
 
 
 

DEMOGRAPHIC RESEARCH 
 
VOLUME 32, ARTICLE 33, PAGES 915−948 
PUBLISHED 12 MAY 2015 
http://www.demographic-research.org/Volumes/Vol32/33/ 
DOI: 10.4054/DemRes.2015.32.33 
 
Research Article 

 
Smoothing internal migration age profiles for 
comparative research 

 
Aude Bernard 
 
Martin Bell 
 
 
 
 
 
 
 
 
©2015 Aude Bernard & Martin Bell. 
 
This open-access work is published under the terms of the Creative Commons 
Attribution NonCommercial License 2.0 Germany, which permits use, 
reproduction & distribution in  any medium for non-commercial purposes,  
provided the original author(s) and source are given credit.  
See http:// creativecommons.org/licenses/by-nc/2.0/de/ 



Table of Contents 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

1 Introduction 916 
   
2 Model migration schedules 918 
   
3 Alternative non-parametric models 920 
3.1 Cubic b-spline 920 
3.2 Kernel regression 921 
   
4 Data and methods 922 
   
5 Evaluation of smoothing methods 925 
5.1 Standard MMS versus cubic spline and kernel regression 925 
5.2 Student MMS versus cubic spline and kernel regression 934 
   
6 Research application 936 
6.1 Comparison across countries 936 
6.2 Comparison over time 939 
   
7 Conclusion 941 
   
 References 944 
   



Demographic Research: Volume 32, Article 33 
Research Article 

http://www.demographic-research.org  915 

Smoothing internal migration age profiles for comparative research 

Aude Bernard1 

Martin Bell2 

Abstract 

BACKGROUND 
Age patterns are a key dimension to compare migration between countries and over 
time. Comparative metrics can be reliably computed only if data capture the underlying 
age distribution of migration. Model schedules, the prevailing smoothing method, fit a 
composite exponential function, but are sensitive to function selection and initial 
parameter setting. Although non-parametric alternatives exist, their performance is yet 
to be established. 

 

OBJECTIVE 
We compare cubic splines and kernel regressions against model schedules by assessing 
which method provides an accurate representation of the age profile and best performs 
on metrics for comparing aggregate age patterns. 

 

METHOD 
We use full population microdata for Chile to perform 1,000 Monte-Carlo simulations 
for nine sample sizes and two spatial scales. We use residual and graphic analysis to 
assess model performance on the age and intensity at which migration peaks and the 
evolution of migration age patterns.  

 

RESULTS 
Model schedules generate a better fit when (1) the expected distribution of the age 
profile is known a priori, (2) the pre-determined shape of the model schedule 
adequately describes the true age distribution, and (3) the component curves and initial 
parameter values can be correctly set. When any of these conditions is not met, kernel 
regressions and cubic splines offer more reliable alternatives. 

 

CONCLUSION 
Smoothing models should be selected according to research aims, age profile 
characteristics, and sample size. Kernel regressions and cubic splines enable a precise 
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representation of aggregate migration age profiles for most sample sizes, without 
requiring parameter setting or imposing a pre-determined distribution, and therefore 
facilitate objective comparison. 

 
 
 

1. Introduction 

Internal migration is an age-selective process, with young adults being the most mobile 
group. Migration intensities typically decrease from birth to the teenage years before 
peaking at young adult ages. They then decline steadily with increasing age, sometimes 
rising again around the age of retirement. Rogers and Castro (1981) have demonstrated 
that this broad age profile is replicated across a number of countries and at various 
spatial scales. Subsequent analysts have proposed summary indicators of the age profile 
that can be used to make comparisons across countries and over time (Bell et al. 2002; 
Bernard et al. 2014a) and to examine the association of the migration age profiles with 
other demographic processes such as life-course age patterns (Bernard et al. 2014b). 

Since its introduction by Rogers et al. (1978), the model migration schedule has 
been widely adopted as the main method to smooth migration age profiles. As a 
composite exponential function, the model schedule constrains migration to follow a 
prototypical shape founded on the theoretical link between migration and life-course 
transitions. While model schedules are based on accumulated evidence primarily from 
contemporary Europe and the United States, they constrain migration age patterns to 
follow a standard predicted shape that may not describe migration age patterns 
accurately in other regions or in historical populations. Furthermore, model schedules 
face limitations related to their estimation (Bernard et al. 2014a), including the 
difficulty of selecting an optimal set of component curves specific to each age profile 
(Rees et al. 2000), the instability of parameter estimates (Congdon 1993), and the 
sensitivity of estimates to initial parameter values (Rogers et al. 2005). Researchers 
have therefore to employ a trial-and-error approach to decide on the set of component 
curves and initial parameter values that will yield the best fit, which directly influences 
the shape of the estimated curve and the value of the estimated parameters. This, in 
turn, undermines the reliability of these parameters for comparative analysis. 

Demographers have recourse to a range of other statistical methods for data 
smoothing, including non-parametric models such as cubic splines and kernel 
regressions, which have been widely used to smooth fertility (Moguerza et al. 2010) 
and mortality age profiles (Peristera and Kostaki 2005). Non-parametric models have 
the advantage of avoiding the imposition of a pre-determined shape (Pagan and Ullah 
1999) and are also easier to implement using automated processes free of sensitivity to 
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subjective assumptions (Wand and Jones 1995). As a result of the widespread adoption 
of model schedules, there appears to have been no previous attempt to systematically 
assess the different methods available to smooth migration age profiles. 

The age and intensity at which migration peaks have widely been used to 
characterise and compare migration age patterns across countries, either alongside other 
metrics (Rogers and Castro 1981) or as the main or sole summary measures (Bell et al. 
2002; Bell and Muhidin 2009; Bernard et al. 2014a; Bracken and Bates 1983; Rees et 
al. 2000). The choice of a particular model and its specification affect the shape of the 
fitted curve, which in turn influences estimates of the age and intensity at peak. 
Inappropriate model selection or incorrect model misspecifications are therefore likely 
to result in incorrect inferences when comparing countries on these measures or when 
examining the evolution of migration age patterns within a country. Comparative 
analysis of migration calls for smoothing methods that preserve the overall distribution 
shape of the age profile and retain discriminating features. 

