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Research Article

The sensitivity analysis of population projections

Hal Caswell1

Nora Sánchez Gassen2

Abstract

BACKGROUND
Population projections using the cohort component method can be written as time-varying
matrix population models. The matrices are parameterized by schedules of mortality, fer-
tility, immigration, and emigration over the duration of the projection. A variety of de-
pendent variables are routinely calculated (the population vector, various weighted popu-
lation sizes, dependency ratios, etc.) from such projections.

OBJECTIVE
Our goal is to derive and apply theory to compute the sensitivity and the elasticity (propor-
tional sensitivity) of any projection outcome to changes in any of the parameters, where
those changes are applied at any time during the projection interval.

METHODS
We use matrix calculus to derive a set of equations for the sensitivity and elasticity of any
vector valued outcome ξ(t) at time t to any perturbation of a parameter vector θ(s) at any
time s.

RESULTS
The results appear in the form of a set of dynamic equations for the derivatives that are
integrated in parallel with the dynamic equations for the projection itself. We show re-
sults for single-sex projections and for the more detailed case of projections including
age distributions for both sexes. We apply the results to a projection of the population of
Spain, from 2012 to 2052, prepared by the Instituto Nacional de Estadı́stica, and deter-
mine the sensitivity and elasticity of (1) total population, (2) the school-age population,
(3) the population subject to dementia, (4) the total dependency ratio, and (5) the eco-
nomic support ratio.
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CONCLUSIONS
Writing population projections in matrix form makes sensitivity analysis possible. Such
analyses are a powerful tool for the exploration of how detailed aspects of the projection
output are determined by the mortality, fertility, and migration schedules that underlie the
projection.

1. Introduction

Fifty years ago, in the first issue of the first volume of the then-new journal Demogra-
phy, Nathan Keyfitz described the “population projection as a matrix operator” (Keyfitz
1964). He showed that population projections using the cohort component method could
be written as matrix population models, and emphasized the value in doing so to focus
attention on the mathematical structure of the projection, inviting deeper analyses of its
properties with more powerful mathematical tools. Today, official projections are often
implemented as computer algorithms, the details of which are obscure, but which permit
almost endless fine-tuning of relationships. But the advantages of considering projections
as matrix operators are no less real. In this paper, we carry on in this spirit, using matrix
calculus methods to develop a thorough perturbation analysis of population projections.

As is customary in demography, we use the term projection to describe a conditional
prediction of population size and structure, over a specified time horizon, such as are
regularly developed by national governments, international consortia (e.g., Eurostat), and
non-governmental organizations (U.N.). All projections are conditional in the sense that
they are based on one or more hypothetical scenarios defining future rates of mortality,
fertility, and migration (collectively, the “vital rates”), and also conditional on an initial
population.

The vital rate scenarios are defined in terms of a set of parameters; the nature of
those parameters will depend on the details of the scenarios. Sensitivity analysis (also
called perturbation analysis) asks how the results of the projection would change in re-
sponse to changes in the parameters. Sensitivity analysis is useful because:

1. It can project the consequences of changes in the vital rates. Such changes could
result from human actions, either intentional (e.g., policies to encourage reproduc-
tion, public health interventions, or conservation strategies applied to endangered
species) or unintentional (e.g., consequences of pollution or environmental degra-
dation), or natural changes.

2. It can be used to compare potential policy interventions and identify interventions
that would have particularly large effects. If an outcome is particularly sensitive to
a particular parameter, that parameter may be an attractive target for intervention.
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3. It can be used retrospectively to decompose observed changes in an outcome into
contributions from changes in each of the parameters (Caswell 2000, 2001).

4. It can be used to identify parameters the estimation of which deserves extra atten-
tion, because they have large effects on the results.

5. It can quantify uncertainty of projection results: given the uncertainty in some pa-
rameter θ, and the sensitivity of an outcome of interest to changes in θ, it is possible
to approximate the resulting uncertainty in the outcome. Demographers have be-
come increasingly concerned with estimating the uncertainty of projection results
(Booth 2006; Ahlburg and Lutz 1998).

In this paper, we focus on projections of populations classified by age and sex. Some
projections are multistate models (e.g., projections of Belgium classify individuals by
age, sex, nationality, and position in the household3; projections of Sweden classify in-
dividuals by age, sex, and country of birth4). We will present the sensitivity analysis of
multistate projections in a subsequent paper.

1.1 Sensitivity and elasticity

Our approach is to calculate the derivatives of the projection results to the parameters and
initial conditions. This gives the effects of small changes, gives approximate results for
quite large changes, and identifies parameters with particularly large or small impacts on
the results. As we will show, the parameters may include aspects of mortality, fertility,
or immigration. The projection results may include a variety of different functions of the
population, including measures of size, structure, and growth.

We will present results for both sensitivity and elasticity. If y is a function of x, we
define the sensitivity of y to changes in x as

sensitivity =
dy

dx
. (1)

The elasticity of y is the proportional sensitivity, which is

elasticity =
x

y

dy

dx
(2)

=
εy

εx
. (3)

This gives the proportional change in y resulting from a proportional change in x. There is
no standard notation for elasticities, despite their widespread use in economics and popu-
lation biology. The notation used here, εy/εx, which parallels the notation for derivatives,
3http://statbel.fgov.be/fr/binaries/FORPOP1360 10697 F tcm326-244744.pdf
4http://www.scb.se/statistik/ publikationer/BE0401 2012I60 BR BE51BR1202ENG.pdf
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is adapted from a notation used by Samuelson (1947). Elasticities are defined only when
y > 0 and x ≥ 0.

In Section 2 we will write both one-sex and two-sex projections as matrix operators,
and discuss the scenarios that might be involved in such projections and the parameters
that might determine those scenarios. In Section 3 we will give the expressions for the
sensitivities and elasticities of the population vector (abundance by age class of males,
or females, or both combined) to changes in mortality, fertility, and immigration. A
particularly important part of our results, in Section 3.5, is to show how the sensitivity
results for the population vector can be translated directly into other dependent variables,
such as weighted population size, ratios, and growth rates. The derivations of results are
given in detail in Appendix A.

Our approach is to write the projection as a matrix operator, and then to use ma-
trix calculus (e.g., Caswell 2007, 2008, 2009; Caswell and Shyu 2012) to derive the
needed derivatives of the results to underlying parameters. These methods are easily
implemented in any matrix-oriented computer language, especially MATLAB, but also R.

In Section 4 we will apply the calculations to a projection of the population of Spain,
using information from the Instituto Nacional de Estadı́stica (INE). We conclude with a
discussion of how these results apply to evaluating the uncertainty of projections and
future developments.

Notation. Matrices are denoted by upper case bold symbols (e.g., A) and vectors by
lower case bold symbols (e.g., n). All vectors are column vectors by default. The vector
xT is the transpose of the vector x. The Hadamard, or element-by-element, product of A
and B is A ◦B. The Kronecker product is A⊗B. The diagonalization operator diag (x)
creates a matrix with x on the diagonal and zeros elsewhere. The vec operator, when
applied to a m× n matrix X creates a mn× 1 vector vecX by stacking each column of
X on top of the next. The vector 1 is a vector of ones, and the vector ei is the ith unit
vector, with a 1 in the ith location and zeros elsewhere. When necessary, subscripts are
attached to indicate the size of matrices or vectors; e.g., Iω is the ω × ω identity matrix.

2. Projection as a matrix operation

2.1 Dynamics

To present the basics of projection sensitivity analysis, we begin with a simple one-sex
model, but we focus most of our attention on a two-sex model that includes separate rates
for males and females.

The single-sex projection can be written as

n(t+ 1) = A(t)n(t) + b(t) n(0) = n0 (4)

804 http://www.demographic-research.org
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where n(t) is a vector whose entries are the numbers of individuals in each age class or
stage at time t, A(t) is a projection matrix incorporating the vital rates at time t, and b(t)
is a vector giving the number of immigrants in each age class or stage at time t. The
projection begins with a specified initial condition, denoted n0, and is carried out until
some target time T .

