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Variance models of the last age interval and their impact on life 
expectancy at subnational scales  

Ernest Lo1 

Dan Vatnik2 

Andrea Benedetti3 

Robert Bourbeau4  

Abstract 

BACKGROUND 
The Chiang method is the most widely accepted standard for estimating life expectancy 
(LE) at subnational scales; it is the only method that provides an equation for the LE 
variance. However, the Chiang variance formula incorrectly omits the contribution of 
the last age interval. This error is largely unknown to practitioners, and its impact has 
not been rigorously assessed. 
 

OBJECTIVE 
We aim to demonstrate the potentially substantial role of the last age interval on LE 
variance. We further aim to provide formulae and tools for corrected variance 
estimation. 
 

METHODS 
The delta method is used to derive variance formulae for a range of variance models of 
the last age interval. Corrected variances are tested on 291 empirical, abridged life 
tables drawn from Canadian data (2004‒2008) spanning provincial, regional, and intra-
regional scales. 
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RESULTS 
The last age interval death count can contribute substantially to the LE variance, leading 
to overestimates of precision and false positives in statistical tests when using the 
uncorrected Chiang variance. Overdispersion amplifies the contribution while error in 
population counts has minimal impact. 
 

CONCLUSIONS 
Use of corrected variance formulae is essential for studies that use the Chiang LE. The 
important role of the last age interval , and hence the life table closure method, on LE 
variance is demonstrated. These findings extend to other LE-derived metrics such as 
health expectancy. 
 

CONTRIBUTION 
We demonstrate that the last age interval death count can contribute substantially to the 
LE variance, thus resolving an ambiguity in the scientific literature. We provide 
heretofore-unavailable formulae for correcting the Chiang LE variance equation. 

 
 
 

1. Background 

Life expectancy (LE) is a key demographic indicator that provides a summary index of 
the mortality experience of populations (Shyrock and Siegel 1976). However, it is also 
a statistical estimator that is computed from underlying random variables:  the vital 
statistics of deaths and births (Brillinger 1986; Chiang 1960) as well as population 
counts. Each LE estimate thus has a statistical variance that represents a measure of its 
precision: this precision can be expressed as a standard error, coefficient of variation, or 
confidence interval, for example. This variance is also essential for statistical tests that 
are used to ascertain whether or not observed differences in LE are likely caused by 
random chance. Assessment of LE variance is especially pertinent to smaller, 
subnational populations5, where variability in LE can become substantial. 

Chiang (Chiang 1960, 1984) first provided a detailed assessment of the statistical 
properties of life tables and LE. He derived the only analytic equation for the variance 
of LE, which he expressed, using the delta method, as a weighted sum of the variances 
of the underlying age-specific survival probabilities. More recent investigations (Eayres 
and Williams 2004; Scherbov and Ediev 2012; Toson and Baker 2003) have further 
examined the statistical properties of the Chiang LE estimator down to extremely small 
population sizes, and established a total population size threshold of 5,000 person-years 
(PY) above which the LE estimate and its normality remain valid. Due to its 

                                                           
5 For example, provinces, states, health regions or counties. 
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accessibility and robustness, the Chiang LE estimator, as well as its associated variance 
formula, have become an established standard used in both monitoring and scientific 
studies (von Gaudecker and Scholz 2007; Geruso 2012; Kyte and Wells 2010; Page et 
al. 2007). 

As first noted in 2004 (Eayres and Williams 2004), however, the Chiang variance 
formula incorrectly omits the variance contribution of the mortality rate of the last age 
interval6. While a subsequent assessment (Toson and Baker 2003) concluded that the 
magnitude of this contribution to the total LE variance was negligible for populations 
above 5,000 PY in size, a more recent study (Scherbov and Ediev 2012) suggested a 
more critical role of the last age interval in the statistical efficiency of LE and the need 
for further studies. Thus there exists ambiguity in the literature as to the necessity for 
and impact of a last age interval correction in the Chiang variance formula. 
Furthermore, none of the above-cited studies have shown or explained how the standard 
variance formula should be corrected, resulting in further uncertainty for practitioners. 

The variance properties of the last age interval have not, in general, been studied, 
though its contribution to the overall LE variance could be substantial. For example, 
sparse death counts and the highest mortality rates mostly occur in the last age interval, 
which lead to elevated statistical variability. Data quality issues in population counts 
(Bourbeau and Desjardins 2007; Bourbeau and Lebel 2000; Coale and Kisker 1990; 
Wilmoth and Lundstrom 1996) and heterogeneity or frailty in mortality rates 
(Bebbington, Lai, and Zitikis 2011; Ting, Yang, and Anderson 2013; Vaupel, Manton, 
and Stallard 1979) could drive further increases in the variance contribution of the last 
age interval. There is therefore a general need to quantify and examine the variance 
contribution of the last age interval under different possible variance models of its 
corresponding demographic data, which has not previously been done. This essentially 
entails quantification of the variance of the life table closure method that describes the 
last age interval contribution to LE. 

The objectives of the current study are to assess the variance contribution of the 
last age interval over a range of variance models, and to evaluate the impact of each 
model on both the precision and on statistical tests of LE. The delta method used by 
Chiang will be extended to derive LE variance formulae for each of the variance models 
considered. Impact assessments will be done on empirical datasets that extend over a 
range of subnational geographic scales. The error in the Chiang variance formula is first 
described, and the impact of the omitted last age interval variance contribution is 
demonstrated. Advanced variance models that account for uncertainty in population 
counts and mortality rate heterogeneity are next assessed. Finally, the variance of an 
alternative life table closure method that fits and extrapolates the logistic or ‘Kannisto’ 

                                                           
6 Silcocks (2001) was the first to note the variance contribution of the last age interval, using a LE estimation 
method slightly different from that of Chiang 
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function to the age-specific mortality rates is examined using Monte Carlo simulation; 
these results are intended to provide an initial assessment of the feasibility of 
extrapolation closure methods. An Excel tool that computes the life expectancy 
variances for all models excepting the Kannisto is provided to make the findings of this 
study more accessible and to further encourage their implementation in practice. 