This paper seeks to evaluate and compare the strengths and limitations of cubic 
splines, kernel regressions, and model schedules for smoothing migration age profiles at 
a range of sample sizes. Our particular concern is to assess the performance of these 
three models on the key indicators used for comparing aggregate migration age patterns 
across countries and over time, namely the age at which migration peaks and the 
intensity at the peak (Bernard et al. 2014a). This work forms part of the IMAGE project 
(Internal Migration Around the GlobE, http://www.gpem.uq.edu.au/image), an 
international programme of collaborative research. Its aim is to develop and implement 
a set of rigorous statistical indicators to measure several dimensions of internal 
migration, including age, which can be used to make comparisons between countries 
and over time. The paper is organised as follows. Section 2 reviews model migration 
schedules and describes the issues associated with their estimation. Section 3 presents 
cubic splines and kernel regressions and identifies their strengths and limitations. 
Section 4 describes the procedure to estimate the three models and presents the data. 
We focus on aggregate migration, which captures all moves within a country, 
irrespective of distance or direction, as the most appropriate basis for cross-national 
comparisons (Bell et al. 2002). Using full population microdata from the 2002 Chilean 
census, Section 5 performs 1,000 Monte-Carlo simulations for nine sample sizes and 
two spatial scales, and generates 18,000 random samples. We then evaluate the 
goodness-of-fit of each model based on residual analysis and graphical validation. In 
section 6, we illustrate the practical significance of using different smoothing 
techniques by examining the performance of each model on the age and intensity at 
which migration peaks in Argentina, Chile, France, and Greece and on the evolution of 
migration age patterns in Chile since the 1980s. Section 7 concludes the paper and 
discusses other possible research applications. 
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2. Model migration schedules 

Rogers et al. (1978) were the first to draw on the persistent shape of migration age 
profiles to establish a mathematical model that summarises and codifies such 
regularities. Denoted a model migration schedule (MMS), this composite exponential 
function comprises a childhood curve, a labour force curve, a constant, and in some 
instances a retirement curve. The reduced form of the model schedule is the sum of 
three component functions and comprises seven parameters. Algebraically, the 
migration intensity 𝑚 at age 𝑥 is expressed as:  

𝑚�(𝑥) = 𝑎1 exp(−∝1 𝑥) + 𝑎2exp{−∝2 (𝑥 − 𝜇2) − exp[−λ2(𝑥 − 𝜇2)]} +  𝑐 (1) 

the parameters of which are conventionally defined as follows:  

a1 = height of the childhood curve 
α1 = rate of descent of the childhood curve 
a2 = height of the labour force curve 
λ2 = rate of ascent of the labour force curve 
α2 = rate of descent of the labour force curve 
µ2 = position of the labour force curve on the age axis  
c = constant 

The first term of the model schedule is associated with children and teenagers. It is 
a negative exponential function starting from an initial maximum value of a1, and then 
declining at a rate of α1 thereafter. The second term is a double exponential function 
with four parameters that describe the level, shape, and position of the labour force 
curve. The height of the curve is defined by a2 and the location of the curve on the age 
axis is captured by µ2. The rates of ascent and descent are respectively characterised by 
λ2 and α2. Finally, model schedules include a constant c, which defines a base level of 
migration across all ages. Figure 1 illustrates the three constituent curves of the reduced 
form of the model migration schedule. A retirement curve can be added to the reduced 
form of model schedule, typically reflecting out-migration flows from metropolitan 
areas to warm, coastal, and high-amenity areas (Rogers 1988). This model was later 
extended through the addition of an elderly upward slope (Rogers and Watkins 1987) 
and a student curve (Wilson 2010).  
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Figure 1: Reduced form of the model migration schedule and its component 
curves  

 
 
Source: Based on Rogers and Castro, 1981 

 
In a recent review of model migration schedules, Bernard et al. (2014a) identified 

two main limitations related to the estimation of model schedules. The first limitation 
bears upon the difficulty of selecting the appropriate number of component curves. A 
total of eight different combinations of component curve are possible depending on the 
functions included in the model, and selecting an appropriate set of constituent curves 
requires a priori knowledge of the expected age distribution. The problem is 
exacerbated by the fact that the choice of component curves included in the model 
affects the values of the parameters estimated, and hence the shape of the curve. The 
second limitation arises from the sensitivity of the fitted curve to the initial parameter 
values. Fitting model schedules to observed age-specific migration intensities requires 
non-linear curve fitting programs (Rogers and Little 1994; Rogers and Raymer 1999; 
Rogers et al. 2010; Wilson 2010). The algorithm is seeded with an initial set of user-
specified parameters and produces a revised set of ‘optimum’ parameter estimates by 
iteratively substituting alternative values until pre-determined convergence criteria are 
met. Changes in the initial parameter values can result in widely varying fitted curves 
(Rogers et al. 2005). Limited guidelines exist around how to choose a ‘good’ set of 
initial parameter values and these are usually drawn from previous studies (Congdon 
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2008). However, typical values are only available for a handful of countries, principally 
the US and the UK, and no guidelines exist on how to best select initial values. 
Researchers have to make informed decisions, employing trial-and-error approaches to 
decide which component curves and which initial parameter values will yield the best 
fit. However, if the initial parameter values set by users significantly depart from the 
shape of the observed age profile, the residuals generated over many iterations may 
exceed an acceptable threshold for convergence, with the result that the model may fail 
to find a solution. 

 
 

3. Alternative non-parametric models  

3.1 Cubic b-spline 

Demographers were introduced to cubic splines by Shryock and Siegel (1975), and 
McNeil et al. (1977) popularised their use to interpolate and smooth demographic data. 
Since then, cubic splines have been widely used to interpolate migration data based on 
five-year age groupings (Rogers and Castro 1981; Rogers et al. 2010), and smooth 
migration data classified by single years of age (Castro and Rogers 1983). Compared 
with model schedules, cubic splines impose fewer restricitions on the shape of the 
regression curve. They are linear combinations of polynomial pieces of degree 3 
connected at knots, with continuous second derivatives. In this paper we have specified 
b-splines as they provide more stable estimates (Schoenberg 1969). For any given set of 
user-specified knots 𝑠, a b-spline can be expressed as: 

𝐵(𝑥; 𝑠1, … , 𝑠𝑘+2) = (𝑘 + 1)�� � �𝑠𝑚 − 𝑠𝑗�
1≤𝑚≤𝑘+2,𝑚≠𝑗

�

−1

𝑃𝑘(𝑥;
𝑘+2

𝑗=1

𝑠𝑗) (2) 

where 𝑘 is the degree of the polynomial, which is set to 3 for cubic splines, and where 
𝑃𝑘 can be expressed as: 

𝑃𝑘(𝑥; 𝑠) = �(𝑥 − 𝑠)𝑘, 𝑥 ≥ 𝑠
0, 𝑥 < 𝑠 

 (3) 