Two-sex projections are generalizations of (4). We define population vectors nf

and nm, and projection matrices Af and Am, for females and males, respectively. We
assume that reproduction is female dominant5, so all fertility is attributed to females. We
decompose the projection matrices for females and males into

Af (t) = Uf (t) + φF(t) (5)
Am(t) = Um(t) (6)

where U describes transitions and survival of extant individuals and F describes the pro-
duction of new individuals by reproduction.

In an age-classified model, F will have effective fertilities (including infant and
maternal survival as appropriate) on the first row and zeros elsewhere. A proportion φ of
the offspring are female. This model attributes reproduction to females; hence there is no
need to create separate fertility matrices for reproduction by males and females.

The male component of the population is projected by the survival matrix Um; the
input of new individuals comes from the female population. The projection model be-
comes

nf (t+ 1) =
[
Uf (t) + φF(t)

]
nf (t) + bf (t) (7)

nm(t+ 1) = Um(t)nm(t) + (1− φ)F(t)nf (t) + bm(t). (8)

The formulations in equations (4), (7), and (8) are general enough to encompass
all the projections typically used. The vector n can incorporate any type of population
structure considered relevant. If individuals are grouped into age classes, then A is the
familiar Leslie matrix, with survival probabilities on the subdiagonal, fertilities in the
first row, and zeros elsewhere. If individuals are classified by other criteria (“stages”
in common usage), A will have the structure needed to capture transitions among stages
based on physiological condition, developmental stage, socio-economic grouping, marital
status, parity status, etc.

Immigration, denoted here by b(t), is a particularly challenging part of population
projection. We explore the reasons for this, and some of the ways in which migration is
handled, in Section 6.3. Some implementations of migration require minor modifications

5Two-sex models that do not assume dominance by one sex have been used to project animal populations (e.g.,
Jenouvrier et al. 2009, 2012, 2014), but rarely, as far as we know, human populations (but see Ekamper and
Keilman (1993)).
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of equations (4)–(8), but the sensitivities are derived in the same way as what we are
about to show.

2.2 Scenarios and parameters

A projection is based on a scenario of how the future might unfold. The matrices U(t)
and F(t), and the vector b(t), describe the future dynamics of mortality, fertility, and
immigration. The future being unknown, considerable ingenuity is required to construct
these functions. Three major approaches seem to be used, singly or in combination.

1. Extrapolation of trends. This approach starts from the observation that some vital
rates (particularly mortality and fertility rates) develop gradually over time, and
extrapolates those patterns into the future. The best-known of these is perhaps the
Lee-Carter model for mortality, which projects mortality with a time-series model
applied to a singular value decomposition of a past record of age- and time-specific
mortality rates. Recent developments include sophisticated Bayesian methods that
also produce statistically rigorous uncertainty bounds (e.g., Gerland et al. 2014).

2. Assumptions and expert opinion. Future trends in vital rates are sometimes simply
assumed, based on unspecified conceptual models. The projections of Eurozone
countries by Eurostat, for example, are based on the assumption that the mortality
and fertility of all European countries will converge to a common value by the year
2150 (Lanzieri 2009). The rates for a given country in each year are determined
by interpolating between the rates at the start of the projection and the final target
rates. Other studies have been based on the opinion of experts who are not directly
involved in the projection process. Lutz and colleagues, for instance, have used a
Delphi-method based approach to collect and aggregate external expert opinions
on demographic trends in a systematic manner (Ahlburg and Lutz 1998). Expecta-
tions of population members about their own lives (e.g. survey data on the expected
number of children or expected remaining life expectancy) have also been used to
define scenarios.

3. Dependence on external factors, which can themselves be projected. If the vital
rates depend on some factor, and the dynamics of that factor can be predicted, this
provides the basis for a projection of the vital rates. The approach has been used for
animal populations. For example, projections of populations of polar bears and em-
peror penguins under the impact of climate change have been based on projections
of sea ice conditions (a critical environmental variable for these species) generated
by models of global climate conditions produced by the IPCC (Hunter et al. 2010;
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Jenouvrier et al. 2009, 2012, 2014). Similarly, projections of human populations
have been based on expectations about future economic, social or environmental
developments (Booth 2006).

Regardless of how the scenario of future conditions is obtained, the resulting projection
depends on a set of parameters which jointly determine the projection matrices and the
immigration vectors. We will write this set of parameters as a vector θ, of dimension p.
In this paper, we focus on the commonly encountered case in which the parameters are
the age- and time-specific rates of mortality, fertility, and immigration:

θ(t) =

 µ(t) vector of mortality rates
f(t) vector of age-specific fertility
b(t) immigration vector

(9)

These vectors might, in turn, be expressed as functions of a scalar quantity such as life
expectancy, or a parametric model such as the Gompertz, gamma-Gompertz, or Siler
models for mortality, or the Coale-Trussell function for fertility. In that case, the vector θ
would include the parameters that define those functions.

3. Perturbation analysis of projections

Our goal is to quantify the sensitivity and elasticity of projection results to the parameters
in θ. To do that, we need to introduce the matrix calculus framework for derivatives of
vectors (the projection output) with respect to other vectors (the parameter vector). The
derivations of our results are given in detail in Appendix A.

3.1 Matrix calculus notation

Matrix calculus permits the differentiation of scalar-, vector-, or matrix-valued functions
of scalar-, vector-, or matrix-valued arguments. The underlying theory is presented in
detail by Magnus and Neudecker (1985); for an introductory account see Abadir and
Magnus (2005). The methods have been applied to demography in a series of papers
(Caswell 2006, 2007, 2008, 2010, 2012; Caswell and Shyu 2012; van Raalte and Caswell
2013; Engelman, Caswell, and Agree 2014).

If y is a n× 1 vector function of the m× 1 vector x, then the sensitivity of y to x is
the n×m Jacobian matrix written as

dy

dxT
=

(
∂yi
∂xj

)
i = 1, . . . ,m; j = 1, . . . ,n. (10)

http://www.demographic-research.org 807
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We will use the fact that this calculus satisfies the chain rule, so that if z is a function of
y, then

dz

dxT
=

dz

dyT

dy

dxT
. (11)

The elasticity, or proportional sensitivity, of y with respect to x is the n×m matrix given
by

εy

εxT
= diag (y)−1

(
dy

dxT

)
diag (x). (12)

We will present a series of sensitivity and elasticity relationships of the form

dξ

dθT
and

εξ

εθT

where ξ is a projection output and θ is a vector of parameters. The output ξ might be
the population vector n(t), or it might be some function of n (e.g., a dependency ratio).
The sensitivity of ξ is obtained from a system of equations giving a dynamic model (i.e.
a model specifying changes through time) for the derivatives of the population vector at
time t to a parameter change at time s

dn(t)

dθT(s)

where s is the time at which the parameter vector θ is perturbed. If there are ω age classes
and p parameters, then this derivative is a ω×p matrix whose (i, j) entry is the derivative
of ni(t) with respect to the parameter θj at time s.

3.2 One-sex projections

For simplicity, we begin with the one-sex projection (4). We consider the effects of
changes in the parameters at time s on the projected population at time t, for s = 0, . . . ,T
and t = s, . . . ,T . Changes in θ(s) obviously have no effect on n(t) at an earlier time
t < s (we ignore the complications of time travel). However, a perturbation at time s will
ripple through n(t) for all later times t > s, and our goal is to find out how.