 
 

2. Theory 

2.1 The delta method approach 

A general variance model of LE can be written as 𝐿𝐸 = 𝑓�𝑦𝑖|𝑧𝑗�, where 𝑦𝑖  are 
identified as independent random variables, and 𝑧𝑗 are considered fixed parameters (i.e., 
measured with negligible error). The LE variance can then be expressed using the delta 
method (Casella and Berger 2002; ver Hoef 2012) as a weighted sum of the variances 
of the 𝑦𝑖: 

 

𝜎𝐿𝐸2 ≈ ∑ �𝜕𝑓
𝜕𝑦𝑖
�
2
𝜎𝑦𝑖
2𝑛

𝑖=1 , 

 

where the weighting factors, �𝜕𝑓
𝜕𝑦𝑖
�
2
, can also be interpreted as the sensitivity of the LE 

variance to each component variance contribution. The delta method thus provides a 
useful framework for identifying and quantifying the contributions of each source of 
stochastic variability, including those of the closure method, to the overall LE variance. 
This approach will be used to derive formulae for and to quantitatively assess each of 
the variance models of the last age interval considered in the current study. Key results 
are outlined below, while Appendix 1 provides more detailed derivations for each 
variance model. Symbols for life table variables and indices follow the convention used 
in Chiang (1984), which may differ slightly from standard demographic conventions, in 
order to facilitate comparison between the standard Chiang variance and the variance 
formulae of this study. The symbols used to denote the different variances are 
summarized in Table 1. 
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Table 1: Variance models and their associated variance symbols and measures 
of variance underestimation 

Variance model Variance model equation Variance symbol Measure of variance underestimation 

Chiang variance 𝑓(𝐷𝑥|𝑃𝑥 ,𝐷𝑤,𝑃𝑤) 𝜎𝐿𝐸.𝐶ℎ
2  ----- 

Adjusted Chiang variance 𝑓(𝐷𝑥 ,𝐷𝑤|𝑃𝑥 ,𝑃𝑤) 𝜎𝐿𝐸.𝑎𝑑𝑗
2  ∆𝜎𝑎𝑑𝑗.𝐶ℎ = 𝜎𝐿𝐸.𝑎𝑑𝑗 − 𝜎𝐿𝐸.𝐶ℎ 

Adjusted Chiang variance with 
population error 

𝑓(𝐷𝑥 ,𝐷𝑤,𝑃𝑤|𝑃𝑥) 𝜎𝐿𝐸.𝑎𝑑𝑗.𝑝𝑜𝑝
2  ∆𝜎𝑝𝑜𝑝.𝑎𝑑𝑗 = 𝜎𝐿𝐸.𝑎𝑑𝑗.𝑝𝑜𝑝 − 𝜎𝐿𝐸.𝑎𝑑𝑗 

Adjusted Chiang variance with 
overdispersion 

𝑓(𝐷𝑥 ,𝐷𝑤|𝑃𝑥 ,𝑃𝑤) 𝜎𝐿𝐸.𝑎𝑑𝑗.𝑁𝐵
2 7 ∆𝜎𝑎𝑑𝑗.𝐶ℎ.𝑁𝐵 = 𝜎𝐿𝐸.𝑎𝑑𝑗.𝑁𝐵 − 𝜎𝐿𝐸.𝐶ℎ.𝑁𝐵 

Kannisto variance 𝑓(𝐷𝑥|𝑃𝑥) 𝜎𝐿𝐸.𝐾𝑛
2  ----- 

 
 

2.2 The ‘standard’ Chiang variance model 

In Chiang’s derivation of the LE variance (Chiang 1984), the age-specific death counts 
are considered the only sources of statistical variability. The variance contribution of 
the last age interval is completely omitted, however, leading to the following variance 
model: 
𝐿𝐸𝐶ℎ = 𝑓(𝐷𝑥|𝑃𝑥,𝐷𝑤 ,𝑃𝑤), where 𝐷𝑥 and 𝑃𝑥 are the age-specific death and population 
counts corresponding to age group 𝑥 = 0 … w-1, and 𝐷𝑤 and 𝑃𝑤 are the death and 
population counts for the last, 𝑤𝑡ℎ, age interval. The delta method expression for the 

standard Chiang variance is thus 𝜎𝐿𝐸.𝐶ℎ
2 ≈ ∑ �𝜕𝐿𝐸

𝜕𝐷𝑥
�
2
𝜎𝐷𝑥
2𝑤−1

𝑥=0 . Under the assumption that 
the death counts are distributed binomially, Chiang derived tractable expressions for the 
partial derivative weights to obtain the well-known expression for the LE variance: 

 

𝜎𝐿𝐸.𝐶ℎ
2 ≈ �(𝑝0𝑥)2[(1− 𝑎𝑥)𝑛𝑥 + 𝐿𝐸𝑥+1]2 �

𝑞𝑥2(1− 𝑞𝑥)
𝐷𝑥

�
𝑤−1

𝑥=0

,  (1) 

where 𝑝0𝑥 is the survival probability from age 0 to age 𝑥, 𝑎𝑥 is the fraction of age 
interval lived, 𝑛𝑥 is the width of the age interval, 𝐿𝐸𝑥+1 is the life expectancy from age 
𝑥 + 1, and 𝑞𝑥 is the probability of dying in age interval 𝑥. Equation 1 represents the 
only available analytic formula for the 𝐿𝐸 variance and has been widely used in studies 
of LE to estimate its precision and for statistical testing (von Gaudecker and Scholz 
2007; Geruso 2012; Kyte and Wells 2010; Stratton et al. 2012). It is evident from this 

                                                           
7 The subscript ‘NB’ will be used to denote the LE variance with overdispersion; ‘NB’ refers to the negative 
binomial distribution that will be used to model overdispersion in the present study. In general, however, 
overdispersion models other than the negative binomial could also be used. 
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equation, however, that the Chiang LE variance represents the sum of variance 
contributions corresponding to each age interval except the last.  