Cubic splines are likely to deliver a better fit than model schedules because they 
use local information more intensively and may have a higher number of parameters. 
They are, however, highly sensitive to the number of knots and their location (Carter 
and Signorino 2010). The number of knots determines the degree of smoothness of the 
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curve, while their location establishes the points at which the relationship between age 
and migration may change significantly. Knots are usually selected by examination of 
two-dimensional scatter plots (Ruppert et al. 2003) and model fit criteria such as F-tests 
(Beck et al. 1998). Theoretical and empirical knowledge, such as the location of modes, 
can provide additional guidance for knot selection. Equidistant knots can be used but 
their small and discrete number allows only limited control over smoothness and fit. In 
applications to migration, the number of knots has generally been fixed and their 
locations distributed at five-year intervals (Rogers and Castro 1981). A trial-and-error 
approach to knot selection can improve the overall fit of the model, by ensuring that the 
regression curve captures the ages at which the relationship between age and migration 
changes. Adaptive data-driven methods for knot-selection have recently been proposed 
in the engineering literature (Biller and Farhrmeir 2001; Sharef et al. 2010), but remain 
computationally intensive.  

 
 

3.2 Kernel regression 

Kernel regression is a popular non-parametric model to estimate the conditional 
expectation of a random variable, without any distributional assumptions (Wand and 
Jones 1995). In fact, kernel regression has been used to smooth age-specific fertility 
rates (Moguerza et al. 2010) and mortality rates (Peristera and Kostaki 2005); however, 
it does not appear to have been applied to the task of smoothing migration data 
disaggregated by age. Computed between ages 5 to 90, a kernel regression estimates 
migration as a continuous function of age as follows:  

𝑚�(𝑥) =
∑ 𝜑 �𝑥 − 𝑎

ℎ �  𝑚𝑎
90
𝑎=5

∑ 𝜑 �𝑥 − 𝑎
ℎ � 90

𝑎=5

 (4) 

where 𝜑 is a normal density function. It is a decreasing function of |𝑥 − 𝑎|, so that it 
allocates more weight to the observed migration intensities close to age 𝑥  and less 
weight to observed migration intensities further from age 𝑥.  The choice of a 
bandwidth ℎ > 0, or smoothing parameter, is critical. Large bandwidths tend to reduce 
the variance by smoothing over a large number of data points but risk failing to capture 
essential features or even distorting the underlying structure of the distribution, while 
small bandwidths maintain greater nuance in the shape of the distribution but are less 
effective in reducing noise. In this paper we use the default ROT bandwidth selection in 
Stata’s lpoly function. The algorithm can be found in Stata User’s Guide (StataCorp 
2013). There is general agreement that the choice of kernel function is not critical for 
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the performance of the regression, but that the choice of bandwidth is (Marron and 
Nolan 1988). We use a Gaussian function as the reference distribution, as recommended 
by Härdle et al. (2004). For validation, we compared its performance against 
Epanechnikov and Quartic functions and found that it generates smaller sums of 
squared residuals. Differences in residuals between Gaussian, Epanechnikov, and 
Quartic functions are, however, minimal.  

 
 

4. Data and methods 

In applying a smoothing technique, researchers are seeking to reduce noise from sample 
variance while retaining the true underlying age pattern of migration (Goodall 1990). 
The task is particularly challenging with small samples, which can cause substantial 
irregularities. Thus we evaluate the performance of three estimators - model migration 
schedules, kernel regressions, and cubic splines – at a range of sample sizes. To that 
end, we use full population microdata from the 2002 Chilean census, which we take to 
represent the true age distribution of migration within Chile, and draw random samples 
with replacement of nine different sizes ranging from 25,000 to 10 million observations. 
To minimise noise and increase the reliability of the estimates, we use a Monte-Carlo 
simulation approach and repeat the above process 1,000 times at two spatial scales, 
reflecting migration between municipalities and between provinces, and generate a total 
of 18,000 samples. 

Migration data in Chile are recorded as transitions based on comparing place of 
residence at the time of the census to that five years earlier. Observed migration data are 
therefore available only for individuals aged five and over on census night 3 . We 
compute aggregate migration between 335 municipalities and between 54 provinces. 
Aggregate migration refers to all moves, irrespective of distance or direction, and is 
widely regarded as the most appropriate basis for cross-national comparisons (Bell et al. 
2002). Figure 2 represents the observed age profiles for the entire population aged 5 to 
90 years 4  drawn from the full population sample and from the first 10 randomly 
selected samples of size n=25,000, n= 250,000, and n=2 million.  

                                                           
3 Migration age patterns of children below age 5 could be indirectly estimated by using birthplace-specific 
population stock data of the 0-to-4-year olds (Rogers and Jordan 2004). In the case of Chile, this technique 
would require access to the municipality of birth of the 0-to-4-year olds, which the authors did not hold at the 
time of the analysis. In any event, the migration behaviour of the birth cohort is peripheral to our central focus 
in this paper, which is the cross-national comparison of migration using key parameters which capture 
migration among young adults. 
4 Single years above age 90 comprise less than 6,500 people in Chile, which is too low to ensure that each 
single year of age comprises enough observations to randomly select samples beyond age 90. 
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The full population sample shows that the shape of the curve follows the general 
age pattern of migration, characterised by a peak at young adult ages followed by a 
decline in migration intensities thereafter (Rogers and Castro 1981), and a slight 
increase late in life in response to moves to institutions (Rogers and Watkins 1987). The 
profile, however, departs from the standard migration age pattern in showing an 
increase in migration intensity in the late teenage years, suggesting the presence of 
movements for higher education, which are not captured by standard model migration 
schedules. Turning to Monte-Carlo simulations, using samples of n=25,000 does not 
reveal the presence of a student curve, but does show a marked increase in migration 
intensity at very old ages, probably caused by very small sample sizes at these ages. 
The student curve is distinguishable for samples with 250,000 observations or more and 
is most prominent for flows between municipalities.  