The dynamics of the population vector n(t) are obtained by iterating equation (4).
The sensitivity of n(t) to a change in θ(s) is obtained by iterating the dynamic equation

dn(t+ 1)

dθT(s)
= A(t)

dn(t)

dθT(s)
+ (nT(t)⊗ Iω)

dvecA(t)

dθT(s)
+

db(t)

dθT(s)
(13)

starting from the initial condition

dn(0)

dθT(s)
= 0ω×p. (14)

808 http://www.demographic-research.org
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The elasticity of n(t) to θ(s) is, from (12),

εn(t)

εθT(s)
= diag

[
n(t)

]−1 dn(t)

dθT(s)
diag

[
θ(s)

]
. (15)

The structure of (13) is common to all the sensitivity results; it contains terms involving
the sensitivity at time t and terms that update that sensitivity with effects on A(t) and
b(t), giving the sensitivity at t+ 1:

dn(t+ 1)

dθT(s)︸ ︷︷ ︸
sensitivity at t+ 1

= A(t)
dn(t)

dθT(s)︸ ︷︷ ︸
sensitivity at t

+(nT(t)⊗ Iω)
dvecA(t)

dθT(s)︸ ︷︷ ︸
effects via A

+
db(t)

dθT(s)
.︸ ︷︷ ︸

effects via b

(16)

3.3 Two-sex projections

The sensitivity of the two-sex projection is given by the two derivatives,

dnf (t)

dθT(s)
and

dnm(t)

dθT(s)
.

These derivatives are obtained from dynamic expressions, for the female population

dnf (t+ 1)

dθT(s)
=

(
Uf (t) + φF(t)

) dnf (t)

dθT(s)

+
(
nT
f (t)⊗ Iω

)(dvecUf (t)

dθT(s)
+ φ

dvecF(t)
dθT(s)

)
+
dbf (t)

dθT(s)
(17)

and the male population

dnm(t+ 1)

dθT(s)︸ ︷︷ ︸
sensitivity at t+ 1

= Um(t)
dnm(t)

dθT(s)
+ (1− φ)F(t)

dnf (t)

dθT(s)︸ ︷︷ ︸
sensitivities at t

+
(
nT
m(t)⊗ Iω

) dvecUm(t)

dθT(s)︸ ︷︷ ︸
effects via male transitions

+(1− φ)
(
nT
f (t)⊗ Iω

) dvecF(t)
dθT(s)︸ ︷︷ ︸

effects via female fertility

+
dbm(t)

dθT(s)
.︸ ︷︷ ︸

effects via immigration

(18)
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Equations (17) and (18) are iterated from initial conditions

dnf (0)

dθT(s)
=
dnm(0)

dθT(s)
= 0ω×p (19)

along with the iteration of equations (7) and (8) for the population vectors nf (t) and
nm(t).

We have labelled the terms in (18) to show the parallels with the simpler one-sex
model (16). Again, the sensitivity at t + 1 depends on the sensitivity at time t and on
the effects of the parameter vector on the transition and fertility matrices and on the
immigration vector. In the next section we turn to the calculation of these derivatives.

The elasticities of nf (t) and nm(t) are given by applying (15) to the corresponding
derivatives for female and male population:

εnf (t)

εθT(s)
= diag

[
nf (t)

]−1 dnf (t)

dθT(s)
diag

[
θ(s)

]
(20)

and similarly for nm.
The combined population of both males and females is nc = nf + nm. The sensi-

tivity and elasticity of nc are

dnc(t)

dθT(s)
=

dnf (t)

dθT(s)
+
dnm(t)

dθT(s)
(21)

εnc(t)

εθT(s)
= diag

[
nc(t)

]−1
[
dnf (t)

dθT(s)
+
dnm(t)

dθT(s)

]
diag

[
θ(s)

]
. (22)

The entire system of sensitivity and elasticity relationships is obtained by simultane-
ously iterating equations (7) and (8) to project the populations of females and males, and
the equations (17) and (18) to project the sensitivity of the female and male populations.

3.4 Parameters and the derivatives of matrices

So far we have left the parameter vector θ undefined, because the results apply to any
choice of parameter. Now we become more specific by focusing on the cases where θ is
a vector of mortality rates, or of fertilities, or of immigration numbers. We consider each
of these cases and present the derivatives of the matrices U and F, and the vector b, to
those parameters. These derivatives appear in the expressions (17), (18), and (21) and the
corresponding elasticity equations.

A change in the parameter vector θ at time s can affect the projection matrices only
when t = s; to indicate this, we will use the Kronecker delta function

δ(s, t) =

{
1 if s = t
0 if s 6= t.

(23)
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Because sex-specific mortality affects the matrices for only that sex, the following
results apply to either male or female rates, so we do not include the subscript that defines
the sex of the subpopulation.

• Mortality: θ = µ. Mortality rates affect the transition matrix U (or the projection
matrix A, if transitions and fertility are not separated). Define the survival vector
p = exp(−µ), which appears on the subdiagonal of U, and an indicator matrix Z
with ones on the subdiagonal and zeros elsewhere. Then

dvecA(t)

dµT(s)
=
dvecU(t)

dµT(s)
= −δ(s, t)diag (vecZ) (Iω ⊗ 1ω) diag

(
p(t)

)
(24)

where 1 is a vector of ones. The derivatives of F and b with respect to µ are zero.

• Fertility: θ = f . The fertility vector appears on the first row of the matrix F. The
derivative of F is

dvecF(t)
df T(s)

= δ(s, t) (Iω ⊗ e1) (25)

where e1 is the first unit vector, of length ω. The derivatives of U and b with re-
spect to f are zero.

• Immigration: θ = b. When the parameter vector is the immigration vector, then

db(t)

dbT(s)
= δ(s, t)Iω (26)

and the derivatives of U, F, and A with respect to b are all zero.

• Initial population: θ = n0. It is also possible to calculate the sensitivity of n(t) to
the initial population vector. The derivatives of U, F, A, and b with respect to the
initial population are all zero, and the derivatives of the population vector reduce
to an especially simple form.

Let n0,f and n0,m be the initial male and female population vectors. The female
population is independent of the initial male population, but the male population
will depend on both the male and female initial populations. From equations (17)
and (18) we have for the female population:

dnf (t+ 1)

dnT
0,f

= (Uf (t) + φF(t))
dnf (t+ 1)

dnT
0,f

(27)

with initial condition
dnf (0)

dnT
0,f

= Iω. (28)

http://www.demographic-research.org 811
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For the male population, we have dependence on the initial male population

dnm(t+ 1)

dnT
0,m

= Um(t)
dnm(t)

dnT
0,m

(29)

with initial condition
dnm(0)

dnT
0,m

= Iω. (30)

The dependence on the initial female population we have

dnm(t+ 1)

dnT
0,f

= Um(t)
dnm(t)

dnT
0,f

+ (1− φ)F(t)dnf (t)

dnT
0,f

(31)

with initial condition
dnm(0)

dnT
0,f

= 0ω×ω. (32)

The behavior of these sensitivities depends on the behavior of the population and
the cohorts that comprise it. From (27), it is apparent that the sensitivity of the
female population to the initial female population grows or shrinks depending on
whether the sequence of projection matrices, (Uf (t) + rF(t)), tends to expand
or contract the population. The sensitivity of the male population to the initial
male population decays according to the sequence of survival matrices U(t). Thus,
in general, the sensitivity to initial population will play a greater role in rapidly
expanding populations (a fact easily predictable from general principles of linear
system theory). In populations that grow only slightly, or decline, over the time
span of the projection, these sensitivities will be less important.

3.5 Choosing a dependent variable

These results in equations (16), (17), and (18) provide the sensitivity of every age class,
at every time from 0 to T , with respect to changes in mortality, fertility, and immigration
of every age class, at every time from 0 to T . This high-dimensional data structure is
more information than anyone wants. It must be condensed to provide the sensitivity of
specific projection outcomes of interest. An informal survey of Statistical Offices6 finds
that they typically present projections of (1) the total population size, (2) the proportional
representation of specific age groups (e.g., working-age adults, school-age children), (3)
ratios such as the old-age, young-age, and total dependency ratios, (4) and descriptors of

6European Union, Germany, France, Belgium, Ireland, Estonia, Spain, Austria, Sweden, United Kingdom,
Iceland, and Switzerland
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the age distribution such as the mean age in the population. Sometimes projections also
include results on the population subject to particular diseases or handicaps.