 
 

2.3 The ‘adjusted’ Chiang LE variance model 

The life table closure method of the Chiang LE estimator assumes that the mortality or 
hazard rate in the last age interval is constant in time, which results in the following 
estimate of the person-years contributed: 𝐿𝑤 = ℓ𝑤/𝑀𝑤 = ℓ𝑤𝑃𝑤/𝐷𝑤, where ℓ𝑤 
represents the number of survivors at the beginning of the last age interval, and 
𝑀𝑤 = 𝐷𝑤/𝑃𝑤 represents the mortality rate of the last age interval. As first noted in 
2001 (Silcocks, Jenner, and Reza 2001), however, this dependence of 𝐿𝐸 on 𝐷𝑤 entails 
that its variance contribution should also be accounted for. The corrected variance 
model for the Chiang LE is then 𝐿𝐸𝑎𝑑𝑗 = 𝑓(𝐷𝑥 ,𝐷𝑤|𝑃𝑥 ,𝑃𝑤). Application of the delta 
method and using a Poisson distribution for 𝐷𝑤 yields the following corrected LE 
variance formula, which has been termed the ‘adjusted’ Chiang variance in previous 
studies (Eayres and Williams 2004; Toson and Baker 2003) (cf. Appendix 1 for further 
details):  

 
𝜎𝐿𝐸.𝑎𝑑𝑗
2 ≈ � �

𝜕𝐿𝐸
𝜕𝐷𝑥

�
2

𝜎𝐷𝑥
2 +

𝑤−1

𝑥=0

�
𝜕𝐿𝐸
𝜕𝐷𝑤

�
2

𝜎𝐷𝑤
2 .  

The second term in this equation represents the variance contribution of the last 
age interval death count. Assuming 𝐷𝑤 is Poisson distributed such that 𝜎𝐷𝑤

2 = 𝐷𝑤 , and 
substituting the expression for 𝐿𝑤 yields for the correction term (cf. Appendix 1 for 
further details): 

 

�
𝜕𝐿𝐸
𝜕𝐷𝑤

�
2

𝜎𝐷𝑤
2 = �

𝜕
𝜕𝐷𝑤

�
𝐿𝑤
ℓ0
��

2

𝐷𝑤 = �
𝜕
𝜕𝐷𝑤

�
𝑃𝑤
𝐷𝑤

𝑝0𝑤��
2

𝐷𝑤 =
𝑝0𝑤2

𝑀𝑤
3𝑃𝑤

 

 
Therefore, 

𝜎𝐿𝐸.𝑎𝑑𝑗
2 ≈ 𝜎𝐿𝐸.𝐶ℎ

2 +
𝑝0𝑤2

𝑀𝑤
3𝑃𝑤

. (2) 

The following key aspects can be noted: 𝜎𝐿𝐸.𝑎𝑑𝑗
2  is readily estimated by first 

computing the standard Chiang variance and then adding a correction term, 𝜎𝐿𝐸.𝑎𝑑𝑗
2 >

𝜎𝐿𝐸.𝐶ℎ
2 , and therefore the standard Chiang variance always underestimates the ‘correct’ 

variance, and, the magnitude of the correction term increases with the survival 
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probability 𝑝0𝑤 but decreases with increasing mortality rate 𝑀𝑤 and population 𝑃𝑤 of 
the last age interval.  

 
 

2.4 The adjusted Chiang LE variance model with population error 

In the statistical analysis of mortality rate metrics, the population or denominator counts 
are generally assumed to have negligible variability as compared to the death or 
numerator counts. However, this assumption may be untenable for the last age interval, 
which comprises the oldest age category of the population, and for which numerous 
data uncertainty issues have been raised. Identified sources of error include: age 
exaggeration and underestimation, age heaping, and transcription error (Coale and 
Kisker 1990). These considerations motivate the following variance model, which 
includes the variance of population counts of the last age interval: 𝐿𝐸𝑎𝑑𝑗 .𝑝𝑜𝑝 =
𝑓(𝐷𝑥 ,𝐷𝑤 ,𝑃𝑤|𝑃𝑥). The delta method expression for this variance model is as follows: 

 
 

𝜎𝐿𝐸.𝑎𝑑𝑗.𝑝𝑜𝑝
2 ≈ � �

𝜕𝐿𝐸
𝜕𝐷𝑥

�
2

𝜎𝐷𝑥
2 +

𝑤−1

𝑥=0

�
𝜕𝐿𝐸
𝜕𝐷𝑤

�
2

𝜎𝐷𝑤
2 + �

𝜕𝐿𝐸
𝜕𝑃𝑤

�
2

𝜎𝑃𝑤
2   

 
Detailed assessments of Canadian data using the ‘extinct generation’ method 

(Bourbeau and Lebel 2000) indicate a proportional population data error of 
approximately ±5% in the 90+ age group (cf. Appendix 1, Section 3). This results in a 

population variance estimate of 𝜎𝑃𝑤
2 ≈ �0.05

2
𝑃𝑤�

2
. Using the estimate for 𝜎𝑃𝑤

2  and 
substituting the expression for 𝐿𝑤 yields for this correction term (cf. Appendix 1, 
Section 3 for further details): 

 
�
𝜕𝐿𝐸
𝜕𝑃𝑤

�
2

𝜎𝑃𝑤
2 = �

𝜕
𝜕𝑃𝑤

�
𝑃𝑤
𝐷𝑤

𝑝0𝑤��
2

�
0.05

2
𝑃𝑤�

2

= �
𝑝0𝑤
𝐷𝑤

�
2
�

0.05
2

𝑃𝑤�
2

= �
𝑝0𝑤
𝑀𝑤

�
2
�

0.05
2
�
2

 
 

Therefore, 
𝜎𝐿𝐸.𝑎𝑑𝑗.𝑝𝑜𝑝
2 ≈ 𝜎𝐿𝐸.𝑎𝑑𝑗

2 + �
𝑝0𝑤
𝑀𝑤

�
2
�

0.05
2
�
2

 (3) 