 
Figure 2: Five-year migration intensity by single year, selected sample sizes 
 Inter-municipal migration age profile Inter-provincial migration age profile 
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Figure 2: (Continued) 
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These results show that irregularities caused by small sample sizes can be 
problematic for the estimation of model migration schedules because there is no reliable 
basis on which to select an appropriate set of constituent curves and to set optimal 
initial parameter values. This is a very challenging task without a priori knowledge of 
the expected age distribution of migration. To illustrate common instances where 
researchers have limited information on a particular age profile, we first attempt to fit 
the Chilean data with standard model schedules, which include an upward elderly slope 
but no student curve, as described in Rogers and Watkins (1987). We denote this as the 
“standard MMS” and fit it using a version of the MATLAB program written by Rogers 
et al. (2010), amended to include an elderly slope. We compare its performance to cubic 
splines and kernel regressions fitted in Stata, which is more commonly used by 
demographers than MATLAB. To cover the whole age range we specify a cubic spline 
spanning 20 knots. We use one knot every three years between ages 15 and 30 to 
capture highly age-specific patterns at young adult ages, and one knot every five years 
at other ages. For kernel regressions we specify a Gaussian kernel function whose 
bandwidth is selected through an automated data-driven selection method according to 
Stata’s lpoly function (StataCorp 2013). The result is a bandwidth ranging from 1.71 to 
1.94 for migration between municipalities, and from 1.69 to 2.34 for migration between 

0
.0

5
.1

.1
5

.2
.2

5
.3

 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
 

0
.0

5
.1

.1
5

.2
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
 

0
.0

5
.1

.1
5

.2
.2

5
.3

 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
 

0
.0

5
.1

.1
5

.2
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
 



Demographic Research: Volume 32, Article 33 

http://www.demographic-research.org  925 

provinces. To take into account the increase in migration intensity in the early twenties 
observed in large samples we then add a student curve to the model migration schedule, 
which we denote “student MMS”. We do so for samples with at least 250,000 
observations, which is the sample size from which the presence of a student curve can 
be observed in Chile, as shown in Figure 2. Table 1 describes each model in summary 
form, indicates the degrees of freedom for estimations between ages 5 to 90, and 
specifies the implementation requirements of each model.  

 
Table 1: Model descriptions, degrees of freedom, and implementation 

requirements 

Model Description Degrees of 
Freedom Implementation 

Model 
Migration 
Schedule 

Standard MMS with four component 
curves as described in Rogers and 
Watkins (1987) 

9 
MATLAB program (Rogers et 
al. 2010) amended to include 
an upward elderly slope and a 
student curve for the student 
MMS. 
Users to specify component 
curves and set initial 
parameter values. 

Standard MMS extended to include a 
student curve as described in Wilson 
(2010) 

13 

    

Kernel 
Regression 

Gaussian-weighted average of rates 
at neighbouring ages as described in 
equation (4) 

16.0 to 
29.5* 

Stata (lpoly function). 
No user specification 
required. 

    

Cubic b-Spline 

Piecewise cubic function with 
continuous second derivatives and 
knots at fixed values as described in 
the text and in equation (2) 

18** 
Stata (bspline function). 
Users to specific the number 
and location of knots. 

 
*the effective number of parameters if given by the trace of the smoothing matrix  

𝐷𝐹(ℎ) = ∑ �𝜑(0) ∑ 𝜑 �𝑧−𝑎
ℎ
�90

𝑧=5� �90
𝑎=5  (Hastie and Tibshirani 1990) 

** While the b-spline syntax requires the inclusion of end-point knots at ages 5 and 90, they do not add to the number of parameters 

 
 

5. Evaluation of smoothing methods 

5.1 Standard MMS versus cubic spline and kernel regression 

To estimate the performance of each smoother, we computed residuals at age 𝑎 as the 
difference between the true migration intensity for the full population (𝑚𝑎) and the 
fitted migration intensity (𝑚�𝑎𝑠) at age 𝑎  for sample size 𝑠 . For each smoothed age 
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profile we calculated the sum of squared residuals (SSR) across ages 5 to 90. We then 
computed average SSR (𝐴𝑣𝑔𝑆𝑆𝑅) across the 1,000 random population samples for each 
model and sample size, as shown in equation (5): 

𝐴𝑣𝑔𝑆𝑆𝑅 =
1
𝑆
��  (𝑚�𝑎𝑠 − 𝑚𝑎)2

𝑎𝑠

 (5) 

We then decomposed 𝐴𝑣𝑔𝑆𝑆𝑅  into squared bias and variance components for each 
method and sample size as follows:  

𝐴𝑣𝑔𝑆𝑆𝑅 =
1
𝑆
��  (𝑚�𝑎𝑠 − 𝑚𝑎)2

𝑎𝑠

 

                                              =
1
𝑆
��  [(𝑚�𝑎𝑠 − 𝑚�𝑎) + (𝑚�𝑎 − 𝑚𝑎)]2

𝑎𝑠

 

                                                      = ��
1
𝑠

 �(𝑚�𝑎𝑠 − 𝑚�𝑎)2
𝑠

�
𝑎

+ �(𝑚�𝑎 − 𝑚𝑎)2
𝑎

 

                                          = 𝐴𝑣𝑔𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝐴𝑣𝑔 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐵𝑖𝑎𝑠 

(6) 

 
where 𝑚�𝑎 = 1

𝑆
∑ 𝑚�𝑎𝑠𝑎  is the average fitted rate at age 𝑎. 

Figures 3a and 3b represent 𝐴𝑣𝑔𝑆𝑆𝑅  by model and sample size for migration 
between municipalities and provinces. Because very small samples are skewed toward 
much larger 𝐴𝑣𝑔𝑆𝑆𝑅, the results are displayed on a logarithmic scale. They show that 
for all models 𝐴𝑣𝑔𝑆𝑆𝑅  decreases with increasing sample size until n=500,000, and 
stabilises thereafter. The reduction in residuals is less pronounced for standard MMSs, 
which generate consistently high 𝐴𝑣𝑔𝑆𝑆𝑅. While the performance of standard MMSs is 
comparable to that of kernel regressions for very small samples, it delivers the worst fit 
for samples greater than 250,000 observations. This is because it does not separately 
identify the peak that occurs at the time of entry into higher education. It constrains 
migration intensity to follow constant rates of ascent and descent around the peak, and 
therefore locates the estimated peak value between the student peak and the labour 
force peak. This can be seen in Figure 4, which displays average fitted inter-provincial 
migration age profiles for selected sample sizes.  
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Figure 3a: Log of 𝑨𝒗𝒈𝑺𝑺𝑹 by sample size, migration between municipalities 