In this section, we show how to calculate the sensitivity and elasticity of such depen-
dent variables from the derivatives of n(t) given in (17), (18), and (21). In the following,
sensitivities can be applied to the female population, the male population, or the com-
bined population. Derivations are given in Appendix A.3.

1. Total population size N(t). The total population size is N(t) = 1T
ωn(t); its sensi-

tivity to parameter changes at time s is

dN(t)

dθT(s)
= 1T

ω

dn(t)

dθT(s)
. (33)

The elasticity of N(t) is

εN(t)

εθT(s)
=

1

N(t)

dN(t)

dθT(s)
diag (θ). (34)

2. Weighted total population size. Define N(t) = cTn(t), where c is a vector that
applies different weights to each age class. For example, c might contain the labor
income of each age class, or the prevalence in each age class of some health con-
dition. N(t) is now a weighted population size; the sensitivity of N(t) to a change
in parameters at time s is

dN(t)

dθT(s)
= cT dn(t)

dθT(s)
. (35)

The elasticity is again given by (34). If the weight vector c is subject to perturba-
tions (e.g., if the prevalence of a health condition were to change due to screening
or treatment), the sensitivity of N(t) to changes in c is

dN(t)

dcT
= nT(t). (36)

The corresponding elasticities of N(t) to c are

εN(t)

εcT
=

1

N(t)
nT(t)diag (c). (37)

The elasticities of N(t) to c in (37) always sum to 1.
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3. Ratios of weighted population sizes. Let

R(t) =
aTn(t)

cTn(t)
, (38)

where a and c are vectors of weights. The sensitivity of such a ratio (Caswell 2007)
is

dR(t)

dθT(s)
=

(
cTn(t)aT − aTn(t)cT

[cTn(t)]
2

)
dn(t)

dθT(s)
. (39)

The elasticity of R(t) is

εR(t)

εθT(s)
=

1

R(t)

dR(t)

dθT(s)
diag [θ(s)] . (40)

Such ratios appear frequently as dependent variables in population projections. Ex-
amples include:

(a) The proportional representation of an age group (e.g., the proportion over
65 years of age). In this case, a is an indicator vector, containing ones corre-
sponding to the ages in the age group, and zeros elsewhere. The vector c = 1,
so that cTN is the total population size.

(b) Dependency ratios. In this case, a and c are both indicator vectors for the
relevant age groups. The old-age dependency ratio, for example, is obtained
by letting a indicate ages beyond retirement age and c indicate working ages.

(c) Weighted dependency ratios. Instead of considering all individuals of retire-
ment age, or working age, to be equal, a and c can be vectors of weights. For
example, the economic support ratio (Prskawetz and Sambt 2014) is com-
puted by letting a be a vector giving age-specific labor income, and c a vector
giving age-specific consumption.

(d) Moments of the age distribution. The mean of the age distribution is obtained
by setting the vector a to the midpoints of the age intervals; e.g., for one year
age classes,

a =
(
0.5 1.5 2.5 · · ·

)T
(41)

and setting c = 1. The second moment of the age distribution is obtained by
setting

a =
(
0.52 1.52 2.52 · · ·

)T
(42)

and c = 1. The variance in age is obtained from the first and second moments
in the usual way.
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(e) Moments of age-specific properties. Suppose thatB(s) is some measurement
on age class x (e.g., the mean body mass index (BMI) of age class x). Then
the mean BMI in the population would be obtained by setting c = 1 and

a =
(
B(1) B(2) B(3) · · ·

)T
. (43)

4. Short-term growth rates. Define the k-step growth rate of the weighted population
size cTn, at time t as

λ(t) =
cTn(t+ k)

cTn(t)
. (44)

This gives the average discrete-time growth rate of the population over the next k
years, starting from year t. The sensitivity of λ(t) is

dλ(t)

dθT(s)
=

cT

cTn(t)

dn(t+ k)

dθT(s)
− λ(t)cT

cTn(t)

dn(t)

dθT(s)
. (45)

The quantity λ is a discrete time growth rate; the sensitivity of the corresponding
continuous time, annual growth rate r(t) = log λ(t)/k is

dr(t)

dθT(s)
=

1

kλ(t)

dλ(t)

dθT(s)
. (46)

3.6 Aggregating perturbations over age and time

The expressions presented so far give the response of the dependent variable at any time
t, to a perturbation of any of the parameters in θ, at any other time s. It is often useful
to aggregate sensitivity over age, or over time, or over parameters, or all of these. Some
examples are:

1. The sensitivity of n at time t to a perturbation, at time s, that affects the mortality,
fertility, or immigration of all age classes by the same amount. The sensitivity of
n(t) to an additive perturbation at every age is the sum of the sensitivities to the
age-specific rates. The elasticity of n(t) to a proportional perturbation at every age
is the sum of the elasticities to the age-specific rates. Thus, whatever rates θ(s)
may refer to, the sensitivity and elasticity are given by

sensitivity:
dn(t)

dθT(s)
1p (47)

elasticity:
εn(t)

εθT(s)
1p. (48)
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2. The sensitivity of the population vector at time t to a change in θ(s) that is applied
equally at every time from s = 0 to s = T . A possible example of interest might
be the sensitivity of the population vector in the final projection year, n(T ), to a
change in fertility at every age or at a specific age group over the entire projection
period. In a slight abuse of notation, let us denote the sensitivity of n(T ) to this
type of perturbation as

dn(T )

dθT(0,T )
=

T∑
s=0

dn(t)

dθT(s)
. (49)

The corresponding elasticity is

εn(t)

εθT(0,T )
= diag [n(t)]−1

T∑
s=0

(
dn(t)

dθT(s)
diag [θ(s)]

)
(50)

=

T∑
s=0

εn(t)

εθT(s)
. (51)

3. The response of a dependent variable integrated over time. For example, consider
the population vector summed from time t = 0 to t = T . The sensitivity and
elasticity of this sum are

d

dθT(s)

T∑
t=0

n(t) =

T∑
t=0

dn(t)

dθT(s)
(52)

ε

εθT(s)

T∑
t=0

n(t) = diag

[∑
t

n(t)

]−1 T∑
t=0

dn(t)

dθT(s)
diag [θ(s)] . (53)

For example, Fox et al. (2001) projected the annual costs of care for Alzheimer’s
patients in California from 2000 to 2040. They combined projections of the popu-
lation over age 65 with estimates of the prevalence of various types of Alzheimer’s
care and the per capita costs of such care, and transformed the annual cost figures
to 1998 dollars. Although they examined the annual costs in selected years, we
imagine that someone might also be interested in the accumulated expenditures,
integrated over some period into the future. Denote the integrated cost from t = 0
to t = T as

C(T ) =
T∑

t=0

cT(t)n(t) (54)

where c(t) is the (possibly time-varying) weighting vector. The sensitivity ofC(T )
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is obtained by differentiating (54):

dC(T )

dθT(s)
=

T∑
t=0

nT(t)
dc(t)

dθT(s)
+

T∑
t=0

cT(t)
dn(t)

dθT(s)
; (55)

it includes the possible effects of the parameters on both the cost vector and the
population vector. If the weighting vector c(t) is fixed, the first term in (55) disap-
pears.

4. A projection of the population of Spain

As an example, we apply the sensitivity and elasticity calculations to a projection of the
population of Spain published by the Spanish Instituto Nacional de Estadı́stica (INE).
This projection is typical of cohort component projections, and Spain is an interesting
case because of its recent demographic history. It has experienced rapid changes in fer-
tility, mortality and migration during the past decades and today has one of the highest
life expectancies and one of the lowest fertility levels within the European Union. During
most of the 20th century, it was a country of emigration, but received large numbers of
immigrants since the mid-1990s before recently again losing large population numbers to
outmigration. Similar sudden changes in the vital rates may occur in the future and are
difficult, perhaps impossible, to predict today. The sensitivity analyses can quantify the
effects of changes in the vital rates that are not expected by INE today, but which would
influence the projection results. Also, in contrast to many other statistical offices, INE has
made the input data for their population projection freely available online. This allowed
us to calculate the sensitivity analyses, and will also allow interested readers to replicate
them.