 
Population error thus contributes an additional term to the adjusted Chiang 

variance whose magnitude of impact can be readily assessed. Appendix 1, Section 3 
provides more details of this derivation.  
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2.5 The adjusted Chiang LE variance with overdispersion 

The 𝐿𝐸 variance model in the presence of overdispersion is identical to that of the 
adjusted Chiang case, since the sources of stochastic variability remains that of the age-
specific death count. Thus 𝐿𝐸𝑎𝑑𝑗 .𝑁𝐵 = 𝑓(𝐷𝑥 ,𝐷𝑤|𝑃𝑥 ,𝑃𝑤). For the purpose of testing the 
effect of overdispersion a specific and standard parameterization of the negative 
binomial (𝑁𝐵) distribution will be used, where age-specific death counts (𝐷𝑥) are 
interpreted as the number of events occurring, conditional on a specified probability of 
death (𝑞𝑥) and number of survivors at the end of the age interval (denoted 𝑃𝑥+) 
(DeGroot 1986; Lloyd-Smith 2007; Manton and Stallard 1981). For 𝑥 < 𝑤, the 
variance of the death count can be readily expressed in terms of the standard binomial 
variance 𝜎𝐷𝑥

2  and the estimated populations at the start (𝑃𝑥−) and end (𝑃𝑥+) of the interval 

(cf. Appendix 1, Section 4): 𝜎𝐷𝑥.𝑁𝐵
2 = 𝐷𝑥 �

𝑃𝑥−

𝑃𝑥+
� = �𝑃𝑥

−

𝑃𝑥+
�
2
𝜎𝐷𝑥
2 . For the last age interval, 

𝐷𝑥 is interpreted as the number of deaths that occur over an ‘observation’ period of 5 
years (= the number of years of data aggregation). For this interval, 𝜎𝐷𝑤.𝑁𝐵

2 =
𝐷𝑤 �

𝑃𝑤−

𝑃𝑤+
� = �𝑃𝑤

−

𝑃𝑤+
� 𝜎𝐷𝑤

2  can be written (cf. Appendix 1, Section 4). The 𝐿𝐸 variance in the 

presence of overdispersion and including the contribution of the last age interval is thus: 
 
 

𝜎𝐿𝐸.𝑎𝑑𝑗.𝑁𝐵
2 ≈ � �

𝜕𝐿𝐸
𝜕𝐷𝑥

�
2

𝜎𝐷𝑥.𝑁𝐵
2

𝑤−1

𝑥=0

+ �
𝜕𝐿𝐸
𝜕𝐷𝑤

�
2

𝜎𝐷𝑤.𝑁𝐵
2   

 
= �(𝑝0𝑥)2[(1− 𝑎𝑥)𝑛𝑥 + 𝐿𝐸𝑥+1]2

𝑞𝑥2(1− 𝑞𝑥)
𝐷𝑥

�
𝑃𝑥−

𝑃𝑥+
�
2𝑤−1

𝑥=0

+
𝑝0𝑤2

𝑀𝑤
3𝑃𝑤

�
𝑃𝑤−

𝑃𝑤+
� (4) 

 
= 𝜎𝐿𝐸.𝐶ℎ.𝑁𝐵

2 +
𝑝0𝑤2

𝑀𝑤
3𝑃𝑤

�
𝑃𝑤−

𝑃𝑤+
�,  

where Equations 1 and 2 have been used with the binomial variances replaced by their 
overdispersed counterparts. As 𝑃𝑥− > 𝑃𝑥+, Equation 4 shows that overdispersion will 
inflate each of the component variance contributions to the total LE variance. Also, note 
that the ratio 𝑃𝑥−/𝑃𝑥+ results in an increasing variance inflation effect with age, 
consistent with conventional frailty models (Vaupel, Manton, and Stallard 1979).  
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2.6 The variance model of the Kannisto extrapolation closure method 

A detailed empirical study (Thatcher, Kannisto, and Vaupel 1998) has shown that the 
logistic or ‘Kannisto’ function accurately describes the mortality rates at the highest 
ages (80-104 years), overcoming the observed lack of fit of the classical Gompertz 
function at these ages. Thus the Kannisto extrapolation method fits the logistic function 
to the age-specific life table mortality rates: 𝜇(𝑥) =∝ 𝑒𝛽𝑥/(1+∝ 𝑒𝛽𝑥). The coefficients 
∝,𝛽 are estimated by regression fitting to the age intervals preceding the last, and the 
function 𝜇(𝑥) is then extrapolated to estimate the mortality rate profile over the last age 
interval. The life-years contribution to the LE, which represents the closure method, can 
then be estimated using standard demographic theory: 𝐿𝑤 = ℓ𝑤

ℓ0
∫ 𝑒𝑥𝑝 �−∫ 𝜇(𝑦)𝑥

𝑥𝑤
𝑑𝑦�∞

𝑥𝑤
𝑑𝑥. 

The variance model for the Kannisto closure method is 𝐿𝐸 = 𝑓(𝐷𝑥|𝑃𝑥), 𝑥 =
0 …𝑤 − 1, where fitting of data from preceding age intervals has removed any 
dependence of the 𝐿𝐸 on data from the last age interval. An analytic expression for 
𝜎𝐿𝐸.𝐾𝑛
2  is not possible due to the complex dependence of the life years in the last age 

interval, 𝐿𝑤, on the mortality rates 𝐷𝑥 of the preceding age intervals. Therefore in this 
study the variance of LE using the Kannisto closure method, 𝜎𝐿𝐸.𝐾𝑛

2 , is estimated using 
Monte Carlo simulation, with binomial variances used for 𝜎𝐷𝑥

2 .  
 