 
Figure 3b: Log of 𝑨𝒗𝒈𝑺𝑺𝑹 by sample size, migration between provinces 
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Figure 4: Inter-provincial migration age profiles by model, selected sample 
sizes 
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Cubic splines generate 𝐴𝑣𝑔𝑆𝑆𝑅  equivalent to kernel regressions for samples 

greater than n=250,000, but provide the worst fit of all models for smaller samples. 
Poor fit for very small sample sizes is due to the high sensitivity of cubic splines to knot 
location (Carter and Signorino 2010). Figure 4 shows that, while cubic splines provide a 
good fit for n=250,000 and n=2 million samples, they result in a poor fit for n=25,000 
samples, where knots appear to capture noise rather than the true distribution beyond 
age 80. The interquartile range of fitted values is significantly larger than that of other 
models at older ages. 
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To further explore model performance, we decomposed 𝑆𝑆𝑅 into squared bias and 
variance components, as defined in equation (6). Results are shown in Tables 2a and 2b 
and indicate that squared bias varies very little with sample size, whereas variance 
increases as the number of observations diminishes. This is particularly true for cubic 
splines, which exhibit significantly higher variance for samples smaller than n=250,000. 
This suggests that they should not be used to smooth very noisy samples. Turning to 
squared bias, cubic splines generate the smallest average squared bias for all sample 
sizes, while standard MMSs consistently exhibit the highest values. These findings 
suggest that kernel regressions may provide a good compromise between squared bias 
and variance for most sample sizes, and thus provide consistently more reliable 
estimates. 

 
Table 2a: Decomposition of 𝑨𝒗𝒈𝑺𝑺𝑹 into squared bias and variance 

components, migration between municipalities  

 
Sample size kernel regression cubic spline standard MMS 

AvgSSR 25,000 120 221 111 
*104 50,000 69 111 64 
  100,000 42 61 47 
  250,000 26 31 36 
  500,000 20 22 32 
  1,000,000 17 16 30 
  2,000,000 16 14 29 
  5,000,000 15 12 29 
  10,000,000 15 12 29 
Average squared bias 25,000 20 15 35 
 *104 50,000 18 13 29 
  100,000 16 12 29 
  250,000 15 12 29 
  500,000 15 12 29 
  1,000,000 15 12 28 
  2,000,000 15 12 28 
  5,000,000 15 12 29 
  10,000,000 15 12 29 
Average variance  25,000 100 206 76 
*104 50,000 52 98 35 
  100,000 26 49 18 
  250,000 11 19 7 
  500,000 5 10 3 
  1,000,000 2 4 2 
  2,000,000 1 2 1 
  5,000,000 0 1 0 
  10,000,000 0 0 0 
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Table 2b: Decomposition of 𝑨𝒗𝒈𝑺𝑺𝑹 into squared bias and variance 
components, migration between provinces  

 
Sample size kernel regression cubic spline standard MMS 

AvgSSR   25,000  71 123 64 
 *104  50,000  42 62 38 
   100,000  28 36 28 
   250,000  19 20 22 
   500,000  15 15 20 
   1,000,000  14 12 19 
   2,000,000  13 11 18 
   5,000,000  12 10 18 
   10,000,000  12 10 18 
Average squared bias  25,000  17 11 17 
 *104  50,000  15 11 16 
   100,000  13 10 17 
   250,000  13 10 17 
   500,000  12 10 18 
   1,000,000  12 10 18 
   2,000,000  12 10 18 
   5,000,000  12 10 18 
   10,000,000  12 10 18 
Average variance   25,000  54 112 47 
 *104  50,000  27 52 22 
   100,000  14 26 11 
   250,000  6 10 5 
   500,000  3 5 2 
   1,000,000  1 3 1 
   2,000,000  1 1 0 
   5,000,000  0 0 0 
   10,000,000  0 0 0 

 
We now explore model performance by examining the age distribution of average 

residuals, using n=250,000 samples by way of illustration. Figures 5a and 5b show a 
substantial increase in residuals at young adult ages for both inter-municipal and inter-
provincial migration. A rapid increase in migration intensity can result in a disjuncture 
in the rate plots (Congdon 2008), and thus all models exhibit a rapid increase in 
residuals at ages 15 to 17, followed by a sharp decrease at ages 18 to 19, which 
correspond to the transition between the childhood and the labour force curves. Figure 4 
shows that the high-curvature portion of the migration age profile, in the late teens to 
the mid-twenties, has the biggest fitting problem for all smoothers, even for larger 
samples, but is especially problematic for kernel regressions. While kernel regressions 
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and cubic splines exhibit consistently low residuals beyond the early twenties, standard 
MMSs display persistently high residuals until the mid-thirties, because they do not 
separately identify the student peak and the labour force peak, and produce a poor fit at 
young adult ages for all sample sizes. 

 
Figure 5a: Age distribution of average residuals, inter-municipal migration 

 
 

Figure 5b: Age distribution of average residuals, inter-provincial migration 
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To further examine the age patterns of bias, we analysed first-order autocorrelation 
of average residuals by computing Pearson correlation coefficients between average 
residuals at age 𝑎 and age 𝑎 + 1 as defined in equation (7).  

𝜌 = [( 𝑚�𝑎 −  𝑚𝑎), (𝑚�𝑎+1 −  𝑚𝑎+1)] (7) 

The results are reported by sample size and model in Figures 6a and 6b. Standard 
MMSs show a positive autocorrelation (𝜌 > 0.50) for all sample sizes, whereas cubic 
splines show no evidence of autocorrelation (𝜌 < 0.15). Residuals generated by kernel 
regressions vary with sample size, 0.34 < 𝜌 < 0.47, and show signs of autocorrelation 
for samples with less than 100,000 observations. These results confirm that fitted age 
profiles are more likely to sequentially depart from the true distribution when using 
standard MMSs because they constrain migration age patterns to follow a proto-typical 
distribution that does not systematically describe observed patterns.  

 
Figure 6a: First-degree autocorrelation of average residuals, inter-municipal 

migration 
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Figure 6b: First-degree autocorrelation of average residuals, inter-provincial 
migration 

 
To summarise, kernel regressions generate consistently low 𝐴𝑣𝑔𝑆𝑆, but squared 

bias is slightly higher than for cubic splines. Kernel estimates are not affected by high 
variance for samples with fewer than 100,000 observations, whereas cubic splines are. 
However, kernel estimates are problematic for the high-curvature portion of the curve at 
young adult ages. Cubic splines, on the other hand, generate the smallest 𝐴𝑣𝑔𝑆𝑆𝑅 for 
samples with more than 500,000 observations and consistently low squared bias. While 
they are not affected by autocorrelation, estimates from cubic splines are affected by 
high variance for samples smaller than 100,000 observations, particularly at older ages. 
By contrast, standard MMSs perform poorly according to all goodness-of-fit indicators 
because they constrain migration intensity to follow a constant rate of ascent and 
descent and locate the estimated peak value of the age profile between the student and 
the labour force curves. To take into account the increase in migration intensity in the 
early twenties observed in large samples, in the next section we extend the standard 
MMS to include a student curve as described in Wilson (2010), which we denote 
“student MMS”. 
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5.2 Student MMS versus cubic spline and kernel regression 

We now fit a student MMS to samples with at least 250,000 observations, which is the 
smallest sample size required to distinguish the presence of a student curve in Chile. 
Figure 7 compares average inter-provincial migration age profiles fitted with standard 
and student MMSs. It clearly shows that student MMSs generate an excellent fit that 
closely matches the true distribution, particularity along the high-curvature portion of 
the curve at young adult ages, and that it identifies both the student and labour peaks. 
Figures 8a and 8b represent 𝐴𝑣𝑔𝑆𝑆𝑅  by model and sample size and confirm that 
student MMSs provides the best fit for all available sample sizes, although for 
migration between municipalities it generates 𝐴𝑣𝑔𝑆𝑆𝑅  very similar to that of cubic 
splines for samples with at least 5 millions observations.  