The projection published by INE uses the cohort component method and distin-
guishes single-year age groups (ages 0 to 100+ years) and sex of population members. It
covers a 40-year period from 2012 to 2052, with a projection interval of one year (Insti-
tuto Nacional de Estadı́stica 2012a), based on the following assumptions:

• The fertility scenario is presented in the form of age-specific fertility rates. INE
assumes that the total fertility rate will increase from 1.36 children per woman in
2011 to 1.56 in 2051, and that the mean age at childbearing will rise from 31 to 32
years within the same period. On their website, INE has published fertility vectors
for f(t) for t = 1, . . . , 40 which reflect these assumptions (Instituto Nacional de
Estadı́stica 2012b,c).

• The mortality scenario is defined in terms of the age- and sex-specific probabilities
of death. It is assumed that life expectancy at birth will increase from 80 years in
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2011 to 87 years in 2051 for men, and from 83 years to 91 years for women over
the same time period. Corresponding to these assumptions, INE presents a series
of age- and sex-specific probabilities of death, q(t) for t = 1, . . . , 40 (Instituto
Nacional de Estadı́stica 2012b,c).
• Migration assumptions are expressed in terms of age- and sex-specific immigration

numbers and emigration rates. INE assumes that the migratory balance of Spain,
which was negative by 50,000 persons in 2011, will recover during the projection
period. In the last ten projection years, the number of persons who move to Spain
is assumed to exceed emigration numbers by around 438,000 persons. Emigra-
tion rates are held constant over the entire projection interval (Instituto Nacional de
Estadı́stica 2012b,c).7 Because of the assumptions of INE, we incorporated emi-
gration into the matrix U, treating emigration and mortality as two competing risks
for leaving the population. See Section 6.3 for further discussion of ways to treat
migration.

In a press note on the population projections of 2012, INE emphasized two key
findings. First, the population of Spain is expected to decline from 46.2 million persons
in 2012 to 41.5 million by 2052. Second, the population is expected to age. INE estimates
that 37 percent of the population will be aged 64 or older in 2052, raising the overall
dependency ratio, defined as the quotient between the population under 16 and over 64
years of age and the population aged 16 to 64, from 0.504 (in 2012) to 0.995 (in 2052).
These projection results form the basis of governmental planning (Instituto Nacional de
Estadı́stica 2012a). Analysing their sensitivity and elasticity to changes in the underlying
assumptions is therefore not only relevant for the demographic research community, but
also for policy makers in Spain.

5. Sensitivity and elasticity of the population projection of Spain

We investigate the sensitivity and elasticity of the projection results at the terminal time
T = 40, considering both the population as a whole and the male and female popula-
tion separately. In constructing the transition matrices U(t) we combined mortality and
emigration as independent ways of leaving the population. Let Pi be the element in the
(i+ 1, i) entry of U; then we write

Pi = (1− qi) (1− ri) (56)

where qi is the probability of death and ri the probability of emigrating.

7This seems strange to us, but is clear in the data provided by INE.
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5.1 Sensitivity of the total population size

Figure 1 shows the sensitivity of the total population sizeN(T ), at terminal time T = 40,
to changes in the vital rates applied in every projection year, as a function of the age at
which the vital rate is perturbed, as shown in equations (49) and (51).

Figure 1: Sensitivity of total population size
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(c) Sensitivity to immigration
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Notes: The sensitivity of the total population size N(T ), at the terminal time T = 40, to changes in age-specific vital rates,
applied in every year from t = 0 to t = T . (a) Sensitivity to age-specific mortality or emigration, which are
indistinguishable in this model. (b) Sensitivity to age-specific fertility, (c) Sensitivity to age-specific immigration.
Based on Instituto Nacional de Estadı́stica (2012c) projections for Spain from 2012 to 2052.

Figure 1 suggests that perturbations in mortality, emigration and immigration tend
to have the largest effect on the final population size if they occur around age 30. Large
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cohorts pass through age groups 30 to 40 at the beginning of the projection period, so
that any perturbations in the vital rates concern large population numbers. The effects of
perturbations also accumulate during the projection period, as population members move
to older age groups.

Additive perturbations in either mortality or emigration rates have a w-shaped effect
on N(T ), with effects being largest around age 30 and to a lesser extent around age 50.
Increasing rates at these ages by one unit during the projection period would reduce the
final population size by between 1.8× 107 and 2× 107 units. Perturbations at other ages,
especially above age 65, would have a smaller effect on the final population size.

Perturbations in immigration also have the strongest effect on the final population
size if they occur at young adult ages. At age 30, increasing immigration numbers by one
unit, i.e. by one male and one female immigrant per projection year, increases the final
population size by more than 80 persons. This includes the additional immigrants them-
selves and their offspring. At ages above 30, the effect of perturbations in immigration
numbers decreases. The sensitivities to changes in immigration are many orders of mag-
nitude smaller than those to changes in the other vital rates. This is because immigration
is measured in numbers, while mortality/emigration and fertility are per capita rates. As
we will see below, elasticities help such comparisons by scaling values as proportional
perturbations.

The sensitivity of total population size to perturbations in fertility rates increases
with age. INE has defined fertility assumptions for women of ages 15 to 49. Among
these age groups, perturbations at age 49 have the strongest effect on the total population
size at time T = 40. An increase in fertility rates by one unit across all projection years
would increase the final population size by around 10×106 units. Figure 1 also shows that
perturbations in fertility at higher ages would have even larger effects. Unless women’s
fertility could be extended beyond age 50 in the future, this result is only of theoretical
interest.

5.2 Elasticity of male and female population sizes

While Figure 1 compares the effects of additive perturbations across ages, comparisons
between vital rates are difficult, because immigration assumptions are defined in terms of
numbers and fertility and mortality/emigration assumptions as rates. In order to compare
the effect of perturbations across vital rates, we calculate elasticities. Figure 2 shows the
elasticity of the male and female populations at T = 40 to perturbations in mortality,
fertility and migration as a function of the ages at which perturbations occur.

The elasticity of male and female populations to perturbations in vital rates is strong-
est around ages 25 to 35. The effects are stronger for the male than for the female popula-
tion, because the male population reacts to perturbations of both male and female immi-
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gration numbers and emigration rates. If the female population increases, this increases
the number of male offspring. The female population, by contrast, is not directly affected
by perturbations in male migration. For similar reasons, the male population reacts more
strongly to perturbations in fertility than the female population. The elasticity of the final
male and female population sizes to perturbations in fertility is highest around age 35.
The elasticity results thus confirm that projection parameters at ages 25 to 35 have to be
defined with particular care if the projection outcome of interest is the final population
size.

Figure 2: Elasticity of male and female population sizes
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(b) Female population
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Notes: The elasticity of total male and female population size N(T ), at the terminal time T = 40, to changes in
age-specific vital rates, applied in every year from t = 0 to t = T . (a) Elasticity of the total male population, (b)
Elasticity of the total female population. Based on Instituto Nacional de Estadı́stica (2012c) projections for Spain
from 2012 to 2052.

Population size is most affected by changes in mortality in old age — around 85
years for males and 90 years for females. Because mortality is low at early ages, pro-
portional changes have little impact and the aging population increases the importance of
changes affecting old individuals.

5.3 Elasticity of the school-age population (6 to 16 years)

Elasticities to changes in the vital rates can also be calculated for subgroups of the popu-
lation, as in (35). As an example, we calculate the elasticity of the school-age population
groups in Spain (6 to 16 years, male and female persons combined) to perturbations.
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Again, we focus on the size of this population group at T = 40 and assume that pertur-
bations have occurred throughout the projection period.

Figure 3: Elasticity of school-age population
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Notes: The elasticity of the school-age population size (6–16 years), at the terminal time T = 40, to changes in age-specific
vital rates, applied in every year from t = 0 to t = T . Based on Instituto Nacional de Estadı́stica (2012c)
projections for Spain from 2012 to 2052.