 

3. Data sources and methods  

LE variance models were assessed using empirical life table data that spanned three 
subnational geographic scales: provincial, intra-provincial or regional, and intra-
regional; all resulting population strata were above the 5,000 PY threshold in size, as 
can be seen in Table 2. The provinces and territories of Canada contribute 248 
‘provincial’ and sex-specific strata ranging in size from 78,510‒31,880,000 PY 
(median=2,440,000 PY); life table data were obtained from the Canadian Human 
Mortality Database (CHMD 2015), aggregated over the years 2004‒2008. Stratification 
over the 18 health administrative regions of Quebec and by sex results in 36 regional 
strata ranging in size from 26,960‒4,794,000 PY (median=807,600 PY). Geographical 
maps showing the provinces and territories of Canada and the health administrative 
regions of Quebec are presented in Figures 1a and 1b.  

 

                                                           
8 Canada comprises 10 provinces and 3 territories; data from the Northwest Territories and Nunavut are 
aggregated in the Canadian Human Mortality Database to yield life tables corresponding to 12 geographical 
regions in total. 
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Table 2: Total age-aggregated population sizes (in numbers and person-years 
(PY)) of the three empirical datasets 

  
Population size (Numbers and person‒years) 

Dataset # strata Minimum Median Maximum 

Provincial 24 15,700 (78,500 PY) 488,000 (2,440,000 PY) 6,376,000 (31,880,000 PY) 

Regional 36 5,344 (26,720 PY) 161,520 (807,600 PY) 958,800 (4,794,000 PY) 

Intra-regional 231 1,573 (7,865 PY) 45,220 (226,100 PY) 460,200 (2,301,000 PY) 

 
 
Further stratification by tertiles defined on the 25th and 75th percentiles of 

material and social deprivation (Pampalon et al. 2012), including the combined 
extremes of each dimension, were done resulting in 231 intra-regional strata9 ranging in 
size from 7,865‒2,301,000 PY (median=226,100 PY). For the regional and intra-
regional life tables, death counts were extracted from the Quebec health ministry vital 
statistics files, while population counts for the middle year of the period were obtained 
from 2006 census data and adjusted for under-enumeration (Pelletier 2005; Statistics 
Canada 2006); the first age interval mortality rate is estimated by the ratio of deaths to 
the number of live births (Brown 1993). Life tables were calculated using the Chiang 
method (Chiang 1984); in the implementation of the Kannisto closure method, the 
Chiang method was used to estimate the life years contributed for all age intervals 
except the last. Five-year age intervals were used except for the first (0‒1) and last 
(90+) intervals. For the first age interval, the fraction of interval lived was set to 0.1. All 
life table and subsequent statistical analyses were done using R (version 2.15) statistical 
software. 

 

                                                           
9 Regions 10, 17, and 18 are excluded here due to their smaller population size, as well as 9 strata for which 
population counts of zero occurred in particular age groups. 
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Figure 1a): Provinces and territories of Canada (Quebec shaded in gray) 
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Figure 1b): The 18 health administrative regions of Quebec 

 
 
 
The difference in LE standard error with and without a particular variance 

contribution of the last age interval is termed ∆𝜎 (= 𝜎𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 − 𝜎𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) and 
represents the resulting degree of underestimation of the variance of LE; ∆𝜎 is also 
directly proportional to the magnitude of under-coverage of the associated confidence 
intervals. Table 1 lists the equation for ∆𝜎, for each variance model, when applicable. 
Scatterplots of ∆𝜎 vs. population size are used to examine the distribution of error or 
variance underestimation corresponding to each variance model, and to examine 
possible scaling trends and classification thresholds. 1‒1 scatterplots of the ‘corrected’ 
vs. ‘uncorrected’ LE standard errors are used to further examine the magnitude of each 



Demographic Research: Volume 35, Article 15 

http://www.demographic-research.org  411 

variance correction relative to the absolute magnitude of the LE standard error, and to 
provide comparison of corrected vs. uncorrected standard error magnitudes. 

The global impact of the last age interval variance corrections is estimated using 
the prevalence at which elevated ∆𝜎 occurs over the 3 empirical datasets using two 
thresholds: ∆𝜎 > 0.02 and ∆𝜎 > 0.1. The former threshold was established by Toson and 
Baker (Toson and Baker 2003) and will be critically re-evaluated in the current study; 
the latter threshold represents a more liberal value that corresponds to a substantial 
increase in LE confidence interval coverage of approximately 0.4 years. 

The false positive rate (or type 1 error rate) (Gravetter and Wallnau 2002) 
measures the increase in the number of erroneous statistical test results that occur due to 
the omission of a last age interval variance component (and concomitant 
underestimation of the standard error of the LE estimator). It equals the ratio of the 
number of false positives to the total number of statistical tests performed, when an 
‘uncorrected’ variance formula is used relative to a ‘corrected’ one. False positive rates 
are estimated using statistical tests done in each of the three datasets, which comprise: 
tests of LE differences relative to the Canadian average in provincial-level strata, tests 
of LE differences relative to the Quebec average in regional strata, and tests of LE 
inequalities via comparison of LE between extremes (i.e., high vs. low) of material, 
social, and combined deprivation tertiles in intra-regional strata. Two significance 
levels or nominal false positive rates, α = 0.05 (or 5%) and α = 0.01 (or 1%), are 
considered: the former represents a standard significance level, while the latter 
represents a frequently used, more conservative level. 

 
 

4. Results 

4.1 The adjusted Chiang variance model 

Figure 2a shows ∆𝜎𝑎𝑑𝑗.𝐶ℎ = 𝜎𝐿𝐸.𝑎𝑑𝑗 − 𝜎𝐿𝐸.𝐶ℎ plotted vs. population size for the adjusted 
Chiang variance model. Crosses, triangles, and gray circles represent results for the 
provincial, regional, and intra-regional strata respectively, while the dashed lines 
indicate the 0.02 and 0.1 threshold values. The prevalence of ∆𝜎𝑎𝑑𝑗.𝐶ℎ exceeding these 
two thresholds is also presented in Table 3a. 