 
Figure 7: Inter-provincial migration age profiles, selected sample sizes 
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Figure 8a: Log of 𝑨𝒗𝒈𝑺𝑺𝑹 by sample size, migration between municipalities 

 
 

Figure 8b: Log of 𝑨𝒗𝒈𝑺𝑺𝑹 by sample size, migration between provinces 

 

0.6

1.2

1.8

2.4

lo
g 

(A
vg

SS
R

*1
00

00
) 

Sample size 

kernel regression cubic spline standard MMS student MMS

0.6

1.2

1.8

2.4

lo
g 

(A
vg

SS
R

*1
00

00
) 

Sample size 

kernel regression cubic spline standard MMS student MMS



Bernard & Bell: Smoothing internal migration age profiles for comparative research 

936   http://www.demographic-research.org 

6. Research application 

The shape of the fitted curve fundamentally affects the specific features of the 
migration age profile used for comparative purposes. Since the 1980s a large body of 
literature has developed that compares migration age patterns across countries (Bell and 
Muhidin 2009; Kawabe 1990; Rogers and Castro 1981) and over time (Bernard et al. 
2014c; Ishikawa 2001; Rogers and Rajbhandary 1997). How well do the different 
smoothing techniques allow us to identify these specific features?  

 
 

6.1 Comparison across countries 

While model schedules have gained widespread acceptance in migration research, a 
number of other measures have been employed to compare migration age patterns 
between countries, including the migration intensity at the peak, the age at peak (Bell et 
al. 2002), the gross migraproduction rate (Rees et al. 2000), and the breadth of the peak 
(Bell and Muhidin 2009). Bernard et al. (2014a) have shown that the complexity of the 
migration age profile can be reduced to two principal characteristics, each of which is 
closely associated with other features of the age profile, and which can be summarised 
by two discrete indicators: the migration intensity at the peak and the age at peak. These 
metrics can be deduced directly from a graph or a table of smooothed age-specific 
migration intensities, without estimating model migration schedules.  

We used estimates from Section 5 to compute the age and intensity at peak 
migration averaged across 1,000 Monte Carlo stimulations for each model and sample 
size. Tables 3a to 3d display average estimated metrics (with standard deviations in 
brackets) compared with the same metrics observed in the full profile. Results show that 
the standard MMS underestimates by two years the age at peak migration between 
municipalities and overestimates by two years the age peak migration between 
provinces. All other models provide more accurate estimates of the age at which 
migration between municipalities peaks. Cubic splines generate correct estimates of age 
at the peak for migration between provinces, whereas kernel regressions overestimate 
age by a year and student MMSs underestimate it by a year. We note that, at both 
spatial scales and for all sample sizes, the standard deviation from the average age at 
peak is greater for the student MMS. This indicates greater variablity across estimates 
than for kernel regressions and cubic splines. Thus, the latter two models provide more 
consistent estimates of age at peak across samples. It is important to note that model 
migration schedules and kernel regressions allow the estimation of non-integer ages, 
which may be useful to discriminate countries with similar age profiles if very fine-
grained estimates are required. 
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Turning to migration intensity at the peak, none of the models performs 
consistently better than the others. All models underestimate the intensity at the peak 
for migration between municipalties, athough cubic splines generate estimates very 
close to the true value. For migration between provinces, student MMSs provide 
accurate estimates, wehereas kernel regressions underestimate the peak intensity and 
cubic splines overestimate it. The general underestimation of metrics from kernel-based 
estimates can be explained by the poor fit of kernel regressions for the high-curvature 
portion of the curve that precedes the peak. This indicates that kernel regression should 
not be the prefered smoothing method to compute metrics for steep profiles. How do 
these results affect comparability? 

 
Table 3a: Average age at peak, 

migration between 
municipalities 

Table 3b: Average age at peak, 
migration between 
provinces 

  
kernel 

regression 
cubic 
spline 

Standard 
MMS 

Student 
MMS 

True value 28 28 28 28 

25,000  
27.9 
(1.29) 

27.7  
(1.7) 

26.69 
(0.80) 

- 

50,000  
28.0  
(0.99) 

28.0  
(1.12) 

26.24  
(0.596) 

- 

100,000  
28.0 
(0.64) 

28.1  
(2.07) 

26.18  
(0.48) 

- 

250,000  
28.0  
(0.70) 

28.0  
(0.38) 

26.1  
(0.31) 

27.7 
(0.49) 

500,000  
28.0 
(0.25) 

28.0  
(0.50) 

26.0  
(0.80) 

27.8  
(0.34) 

1 million 
28.0  
(0.08) 

28.0 
(0.00) 

26.0  
(0.00) 

27.9  
(0.34) 

2 million  
28.0  
(0.0) 

28.0  
(0.00) 

26.0  
(0.07) 

27.9  
(0.25) 

5 million 
28.0 
(0.00) 

28.0  
(0.00) 

26.0 
(0.00) 

28.0  
(0.13) 

10 million 
28.0  
(0.00) 

28.0  
(0.00) 

26.0 
(0.00) 

28.0  
(0.00) 

 

  
kernel 

regression 
cubic 
spline 

Standard 
MMS 

Student 
MMS 

True value 21 21 21 21 

25,000  
24.0 
(2.40) 

22.9  
(2.69) 

22.9 
(1.70) 

- 

50,000  
23.59  
(2.17) 

22.34  
(6.08) 

22.8   
(0.48) 

- 

100,000  
23.15  
(1.98) 

21.6  
(1.61) 

22.9  
(0.36) 

- 

250,000  
22.7  
(1.63) 

21.2  
(0.97) 

23.0  
(0.48) 