Figure 3 shows that perturbations in mortality rates have almost no influence on the
number of school-age children in the final projection year. Perturbations in immigration
and emigration directly influence the size of the school age population if they occur at
young ages (particularly ages 1 to 10 years). A one per cent increase in immigration
numbers at age 5, for instance, would increase the number of school-age children in the
final projection year by more than 0.01 percent. Perturbations in migration at ages 20
to 35 influence the school-age population through fertility. A change in the number of
women in these age groups influences the number of newborn children in Spain who
reach school age after 6 years. Fertility has by far the largest effect on the school-age
population: If the fertility rate were one per cent higher than assumed by INE during the
projection period at age 34 alone, the school-age population in the final projection would
be 0.08 per cent larger. Fertility assumptions must therefore be of particular concern for
policy makers interested in the future development of this population group.
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5.4 Elasticity of population with dementia

It is often interesting to project the health status of a population. Here, we weight the
population by the age-specific prevalence of dementia (Alzheimer Europe 2014) and cal-
culate the elasticity of the number of persons with dementia at T = 40 to perturbations in
the vital rates and in the prevalence schedule. Figure 4 shows the prevalence of dementia
by age among the Spanish population in 2012. Prevalence increases strongly above age
70, and is higher for women than for men. We use these prevalences as the weight vector
c in (35). Figure 5 shows the elasticity of the projected population with dementia in 2052
(male and female cases combined) to perturbations.8

Figure 4: Prevalence of dementia in Spain, 2012
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Notes: (Age- and sex-specific prevalence of dementia in Spain in the year 2012 from Alzheimer Europe (2014).

The number of persons with dementia reacts most strongly to perturbations in the
prevalence schedule. A one percent increase at any age between 85 and 90 years across
projection years, for instance, would increase the number of dementia cases in the last
projection year by between 0.05 and 0.06 per cent. Perturbations in the vital rates have
smaller effects. Changes in mortality and migration before age 30 have no effect because
persons in these age groups are rarely susceptible to dementia before the end of the pro-
jection. For the same reason, changes in fertility have no effect. Above age 30, the effect

8We project the future number of dementia cases by holding current prevalence rates constant. For a similar
approach to project the future number of dementia or Alzheimer cases, see Wancata et al. (2003) and Fox et al.
(2001). For a web-based application which allows the use of time-varying incidence rates to project future
Alzheimer cases, see Colantuoni et al. (2010).
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of perturbations in mortality, emigration and immigration increases, reaching its highest
level at ages 55 (emigration) and 60 (immigration). Perturbations of mortality show the
largest impact between ages 85 and 90, when prevalence rates in dementia reach high
levels. Overall, however, developments in the prevalence of dementia appear to be more
decisive for the future number of dementia cases than trends in the vital rates.

Figure 5: Elasticity of the population with dementia
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Notes: Elasticity of the population with dementia at the terminal time T = 40 to changes in age-specific vital rates and
prevalences, applied in every projection year from t = 0 to t = T . Based on Instituto Nacional de Estadı́stica
(2012c) projections for Spain from 2012 to 2052 and dementia prevalence from Alzheimer Europe (2014).

5.5 Elasticity of dependency and support ratios

One of the findings highlighted by INE is that the dependency ratio (defining persons
under age 16 and over age 64 as dependent) will double during the projection period. In
2052, the dependent population is expected to be as large as the population of working
age. We show the elasticities of the dependency ratio at T = 40, calculated from (39) and
(40), in Figure 6.

The dependency ratio reacts to perturbations in vital rates across all ages, but the size
and direction of effects differ. Perturbations in immigration and emigration between ages
20 and 30, where immigration numbers and emigration rates are particularly high, have
the strongest influence. Cohorts that pass through these age groups early in the projection
period spend many years in the working-age population and barely contribute to to the
size of the population classified as ‘dependent’.
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The elasticity to the mortality rate increases above age 40 and reaches a maximum
around age 85. Perturbations in fertility rates have the proportionally smallest effect. This
is because during the 40-year projection period, newborn cohorts contribute both to the
size of age groups defined as dependent and to the working age population, and the effects
cancel each other out to some extent.

Figure 6: Elasticity of dependency and support ratio
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The dependency ratio used by INE is a simplified description of economic depen-
dency. It disregards individuals above age 65 who continue to be productive and those
16–64 who are not part of the labour force. A more nuanced perspective is provided by
the economic support ratio (Prskawetz and Sambt 2014), which is the ratio of total labor
income to total consumption. These ratios can be calculated from age-specific income
and consumption data prepared by the National Transfer Accounts (NTA) Project.9 We
calculated support ratios for Spain, based on these NTA data for the year 2000, using
per capita normalised annual consumption (public and private consumption) and labour
income flows as weight vectors, as in (39).

Figure 6 shows the elasticities of the support ratio at T = 40 to perturbations in
the vital rates, applied in every projection year.10 The elasticities of the two indices are
9Data and further information are available at www.ntaccounts.org. Last accessed: 25 October 2014.

10The support ratio (income over consumption) has the opposite sense to the dependency ratio (dependent over
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similar, but less pronounced, except for the elasticity to fertility. Increases in fertility
have a larger effect on the support ratio. This reflects Spanish income and consumption
patterns in 2000, in which consumption is greater than income until about age 24. Young
persons therefore remain ‘net consumers’ for longer than assumed by the dependency
ratio, and the net effect of increases in fertility would be to put a downward pressure on
the support ratio.

6. Discussion

6.1 Sensitivity analysis and scenarios

Population projections are hungry for demographic data. The projection of Spain, in
which 101 ages are projected over 40 years on the basis of annual rates of mortality,
fertility, immigration, and emigration, contains over 16,000 pieces of information. The
result of all this information is a diverse set of outcomes: population vectors, population
sizes (weighted in various ways), population ratios, growth rates, etc. Changes in any of
the parameters at any time will change these results. The sensitivity structure quantifies
these effects.

Disciplines in which sensitivity analyses of various kinds have become common
(e.g., population ecology from the 1980s onwards) experience a shift in perspective, in
which the sensitivity of a dependent variable becomes as much a part of the analytical
results as the dependent variable itself. From this perspective, until you have analyzed
the sensitivity relationships, you have not understood the model.

Statistical offices and agencies often repeat their projections under multiple scenar-
ios (low, medium, high, etc.). Such scenario-building is a kind of perturbation analysis,
quantifying the effects of large changes imposed on many vital rates simultaneously, but
the number of possible scenarios is effectively infinite. In contrast, sensitivity and elas-
ticity analyses provide a quantitative measure of the effects of perturbations of specific
rates. For example, from graphs like Figures 5 and 6, we know, without the need for any
scenario modifications at all, that given changes in the vital rates would have smaller ef-
fects on the number of persons with dementia than would changes in the prevalence rates.
We know that changes in fertility will have different effects on the economic support ra-
tio than on the total dependency ratio. Such conclusions may help decide what kind of
scenario modifications are most worth examining.

productive). To facilitate comparisons between the two measures, we have reversed the signs of the elasticity
results for the economic support ratio.
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6.2 Sensitivity and uncertainty

Because population projections are used for social, economic, and ecological planning,
demographers have invested considerable attention to measuring their uncertainty. A
large body of literature has focused on probabilistic population projections based on
past projection errors, expert opinion or stochastic models (Keilman, Pham, and Hetland
2002).

Sensitivity analysis does not, by itself, provide information on the uncertainty of
a projection [it is a prospective, not a retrospective, perturbation analysis, in the termi-
nology of Caswell (2000)]. Knowing that an outcome is more or less sensitive to some
parameter does not tell whether the outcome is more or less certain. That also depends
on the precision with which the parameter is estimated.