Overall, it can be seen that the last age interval can contribute substantially to the 
LE variance. Approximately 49% of strata exhibit ∆𝜎𝑎𝑑𝑗.𝐶ℎ higher than the 0.02 upper 
limit (cf. Table 3a) reported in previous studies by Toson and Baker, despite all strata 
exceeding 5,000 PY in size. ∆𝜎𝑎𝑑𝑗.𝐶ℎ frequently attains values greater than 0.1 years, 
with several extreme values found near 7 years, as reflected by a prevalence of ≈9% of 
∆𝜎𝑎𝑑𝑗.𝐶ℎ > 0.1 (cf. Table 3a). 
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Figure 2a shows an increasing trend for ∆𝜎𝑎𝑑𝑗.𝐶ℎ with decreasing population size, 
though considerable variability in the results prevents establishment of a clear threshold 
that would reliably classify strata into low vs. high ∆𝜎𝑎𝑑𝑗.𝐶ℎ, especially over regional 
and sub-regional strata. This trend with population size is also evidenced in Table 3a, 
which shows that the prevalence of elevated ∆𝜎𝑎𝑑𝑗.𝐶ℎ increases with decreasing 
geographic scale, from 4.2% to 58.4% corresponding to ∆𝜎𝑎𝑑𝑗.𝐶ℎ > 0.02, and from 0.0% 
to 10.4% corresponding to ∆𝜎𝑎𝑑𝑗.𝐶ℎ > 0.1. ∆𝜎𝑎𝑑𝑗 .𝐶ℎ also exhibited general scaling trends 
when plotted against a range of other key life table parameters, though no clear 
classification thresholds could be identified here either (cf. Appendix 2).10 

Figure 2b shows the scatterplot of the standard Chiang vs. adjusted Chiang 
standard errors. The adjusted Chiang standard error varies greatly in size, from ≈0.03 to 
11 years, reflecting the range of population sizes and LE magnitudes spanned by the 
empirical datasets. The magnitude of the last age interval variance contribution is 
represented by the rightward shift in data points from the 1‒1 (dotted) line. It can be 
seen that for many strata, especially from the intra-regional dataset, there is a sizeable 
last age interval variance contribution relative to the magnitude of the LE standard 
error. This contribution tends to increase with increasing SE with notably large 
contributions of ∆𝜎𝑎𝑑𝑗.𝐶ℎ ≈1‒10 years occurring in the LE estimates with the largest 
standard errors. 

Table 3b lists the false positive rates that result from use of the standard Chiang 
variance relative to the adjusted Chiang variance, for the statistical tests previously 
described, over the 3 datasets. Use of the standard Chiang variance results in substantial 
overall increases in false positive rates of 4.9% and 4.2% over nominal false positive 
rates of α = 0.05 (5%) and α = 0.01 (1%), respectively. No false positives occurred in 
statistical tests done in the province-level strata, while the rates for the region-level 
strata were 5.6% and 5.6% for α = 0.05 and 0.01, and those for the intra-regional strata 
were 4.8% and 6.0% respectively. 

 

                                                           
10 Note that due to the tight correspondence between population size and LE standard error, scaling trends 
with respect to population size are quite similar to those with respect to the LE standard error (cf. 
Appendix 5). 
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Figure 2: (a) ∆𝝈𝒂𝒅𝒋.𝑪𝒉 vs. population size and (b) 𝝈𝑳𝑬.𝑪𝒉 vs. 𝝈𝑳𝑬.𝒂𝒅𝒋 
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Table 3a): Proportion of strata with elevated ∆𝝈𝒂𝒅𝒋.𝑪𝒉 

Dataset # of Strata % Δσadj.Ch > 0.02 % Δσadj.Ch > 0.1 

Provincial 24 4.2% (1/24) 0.0% (0/24) 

Regional 36 13.9% (5/36) 2.8% (1/36) 

Intra-regional 231 58.4% (135/231) 10.4% (24/231) 

Total 291 48.5% (141/291) 8.6% (25/291) 

 
Table 3b): Induced false positive rates for 𝝈𝑳𝑬.𝑪𝒉

𝟐  with respect to 𝝈𝑳𝑬.𝒂𝒅𝒋
𝟐  

 
# of Statistical False positive False positive 

Dataset Comparisons rate, α=0.05 rate, α=0.01 

Provincial 24 0.0% (0/24) 0.0% (0/24) 

Regional 36 5.6% (2/36) 5.6% (2/36) 

Intra-regional 83 4.8% (4/83) 6.0% (5/83) 

 
 

4.2 The adjusted Chiang variance model with population error 

∆𝜎𝑝𝑜𝑝.𝑎𝑑𝑗 = 𝜎𝐿𝐸.𝑎𝑑𝑗.𝑝𝑜𝑝 − 𝜎𝐿𝐸.𝑎𝑑𝑗, shown plotted in Figure 3a, represents the 
incremental variance contribution of population error in the last age interval, relative to 
the adjusted Chiang variance, estimated over the 3 datasets. In contrast to ∆𝜎𝑎𝑑𝑗 .𝐶ℎ, 
∆𝜎𝑝𝑜𝑝.𝑎𝑑𝑗  increases with population size due to the proportional dependence of the 
population variance on 𝑃𝑤 as indicated by the last term in Equation 3. Overall, however, 
the magnitude of ∆𝜎𝑝𝑜𝑝.𝑎𝑑𝑗 is relatively small, reaching an upper limit of ≈0.02 years 
only when 𝑃𝑡𝑡𝑙 exceeds 1.5×106 PY. As shown in Table 4a, the prevalence of 
∆𝜎𝑝𝑜𝑝.𝑎𝑑𝑗>0.02 is 1.7%, indicating that for a relatively small number of cases, only a 
slight increase in LE standard errors over that of ∆𝜎𝑎𝑑𝑗.𝐶ℎ occurs, with the largest strata 
from the provincial and intra-regional datasets contributing these additional cases. 
Inclusion of population error results in no cases with ∆𝜎𝑝𝑜𝑝.𝑎𝑑𝑗>0.1. 

