are born at the same point in time and experience attrition over age
until extinction, as described by l(a). l(a) is also the sum of all deaths to the birth cohort
at ages greater than a, and can be thought of as the de-accumulation of the stock of future
deaths over age.

(4) l(a) =

∫ ω−a

0

f(a+ t) dt ,

where f(a) is the life table density function, often denoted by d(a). f(a) gives the
probability that a member of the birth cohort born in year t will die in the year t + a.
Since t + a refers to the future, let us switch to index y, for thanatological age. Under
stationarity, f(y) is also the probability at birth that an individual born y years ago will
die in present year t. The deaths that occur together in year t comprise a death cohort.
In year t − 1, l(0) · f(1) births increment to the year t death cohort in the stationary
population. Death cohorts grow monotonically in this way, starting with a few members
that will enjoy the maximum attainable lifespan, y = ω, i.e., born ω years ago in year
t − ω and then expiring in year t. New births accumulate into a given death cohort as
y decreases from ω toward thanatological age 0. From the vantage point of year t, we
define the year t + y death cohort (y years in the future), l?(y) as the members born up
to year t that will die in exactly y years.

(5) l?(y) =

∫ 0

−(ω−y)
f(y − t) dt .
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Extinction of the death cohort is simultaneous upon reaching thanatological age 0, y years
in the future. Equation (5) is equal to (4):

l?(y) =

∫ 0

−(ω−y)
f(y − t) dt =

∫ −y
−ω

f(−t) dt =
∫ ω

y

f(t) dt = l(y) .(6)

The life table deaths distribution is, from this perspective, a distribution of the births
to a death cohort, when read from the highest to the lowest chronological ages. The rate
at which new births accumulate to death cohorts over thanatological age, µ?(y), is given
by

µ?(y) =
−l?′

(y)

l?(y)
,(7)

and since l(a) = l?(y) for a = y,

=
−l′(a)
l(a)

= µ(a) .(8)

The rate of birth accumulation into death cohorts over thanatological age, µ?(y), is
equal to the rate of attrition of birth cohorts over chronological age, µ(a) in stationary
populations. The stock of deaths in the future for chronological age a, l(a), is symmetri-
cally a description of births in the past, when structured by thanatological age, l?(y). The
remaining life table columns are subject to similar reinterpretations when viewed under
thanatological age.

3. History and related results

The main contribution of this relationship is to point out the symmetry of chronological
decrement and thanatological renewal processes in the case of stationary populations. The
term “thanatological age” has not previously appeared in the literature, and was coined by
Kenneth Wachter sometime prior to 2001. Thanatos was the Greek god of death, which
is used as the reference point for age from this perspective. Explicit decompositions
of chronological age groups into remaining lifespan classes is, to our knowledge, only
found in Brouard (1986), who redistributed population pyramids by remaining years of
life, and Miller (2001), who examined medicare expenditure as a function of time until
death using the same lifetable identities. Equivalence of chronological and thanatological
age structures in stationarity, also known as Carey’s equality, is proven by Brouard (1989)
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and again in Vaupel (2009)2. This latter paper and Goldstein (2012) describe more of the
lineage of the result presented here.

The estimation of remaining lifespan has motivated demography since the invention
of the life table, but this notion is typically dealt with as a mean (expectancy). Age-
specific remaining lifespan distributions are not often used to explicitly decompose de-
mographic quantities, such as population counts. Using the above identities, one may
estimate the total population with y remaining years of life, P (y) directly

(9) P (y) =

∫ ∞
0

P (a)µ(a+ y)
l(a+ y)

l(a)
da ,

as Brouard (1986) did, and so approximate a population’s thanatological age structure
according to some mortality assumptions. This result differs from that of the more com-
mon approach of summing the population within age classes bounded by some values
interpolated along the remaining life expectancy function (e.g., Sanderson and Scherbov
2005, 2007, 2010, who follow the line of Hersch 1944 and Ryder 1975).

In the present case of a stationary population, one decomposes back to birth cohorts
in much the same way as is evident from (9). The probability of a member of death cohort
y′ being born a′ years ago is equal to the probability that a member of birth cohort a will
die y years in the future when a = y′ and y = a′.

f(y|a) = f(a′|y′) for a = y′ , y = a′(10)

= µ(a+ y)
l(a+ y)

l(a)
(11)

= µ?(a′ + y′)
l?(a′ + y′)

l?(y′)
(12)

Equation (12) seems redundant, but is less obvious when put into words: The proba-
bility of dying y years in the future given survival to chronological age a is the probability
of surviving to chronological age a+y given survival to age a times the force of mortality
at age a + y, µ(a + y). Viewed thanatologically, the probability of having been born a′

years in the past given that one has y′ remaining years of life is equal to the probability
of someone in the y′ death cohort being born more than a′ years ago given that they have
already been born times the force of increment at thanatological age a′ + y′, µ?(a′ + y′).

Similarly, taking f(y|a) as the conditional density of remaining lifespans, one may
calculate the variance of age-specific remaining life spans (thanatological age), where
e(a) is remaining life expectancy at age a:

2 Vaupel (2009) added detail to the more summary result reported in Goldstein (2009), which showed that the
mean (or total) remaining lifespan is equal to mean (or total) life lived in the stationary population.
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e(a) =

∫∞
0
l(a+ y) dy

l(a)
(13)

The variance of y given survival to age a is

σ2(y|a) =
∫ ∞
0

(e(a)− y)2 f(y|a) dy ,(14)

and this function will have some non-monotonic pattern over age (in human populations)
that remains to be explored.3 In the reliability literature, σ2(y|a) is called the variance
residual life function (VRLF), and its properties have been described for various common
distributions (see for example Gupta 2006).

The thanatological age perspective only offers the kind of profile symmetry presented
in this paper for the theoretical case of stationary populations. For changing populations,
the chronological and thanatological age perspectives typically offer different profiles of
the same phenomena, due to changes in lifespan distributions and fluctuations in the birth
flow, and therefore offer complementary information on population structure.

4. Applications

Thanatological age structure can be applied to stable populations (subject to a growth rate,
r), though we leave the description of a thanatological renewal model for future work.
Thanatological age equates individuals that share a common terminal state rather than a
common origin state. In the present relationship, this is the absorbing state of death, but
the method generalizes to any terminal state or lifecourse transition that can be modeled
using lifetable techniques. Potential area applications that may gain insights using such
remaining-time methods include morbidity, disability, late-life savings and investment
behavior, or perhaps time to birth, menopause, retirement, or graduation. Glacial or open
ice pack, old growth forest, and prison populations are other examples of aggregates for
which remaining time structure is inherently of equal or greater interest than time passed.
Populations of fixed or controlled size, or where entries are largely a function of exits
are also prime candidates for analysis using a variant of thanatological age. Examples of
such populations include professional athletes in leagues, tenured professors, company
directors, and vehicle fleets.

As a specific example, the question of morbidity compression has often been posed
as a matter of comparing age of onset with remaining life expectancy (e.g., Fries 2002,
2003).4 In retrospect (within death cohorts), one can analytically separate between

3 This definiton works out to be the same as Chiang (1984), Chapter 10, Equation 6.10.
4 In the health literature, one often sees e(65) compared with average disability levels above age 65.
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changes in lifespan and changes in morbidity as a function of time until death. Cross-
tabulations of morbidity by chronological and thanatological age for two birth cohorts
would allow the researcher to estimate changes in the morbidity profile over time, free
from distortion due to changes in the lifespan distribution, and so directly settle the ques-
tion of morbidity compression.
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