When this precision is known, sensitivity analysis provides a powerful way to trans-
late it into the uncertainty in projection outcomes. Suppose that ξ is a projection result
(vector- or scalar-valued) that depends on a set of parameters θ. The uncertainty in the
estimate of ξ is measured by the covariance matrix

C(ξ) =
(

Cov(ξi, ξj)
)
. (57)

If ξ is a scalar, this is simply the variance V (ξ).
The uncertainty in the parameter estimates is quantified by the covariance matrix

C(θ), which might be obtained, e.g., from the Fisher information matrix provided by
maximum likelihood estimation of θ.

Then, to first order, the uncertainty in θ translates into uncertainty in ξ by

C(ξ) =
dξ

dθT
C(θ)

(
dξ

dθT

)T

. (58)

If ξ is a scalar, this reduces to

V (ξ) =
dξ

dθT
C(θ)

(
dξ

dθT

)T

(59)

and if θ is also a scalar, then

V (ξ) =

(
dξ

dθ

)2

V (θ). (60)

These calculations formalize the intuitive notion that uncertainty in a parameter to which
an outcome is very sensitive translates into a high degree of uncertainty in that outcome,
and the sensitivities dξ/dθT are essential to the translation.
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6.3 Immigration and emigration

Migration is challenging to model. Births, deaths, and emigration are events that happen
to individuals in the population under study. They can be described by rates, estimated
from the number of events and the number of individuals at risk. Those rates can be
transformed to probabilities and then applied to the appropriate components of cohorts to
project the population forward.

Immigration, however, is not an event to which individuals in the population are
at risk, and hence it cannot be described as a rate. Thus, in equations (4), (7), and (8),
immigration appears as a vector b(t), with units of numbers of individuals, rather than as
one of the per capita rates in U and F.

Immigration is handled in various ways by the agencies engaged in projections. The
projection of Spain in Section 4 takes the sensible approach of separating emigration
and immigration, including emigration along with mortality in the matrix U, and placing
immigration in b(t). The projections prepared by Eurostat (Lanzieri 2009) make this
approach slightly more subtle, noting that individuals who immigrate during (t, t + 1)
spend some fraction of the interval in the population, and hence subject to the mortality
and fertility rates in action during that time (G. Lanzieri, personal communication). This
means that a basic projection equation becomes

n(t+ 1) = A(t)n(t) +B(t)b(t) (61)

where B(t) is a matrix that includes mortality and fertility of immigrants during the
fraction of the interval during which they are assumed to be present (usually 0.5 years).
Our approach is easily extended to the projection (61), for example, simply by replacing
the term db(t)/dθT(s) in equation (13) with

B(t)
db(t)

dθT(s)
+
(
bT(t)⊗ Iω

) dvecB(t)

dθT(s)
.

A different approach defines the additive vector b as net migration (immigration −
emigration), thus treating both immigration and emigration as additive. This has unfortu-
nate theoretical properties; it asserts that the number of individuals leaving the population
is independent of the population at risk of leaving. In principle, in the long run this could
draw a population down to impossible negative values. For the short time horizons in
practical population projections, this is unlikely to be a problem.

Yet another option describes both immigration and emigration as rates applied to
the population at risk. This conceptualizes immigration as a flow of individuals “sucked”
into the population by the residents. It also has bad long-run theoretical properties: the
number of immigrants goes to zero as population decreases, and increases without bounds
as the population grows.
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These models focus on a single population. The analysis of migration can also be
embedded in a multiregional model (Rogers 1975), in which the immigrants to one pop-
ulation come from the emigrants leaving another population. Such multiregional models
are a special case of multistate models (Rogers 1985) and the beginnings of the theory
for sensitivity analysis of multistate models exists (Caswell 2012; Caswell and Salguero-
Gomez 2013). We will explore the sensitivity analysis of multistate projections in a
subsequent paper.

All of these approaches produce linear projections that are simple modifications of
the basic models (4)–(8). There is also a tradition of theories that model migration as a
function of population size, distance, and other properties of origin and destination. These
models are descendants of the Zipf (1946) gravity model. Courgeau (1995) discusses how
these models arise from theories of choice. They lead to expressions in which the log of
the number of migrants from location i to location j is a linear function of the logs of
population size, distance, and other variables. Cohen et al. (2008) and Kim and Cohen
(2010) have applied the method in a detailed analysis of data on international migration
and were able to capture significant amounts of the variance in migration flows.

Because migration in gravity models is a power function of population size, the
resulting projections are nonlinear. We do not address the analysis here, but note that
sensitivity analysis can also be applied to nonlinear models (Caswell 2007, 2008), a de-
velopment noted by Cohen et al. (2008) as an open research question.

6.4 Data requirements and applications

Goldstein and Stecklov (2002) have lamented the lack of clarity and transparency in re-
ports of population projections. The trajectories of mortality, fertility, and immigration on
which the projections depend are seldom reported, and “even when extensive documen-
tation is provided, it is difficult to replicate the calculations without access to proprietary
computer software used by the team that prepared the projection” (Goldstein and Stecklov
2002, p. 121). We urge agencies to consider reporting the basis of their projections in the
form of projection matrices. The entries of U, F, and b may require considerable effort
to obtain, and sophisticated methods may be needed to estimate them from data on pop-
ulations, births, deaths, etc. But once the estimation process is completed, the projection
matrix formulation provides a readily computable, non-proprietary method of studying
the results and exploring scenarios. The mathematical relationships extracted from those
matrices will be valid regardless of how the matrices themselves are obtained. Sensitivity
analysis is just one of their possible uses.

Sensitivity analyses using matrix calculus techniques require only the basic ingredi-
ents of any cohort component projection: the initial age- and sex-specific population vec-
tors and the fertility, mortality, and migration parameters for each projection year. The
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sensitivity and elasticity analyses can be extended to multistate population projections;
these developments are left for future research. In the meantime, the analyses presented
here will benefit demographers and government officials producing projections, because
they will improve our understanding of the underlying mechanisms leading to uncertain-
ties and allow for precise quantifications of the impact of changes in vital rates or policies
on any projection output.
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Appendix A. Derivations

In this section, we present the derivations of the sensitivity results in Section 3. The
derivations use matrix calculus (Magnus and Neudecker 1985, 1988). For a general
presentation of the approach, and many additional demographic applications of this ap-
proach, see Caswell (2008, 2009). For an introductory presentation of the mathematics
of matrix calculus, see Abadir and Magnus (2005). Early, but not well known, demo-
graphic papers using matrix calculus for sensitivity analyses include Willekens (1977),
and Ekamper and Keilman (1993). Some related ideas, couched in terms of functional
analysis, can be found in Arthur (1984).

To obtain derivatives, we begin by calculating differentials. The differential of a
matrix X is the matrix of differentials of the elements of X:

dX =
(
dxij

)
. (A-1)

These differentials follow rules familiar from scalar calculus; in particular we will make
use of the product rule: for any two matrices X and Y,

d(XY) = (dX)Y +X(dY). (A-2)

We make frequent use of the vec operator, which creates a vector from a matrix by stack-
ing columns on top of each other; e.g.,

vec
(
a b
c d

)
=
(
a c b d

)T
. (A-3)

An important result, due to Roth (1934), says that, for any matrices X, Y, and Z of the
proper sizes to multiply,

vecXYZ = (ZT ⊗X) vecY. (A-4)

The vec of a matrix differential satisfies

vec (dX) = dvecX. (A-5)

A.1 Derivatives of n(t)

One-sex projections. We begin with the single sex projection of equation (4). Take the
differential of both sides to obtain

dn(t+ 1) = A(t)dn(t) + [dA(t)]n(t) + db(t). (A-6)

Now apply the vec operator to both sides. If we write [dA(t)]n(t) = Iω [dA(t)]n(t),
then Roth’s theorem implies that

dn(t+ 1) = A(t)dn(t) + (nT(t)⊗ Iω) dvecA(t) + db(t). (A-7)
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Notice that A(t) and b(t), at time t, are functions of the parameter vector θ(s), at time
s. By the chain rule for matrix calculus, the derivative with respect to the θ(s) is then

dn(t+ 1)

dθT(s)
= A(t)

dn(t)

dθT(s)
+ (nT(t)⊗ Iω)

dvecA(t)

dθT(s)
+

db(t)

dθT(s)
. (A-8)