Figure 3b shows the adjusted Chiang standard error (𝜎𝐿𝐸.𝑎𝑑𝑗) plotted against the 
adjusted Chiang standard error with population error included (𝜎𝐿𝐸.𝑎𝑑𝑗.𝑝𝑜𝑝). It can be 
seen that the incremental contribution of population error is negligible except in the 
case of the largest population strata (𝑃𝑡𝑡𝑙 ≳ 1.5×106 PY) where the pre-existing small 
LE standard errors are increased by proportionately large amounts. Inclusion of 
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population error results in a slight incremental impact on statistical tests, with a 1.4% 
increase in false positive rates relative to the adjusted Chiang variance model, as shown 
in Table 4b. 

 
Figure 3: (a) ∆𝝈𝒑𝒐𝒑.𝒂𝒅𝒋 vs. population size and (b) 𝝈𝑳𝑬.𝒂𝒅𝒋 vs. 𝝈𝑳𝑬.𝒂𝒅𝒋.𝒑𝒐𝒑 
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Table 4a): Proportion of strata with elevated ∆𝝈𝒑𝒐𝒑.𝒂𝒅𝒋 

Dataset # of Strata % Δσpop.adj > 0.02 % Δσpop.adj > 0.1 

Provincial 24 8.3% (2/24) 0.0% (0/24) 

Regional 36 0.0% (0/36) 0.0% (0/36) 

Intra-regional 231 1.3% (3/231) 0.0% (0/231) 

Total 291 1.7% (5/291) 0.0% (0/291) 

 
Table 4b): Induced false positive rates for 𝝈𝑳𝑬.𝒂𝒅𝒋

𝟐  with respect to 𝝈𝑳𝑬.𝒂𝒅𝒋.𝒑𝒐𝒑
𝟐  

 
# of Statistical False positive False positive 

Dataset Comparisons rate, α=0.05 rate, α=0.01 

Provincial 24 8.3% (2/22) 0.0% (0/20) 

Regional 36 0.0% (0/26) 2.8% (1/24) 

Intra-regional 83 0.0% (0/53) 1.2% (1/46) 

Total 143 1.4% (2/101) 1.4% (2/90) 

 
 

4.3 The last age interval variance contribution in the presence of overdispersion 

Figure 4a shows the variance contribution of the last age interval in the presence of 
overdispersion (∆𝜎𝑎𝑑𝑗.𝐶ℎ.𝑁𝐵 = 𝜎𝐿𝐸.𝑎𝑑𝑗.𝑁𝐵 − 𝜎𝐿𝐸.𝐶ℎ.𝑁𝐵) plotted vs. population size. The 
magnitude of ∆𝜎𝑎𝑑𝑗 .𝐶ℎ.𝑁𝐵 is in general higher than that of its non-overdispersed 
counterpart ∆𝜎𝑎𝑑𝑗.𝐶ℎ, due to the 𝑃𝑤− 𝑃𝑤+⁄  factor contributed mathematically by 
overdispersion in the last age interval. This is reflected in the markedly higher overall 
prevalences of 80.1% of ∆𝜎𝑎𝑑𝑗.𝐶ℎ.𝑁𝐵 > 0.02 and 19.9% of ∆𝜎𝑎𝑑𝑗.𝐶ℎ.𝑁𝐵 > 0.1 (cf. Table 
5a). 

∆𝜎𝑎𝑑𝑗.𝐶ℎ.𝑁𝐵 decreases with increasing population size, following trends that 
resemble closely those of ∆𝜎𝑎𝑑𝑗.𝐶ℎ. The prevalence of elevated ∆𝜎𝑎𝑑𝑗.𝐶ℎ.𝑁𝐵 also 
increases throughout the three datasets with decreasing population size, from 16.7% to 
91.3% for ∆𝜎𝑎𝑑𝑗.𝐶ℎ.𝑁𝐵 > 0.02, and from 8.3% to 22.5% for ∆𝜎𝑎𝑑𝑗.𝐶ℎ.𝑁𝐵 > 0.1 (cf. Table 
5a). 

The scatterplot of 𝜎𝐿𝐸.𝑎𝑑𝑗 .𝑁𝐵 vs. 𝜎𝐿𝐸.𝐶ℎ.𝑁𝐵 in Figure 4b illustrates that the size of 
the LE standard errors themselves ranges from ≈0.03 to 16 years over the 3 datasets and 
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has thus been amplified by overdispersion. ∆𝜎𝑎𝑑𝑗.𝐶ℎ.𝑁𝐵 is also proportionately larger 
overall, as shown by the more pronounced rightward shift in points from the dotted 
black (1‒1) line. 

 
Figure 4: (a) ∆𝝈𝒂𝒅𝒋.𝑪𝒉.𝑵𝑩 vs. population size and (b) 𝝈𝑳𝑬.𝑪𝒉.𝑵𝑩 vs. 𝝈𝑳𝑬.𝒂𝒅𝒋.𝑵𝑩 
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Table 5b (in comparison with Table 3b) shows that the impact of the last age 
interval variance on statistical tests is further amplified in the presence of 
overdispersion. This is evidenced by substantially higher increases in false positive 
rates by 12.6% and 8.4% with respect to nominal false positive rates or significance 
levels of 0.05 (5%) and 0.01 (1%), respectively. This overall increase in false positive 
rates is produced by corresponding increases in virtually all dataset and α combinations, 
which show increases in false positive rates ranging up to 14.5%. 