21.2  
(1.92) 

500,000  
22.3  
(1.09) 

21.3  
(0.97) 

22.8  
(0.48) 

21.0  
(1.76) 

1 million 
22.0 
(0.45) 

21.0  
(0.40) 

22.9  
(0.36) 

21.7 
(1.54) 

2 million  
22.0  
(0.16) 

21.0 
(0.00) 

22.9  
(0.25) 

20.2  
(0.98) 

5 millions 
22 .0 
(0.00) 

21.0 
(0.00) 

23.0  
(0.05) 

20.5  
(1.37) 

10 million 
22 .0 
(0.00) 

21.0 
(0.00) 

23.0 
(0.05) 

20.2  
(0.98) 
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Table 3c: Average intensity at peak, 
migration between 
municipalities  

Table 3d: Average intensity at peak, 
migration between 
provinces 

  
kernel 

regression 
cubic 
spline 

Standard 
MMS 

Student 
MMS 

 True value  0.250 0.250 0.250 0.250 

25,000  
0.243 

(0.008) 
0.255  

(0.014) 
0.246  

(0.007) 
- 

50,000  
0.242  

(0.005) 
0.250 

(0.004) 
0.245 

(0.005) 
- 

100,000  
0.242  

(0.004) 
0.249  

(0.003) 
0.245  

(0.003) 
- 

250,000  
0.242  

(0.003) 
0.249  

(0.003) 
0.245  

(0.002) 
0.247  

(0.003) 

500,000  
0.242  

(0.002) 
0.249  

(0.003) 
0.245  

(0.001) 
0.247  

(0.002) 

1 million 
0.242  

(0.001) 
0.249  

(0.002) 
0.245  

(0.001) 
0.246 

(0.002) 

2 million 
0.242  

(0.001) 
0.249  

(0.001) 
0.245  

(0.001) 
0.246  

(0.001) 

5 million  
0.242  

(0.000) 
0.249  

(0.000) 
0.245  

(0.000) 
0.246  

(0.001) 

10 million 
0.242  

(0.000) 
0.249  

(0.000) 
0.245  

(0.000) 
0.246  

(0.000) 
 
Note: A migration intensity at peak of 0.25 indicates that 25 % of 

individuals aged 28 (age the peak) moved.  

  
kernel 

regression 
cubic 
spline 

Standard 
MMS 

Student 
MMS 

True value 0.150 0.150 0.150 0.150 

25,000  
0.148 

(0.006) 
0.160  

(0.132) 
0.157  

(0.008) 
- 

50,000  
0.146 

(0.004) 
0.155 
(.007) 

0.155  
(0.002) 

- 

100,000  
0.146  

(0.003) 
0.155  

(0.005) 
0.155  

(0.001) 
- 

250,000  
0.145  

(0.002) 
0.154  

(0.005) 
0.155  

(0.001) 
0.151  

(0.004) 

500,000  
0.145  

(0.002) 
0.154  

(0.002) 
0.155  

(0.001) 
0.150 

(0.004) 

1 million 
0.145 

(0.001) 
0.154  

(0.002) 
0.155  

(0.001) 
0.150  

(0.003) 

2 million 
0.145  

(0.001) 
0.154  

(0.001) 
0.155  

(0.001)  
0.149  

(0.002) 

5 million 
0.145  

(0.001) 
0.154  

(0.001) 
0.155  

(0.001)  
0.149 

(0.003) 

10 million 
0.145  

 (0.001) 
0.154  

(0.000) 
0.155  

(0.001)  
0.149  

(0.002) 

 
 

 
 
We illustrate the practical implication of model selection by comparing the 

migration age patterns of Argentina, Greece, and France. For each of the three countries 
we used census microdata samples with over 1 million observations from the Integrated 
Public Use Microdata Series (IPUMS) maintained by the Minnesota Population Center 
(2011). Aggregate migration age profiles were fitted to standard MMSs, cubic splines, 
and kernel regressions. Table 4 displays estimates of age and migration intensity at peak 
by model for each country. It confirms that standard MMs tend to overestimate the 
intensity at peak and to underestimate the age at which migration peaks by up to three 
years, which can significantly bias comparison across countries. Based on the age and 
intensity at which migration peaks in 25 nations, Bernard et al. (2014a) identified three 
regional migration clusters and showed that Chile exhibits age patterns very similar to 
those of Costa Rica, Greece, Portugal, and Spain. A two-year underestimation of the 
peak would have incorrectly placed Chile on a par with Canada, the Unites States, and 
France. The robustness of cross-national comparison is therefore highly dependent on 
the accurate estimation of summary measures. These indicators are also employed to 
examine the association of migration age patterns with other demographic processes. 
Bernard et al. (2014b) used the age and intensity at which migration peaks to 
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demonstrate that migration age patterns broadly mirror the age structure of the life 
course across 27 countries. Such applications require smoothed data that accurately 
capture the underlying age patterns of migration. 

 
Table 4: Estimates of the age and migration intensity at peak 

 Standard MMS  Cubic spline Kernel regression 

 
Normalised 
intensity at peak 

Age at 
peak 

Normalised 
intensity at peak 

Age at 
peak 

Normalised 
intensity at peak 

Age at 
peak 

Argentina 2.81 25 2.62 28 2.73 28 
France  3.88 25 3.68 27 3.78 26 
Greece 2.74 25 2.63 28 2.69 28 

 
Note: The spatial scales used are as follows: departments for Argentina and France, municipalities for Greece. Migration data was 

normalised to sum to unity.  

 

6.2 Comparison over time 

In addition to differences between countries, evidence suggests that the age profile of 
migration evolves over time (Bernard et al. 2014c; Ishikawa 2001; Rogers and 
Rajbhandary 1997) in response to systematic changes in socio-economic conditions and 
in levels of national development. How well do different smoothing techniques allow us 
to capture these changes? To assess this, we examined the evolution of inter-provincial 
migration age patterns in Chile since the 1980s, based on a temporally consistent spatial 
framework proposed by Rowe (2013) using standard MMSs and kernel regressions5. 
Fitted age profiles were normalised to sum to unity across all ages in order to identify 
changes in migration age patterns independent of changes in the overall level of 
migration (Figures 9a and 9b). The standard MMS suggests that migration age patterns 
in Chile have remained fairly stable since 1982, with a slight ageing of the peak from 
22 years to 23 years since 1992. While a minor decrease in intensity at the peak 
occurred, the overall shape appears unchanged over the three decades to 2002. Kernel 
regressions, on the other hand, point to substantial changes. Migration started declining 
at a slower rate beyond the peak at the 1992 census. The shift continued into the next 
decade, and the 2002 age profile revealed a flattening of the peak between ages 20 and 
30, which account for nearly a third of moves. That feature is concealed by the standard 
MMSs, which constrain migration intensity to decline following the peak.  
  