This is a dynamic system in the derivative matrix dn(t)/dθT(s). If the parameter vector
affects the vital rates but not the starting population for the projection, then (A-8) is
iterated from the initial condition

dn(0)

dθT(s)
= 0ω×p. (A-9)

The sensitivity of the projection to the initial population is obtained by setting θ =
n0. The last two terms in (A-8) are then zero, and the remaining term is iterated from the
initial condition

dn(0)

dθT(s)
= Iω. (A-10)

Two-sex projections. We apply the same approach to the two-sex projection in equa-
tions (7) and (8). For notational convenience, we temporarily suppress the time-depend-
ence of the matrices U(t), F(t), and b(t). Differentiating both sides of (7) and (8) gives

dnf (t+ 1) = (dUf )nf (t) +Ufdnf (t) + φ (dF)nf

+φFdnf (t) + dbf (A-11)
dnm(t+ 1) = Umdnm(t) + (1− φ)Fdnf (t) + (dUm)nm(t)

+(1− φ) (dF)nf (t) + dbm. (A-12)

Applying the vec operator gives

dnf (t+ 1) = (Uf + φF) dnf (t) +
(
nT
f (t)⊗ Iω

)
dvecUf

+φ
(
nT
f (t)⊗ Iω

)
dvecF+ dbf (A-13)

dnm(t+ 1) = Umdnm(t) + (1− φ)Fdnf (t) + (nT
m(t)⊗ Iω) dvecUm

+(1− φ)
(
nT
f (t)⊗ Iω

)
dvecF+ dbm. (A-14)

Notice that the male population is sensitive to changes in the parameters of the female
population, because fertility of females produces new males. The second and fourth
terms in (A-14) provide the required links between the female and male population.

We introduce the parameter vector θ(s) and use the chain rule to write the differen-
tials in (A-13) and (A-14) as derivatives with respect to θ(s), and thus obtain the sensi-
tivity expressions (17) and (18).
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A.2 Derivatives of projection matrices

We turn now to the derivatives with respect to mortality, fertility, and immigration of the
projection matrices U and F, and the immigration vector b, given in Section 3.4.

Mortality. Write the matrix U as

U = Z ◦ (1ωp
T) , (A-15)

where Z contains ones on the subdiagonal and zeros elsewhere, and p = exp(−µ) is a
vector of survival probabilities. Differentiating gives

dU = Z ◦ (1ωdp
T) . (A-16)

Apply the vec operator to obtain

dvecU = diag (vecZ)vec (1ωdp
T) (A-17)

= diag (vecZ) (Iω ⊗ 1ω) dp (A-18)

where the differential of p is
dp = −diag (p)dµ. (A-19)

Substituting (A-19) into (A-18) gives the result (24).

Fertility. The matrix F, with the fertilities f in the first row and zeros elsewhere, can
be written

F = e1f
T (A-20)

where e1 is the first unit vector of dimension ω. Differentiating gives

dF = e1df
T. (A-21)

Applying the vec operator gives

dvecF = (Iω ⊗ e1) df (A-22)

which appears in (25).

Immigration. The derivative of the immigration vector to itself is the identity matrix,
by definition.
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A.3 Derivatives of dependent variables

The derivative of a weighted population size follows from differentiating N = cTn(t),

dN = cTdn(t) (A-23)

from which it follows that
dN

dnT(t)
= cT. (A-24)

The chain rule,
dN

dθT(s)
=

dN

dnT(t)

dn(t)

dθT(s)
(A-25)

gives equation (35).
To obtain the sensitivity of a ratio R(t), differentiate (38),

dR(t) =
cTn(t)aTdn(t)− aTn(t)cTdn(t)

[cTn(t)]
2 . (A-26)

Factoring out dn(t) and applying the chain rule gives equation (39).

The sensitivity of the growth rate λ(t) is obtained by differentiating equation (44),

dλ(t) =
cTn(t)cTdn(t+ k)− cTn(t+ k)cTdn(t)

[cTn(t)]
2 (A-27)

=
cT

cTn(t)
dn(t+ k)− cTn(t+ k)cT

[cTn(t)]
2 dn(t) (A-28)

=
cT

cTn(t)
dn(t+ k)− λ(t)cT

cTn(t)
dn(t) (A-29)

from which (45) follows by the chain rule.
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Appendix B. Notes on the treatment of immigration in population
projections

From an informal survey of Statistical Offices in European countries and the United Na-
tions, we found migration to be described in terms of either net migration numbers or in
terms of immigration numbers and emigration rates.

1. Net migration numbers: the Statistical Offices of Germany, France, Ireland, Esto-
nia, Sweden, Switzerland, Iceland, the United Kingdom, and the United Nations
use net migration numbers. These are partly defined on the basis of past develop-
ments of net migration trends; some Statistical Offices also identify potential future
trends in immigration and emigration, and then deduct emigration numbers from
immigration numbers for each projection year. In our notation, the resulting net
migration numbers would appear in the vector b(t).

2. Immigration numbers and emigration rates: The Statistical Offices of Austria and
Belgium have chosen the same approach as the Statistical Office of Spain in defin-
ing emigration as a rate and including it with mortality in the matrix U(t). Immi-
gration is defined in terms of numbers and included in b(t).

The Statistical Offices of Germany, France, Sweden, and the United Kingdom state
that half of all immigrants and emigrants are assumed to move at the beginning of each
projection year, and half at the end of each projection year; or that all migrants spend
half of the immigration/emigration year in the population. Migrants are subject to the
mortality and fertility schedules during the fraction of the projection year that they spend
in the country. The United Nations projections follow a similar approach.

In addition to their treatment of immigration, statistical offices differ in terms of
the geographical level used for the projections and in terms of the number of criteria by
which the projections are planned and calculated. Some offices project the population on
a country-level. Others calculate projections for subnational regions or municipalities and
combine them to project the entire country. The projections of Switzerland and Sweden
are multistate projections, with separate projections calculated for citizens and foreign
residents. Table B-1 provides links to websites of the statistical offices discussed here.
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Table
B

-1:
L

inksto
w

ebsitesofstatisticaloffices.

•
A

ustria:http://w
w

w
.statistik.at/w

eb
de/statistiken/bevoelkerung/dem

ographische
prognosen/

bevoelkerungsprognosen/index.htm
l,

•
B

elgium
:http://statbel.fgov.be/fr/binaries/FO

R
PO

P1360
10697

F
tcm

326-244744.pdf,
•

E
stonia:http://w

w
w

.stat.ee/76320,
•

France:http://w
w

w
.insee.fr/fr/publications-et-services/docs

doc
travail/docf1008.pdf,

•
G

erm
any:https://w

w
w

.destatis.de/D
E

/Z
ahlenFakten/G

esellschaftStaat/B
evoelkerung/

B
evoelkerungsvorausberechnung/VorausberechnungsM

odell.pdf?
blob=publicationFile,

•
Iceland:http://w

w
w

.statice.is/lisalib/getfile.aspx?Item
ID

=15409,
•

Ireland:http://w
w

w
.cso.ie/en/m

edia/csoie/releasespublications/docum
ents/population/2013/

poplabfor2016
2046.pdf,

•
Sw

itzerland:http://w
w

w
.bfs.adm

in.ch/bfs/portal/de/index/new
s/publikationen.htm

l?publicationID
=3989,

•
Sw

eden:http://w
w

w
.scb.se/statistik/

publikationer/B
E

0401
2012I60

B
R

B
E

51B
R

1202E
N

G
.pdf,

•
U

nited
K

ingdom
:http://w

w
w

.ons.gov.uk/ons/rel/npp/national-population-projections/
2012-based-reference-volum

e–series-pp2/index.htm
l,

•
U

nited
N

ations:http://w
w

w
.un.org/en/developm

ent/desa/population/publications/m
anual/projection/

sex-age.shtm
l,
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