                                                           
5 Estimates from cubic splines were similar to those of kernel regressions.  
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Figure 9a: Inter-provincial migration age profile, kernel regression 

 
 

Figure 9b: Inter-provincial migration age profile, standard MMS 

 
 
Source: Authors’ calculations based on full population microdata from the 2002, 1992, and 1982 censuses made available by the 

Chilean Institute of Statistics. Migration age profiles were normalised to sum to unity across all ages and are reported from 
single years of age. 
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Model schedules have the singular advantage of being empirically based on 
accumulated evidence from industrialised nations and theoretically founded on the 
assumption that life-course transitions trigger migration at young adult ages. The 
unusual age patterns observed in Chile raise the question of whether kernel regression 
reveals a unique pattern with a clear social interpretation. The flattening of the 
migration peak is likely to reflect broader socio-economic changes that have occurred in 
recent years in Chile. Young adults typically move for education- and employment-
related purposes (Mulder 1993); thus increased mobility between the ages of 20 and 30 
can be explained by improved access to higher education, combined with increasing 
spatial concentration of education and economic opportunities in the capital city since 
the liberal economic reforms of the 1990s (Atienza and Aroca 2012). Tertiary 
enrolment doubled from 1990 to 2002, to reach 28.4% (OECD 2004). However, 
education opportunities have remained strongly concentrated in the capital city, where 
48% of all students enrolled in higher education institutions were located in 2006 
(OECD 2009). Top-tier universities are still predominantly located in the capital city, 
with 7 of the top 10 Chilean universities based in Santiago (Rappaport et al. 2004). 
Hence, young adults from regional areas are likely to move to attend university, 
contributing to an increase in migration intensity at young adult ages. Sustained 
migration intensities at high levels beyond the migration peak are probably linked to a 
combination of factors, including post-graduation migration and labour-related 
migration in early career years in a context of increasing concentration of economic 
activity in the capital city (Atienza and Aroca 2012). These subtle but important shifts 
in mobility only become apparent when a sensitive approach to the modelling of age 
profiles – kernel regressions or cubic splines – is employed. Other methods, in 
particular standard model schedules, conceal this feature by constraining migration 
intensity to decline following the peak. 

 
 

7. Conclusion 

An essential precursor to any comparative research is the establishment of valid data. In 
the case of internal migration, rigorous comparisons across countries and over time 
require a smoothing method that accurately captures the underlying age distribution of 
migration. The work reported here sought to evaluate the goodness-of-fit of model 
schedules, one of the long-standing tools of migration analysis, against two non-
parametric alternatives, cubic splines and kernel regressions, and to establish the extent 
to which the choice of a particular method affects migration age profile indicators used 
for comparative research. 
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Conducting Monte-Carlo simulations from full population microdata for Chile, we 
showed that model migration schedules generate a better fit than non-parametric models 
when (1) the expected distribution of the age profile is known a priori, (2) the pre-
determined shape of the model schedule adequately describes the true age distribution, 
and (3) component curves and initial parameter values can be correctly set. We showed 
for Chile that if any of these conditions is not met, model schedules provide a poor fit 
and inaccurate summary measures of the age profile. In particular, because standard 
model schedules constrain migration intensity to follow constant rates of ascent and 
descent around the peak, they tend to underestimate the age at migration, one of the key 
indicators used to compare migration age patterns across countries and over time (Bell 
et al. 2002; Bernard et al. 2014a) and to examine the association of the migration age 
profiles with other demographic processes (Bernard et al. 2014b). Kernel regressions 
and cubic splines offer more reliable alternatives by avoiding the imposition of a pre-
determined distribution and by requiring little or no parameter setting. 

 The strength of cubic splines lies in consistently low bias and the absence of 
autocorrelated residuals for all sample sizes, which enables the estimation of reliable 
migration indicators. They are, however, affected by high variance for samples with 
less than 100,000 observations, resulting in higher residuals than other models. This is 
particularly problematic at older ages where the number of observations dwindles 
rapidly. On the other hand, kernel regressions are not affected by high variance, but 
perform poorly at estimating the high-curvature portion of the curve at young adult ages 
and underestimate the age and intensity at which migration peaks, which can bias 
comparative analysis. Caution is therefore needed in using kernel regressions to smooth 
migration age profiles with a sharp increase in migration intensities at young adult ages.  

None of the three models examined consistently outperforms the others. The 
performance of a particular model depends to some extent on the specific shape of the 
true underlying migration age profile, which varies across countries, spatial scales, and 
observation periods. Unfortunately, this is rarely known a priori. Researchers therefore 
need to select a model according to their research aims, the characteristics of the age 
profile considered, and the size of available datasets.  

We showed for both kernel regressions and cubic splines that the sum of squared 
residuals increases rapidly with decreasing sample size under 250,000 observations. 
However, for most countries publicly available census microdata samples are above this 
threshold. For example, the Integrated Public Use Microdata Series (IPUMS), 
maintained by the Minnesota Population Center, is the largest repository of census 
microdata, and at the time of writing it held 258 censuses from 79 countries. Only 6% 
of the available censuses contained less than 100,000 individuals, 11% had between 
100,000 and 249,999 observations, 18% had between 250,000 and 499,999 
observations, and the remaining 65% had at least 500,000 observations. This suggests 
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that kernel regressions and cubic splines can be used to reliably smooth aggregate 
migration age patterns of most countries. The particular significance of this finding is to 
enable summary indicators of the age profile, such as the age and intensity at migration 
peak, to be deduced directly from smoothed migration data, without estimating model 
migration schedules (Bernard et al. 2014a). Ease of implementation, without reliance on 
manual parameter-setting, makes kernel regression an important addition to the toolbox 
of methods for the analysis of migration and should facilitate more comparative 
research. 

This paper has focused on aggregate migration age profiles capturing all moves 
within a country, regardless of distance and direction, with the aim of providing a 
robust and reliable basis for cross-national comparisons. Analysts are also often 
interested in age variations in migration streams between regions within countries. 
Region-to-region flows vary more widely than aggregate flows and often present 
problems of sample variability and small sample size. Such applications warrant greater 
consideration of the theoretical distribution inherent in model migration schedules, and 
further investigation of the applicability of kernel regressions and cubic splines to 
smooth inter-regional flows is desirable.  
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