 
Table 5a): Proportion of strata with elevated ∆𝝈𝒂𝒅𝒋.𝑪𝒉.𝑵𝑩 

Dataset # of Strata % Δσadj.Ch.NB > 0.02 % Δσadj.Ch.NB > 0.1 

Provincial 24 16.7% (4/24) 8.3% (2/24) 

Regional 36 50.0% (18/36) 11.1% (4/36) 

Intra-regional 231 91.3% (211/231) 22.5% (52/231) 

Total 291 80.1% (233/291) 19.9% (58/291) 

 
Table 5b): Induced false positive rates for 𝝈𝑳𝑬.𝒂𝒅𝒋.𝑵𝑩

𝟐  with respect to 𝝈𝑳𝑬.𝑪𝒉.𝑵𝑩
𝟐  

 
# of Statistical False positive False positive 

Dataset Comparisons rate, α=0.05 rate, α=0.01 

Provincial 24 8.3% (2/22) 0.0% (0/0) 

Regional 36 11.1% (4/27) 13.9% (5/22) 

Intra-regional 83 14.5% (12/55) 8.4% (7/45) 

Total 143 12.6% (18/104) 8.4% (12/87) 

 
 

4.4 Comparative performance of the Kannisto extrapolation closure method 

Closure of the life table with the Kannisto extrapolation procedure results in an LE 
estimator that is no longer equivalent to the Chiang LE. Thus the resulting Kannisto LE 
variance cannot be represented as an additive variance contribution to the standard 
Chiang variance, as was done for the other variance models tested. However, the 
performance of the Kannisto LE variance can be roughly assessed through scatterplots 
of the Kannisto LE standard error, 𝜎𝐿𝐸.𝐾𝑛 , vs. the adjusted Chiang standard error, 
𝜎𝐿𝐸.𝑎𝑑𝑗. Figure 5a shows 𝜎𝐿𝐸.𝐾𝑛 vs. 𝜎𝐿𝐸.𝑎𝑑𝑗 for the subset of cases in which 
∆𝜎𝑎𝑑𝑗.𝐶ℎ>0.1 and in which there is an elevated variance contribution of the last age 
interval. It can be seen that for these cases the Kannisto method reduces or stabilizes the 
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variance contribution of the last age interval, as indicated by the overall rightward shift 
in points from the dashed (1‒1) line in the Figure. In particular, substantial reductions 
in standard error of up to ≈10 years occur when 𝜎𝐿𝐸.𝑎𝑑𝑗 becomes large (>1). Figure 5b 
shows that for ∆𝜎𝑎𝑑𝑗.𝐶ℎ<0.1, 𝜎𝐿𝐸.𝐾𝑛 is comparable to 𝜎𝐿𝐸.𝑎𝑑𝑗, which is expected since 
the variance contribution of the last age interval is already small. 

 
Figure 5: 𝝈𝑳𝑬.𝑲𝒏 vs. 𝝈𝑳𝑬.𝒂𝒅𝒋 for (a) ∆𝝈𝒂𝒅𝒋.𝑪𝒉 ≥ 𝟎.𝟏 and (b) ∆𝝈𝒂𝒅𝒋.𝑪𝒉 < 𝟎.111 

 
 
 

 

                                                           
11 Results have been ‘split’ by level of ∆𝜎𝑎𝑑𝑗.𝐶ℎ so that deviations of data points from the 1‒1 line are more 
clearly and readily discerned. 
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5. Discussion 

The current study demonstrates that the last age interval can contribute substantially to 
the LE variance when using the Chiang LE estimator. It is firstly shown that inclusion 
of the variance contribution of the last age interval mortality count can lead to increases 
in the LE standard error that greatly exceed the previously reported 0.02 upper limit 
(Toson and Baker 2003), even for populations substantially larger than 5,000 PY. It is 
further demonstrated that overestimation of the precision of LE is widespread and leads 
to the substantial inflation of false discovery rates or type 1 error in statistical 
comparisons at subnational scales. 

Assessment of an extended variance model indicates that population error in the 
last age interval contributes negligibly to the LE variance for population sizes below 1.5 
x 106 PY. For populations > 1.5 x 106 PY, population error can make a proportionately 
substantial contribution to the total variance, although the absolute variance 
contribution remains small (< 0.03 years). In light of these results and of the likely 
improvements in population data quality since 1971‒1991 (from which conservative 
estimates of a 5% proportional error in population counts were derived), it is likely that 
the population error of the last age interval can be neglected for purposes of LE 
variance estimation. Despite representing a known and major source of error, 
assessment of the last age interval population count error on LE variance has not 
previously been done. Our study addresses this gap in knowledge and provides a clear 
recommendation for practitioners. 

The variance contribution of the last age interval increases in the presence of 
overdispersion, leading to marked increases in both the prevalence of severe variance 
underestimation and inflated false positive rates when the uncorrected Chiang variance 
is used. Overdispersion, also known as heterogeneity or frailty, is likely present to some 
degree in most mortality data, and manifests in the observed mortality trends at the 
highest ages (Andreev and Bourbeau 2006; Bebbington, Lai, and Zitikis 2011; Ting, 
Yang, and Anderson 2013). Thus the overdispersed LE variance results of this study 
may represent a more realistic scenario, which further underscores the substantial 
impact of the last age interval on variance. 

Monte Carlo simulations show that the Kannisto extrapolation closure method 
reduces or stabilizes the variance contribution of the last age interval. However, an 
analytic representation of the corresponding LE variance is no longer possible due to 
the increased complexity of the last age interval life-years expression. These results 
suggest that while extrapolation closure methods may improve the precision of LE, 
algorithms to simplify their variance calculation for practical use would be needed. 
Further examination and development of alternative closure methods in general may 
represent an important area of future research. 
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Inclusion of the variance contribution of the last age interval death count is thus 
found to be essential when using the Chiang LE estimator at subnational scales. The 
substantial overestimation of precision and false positives that results from use of the 
uncorrected Chiang LE variance can lead to errors that have both scientific and policy 
consequences. As reliable thresholds to classify population strata in regard to the 
expected magnitude of the last age interval variance are not possible, the mathematical 
correction of each LE variance estimate is recommended. To this end, the simple, 
additive formulae provided in this manuscript can be used by practitioners to readily 
correct existing or planned variance estimates. The Excel tool provided in this study 
demonstrates the implementation of each of these corrections on a sample life table, and 
is intended to further facilitate implementation. 

To summarize the findings of our study for operational purposes, the adjusted 
Chiang variance (Equation 2, Section 2.3, 𝜎𝐿𝐸.𝑎𝑑𝑗

2 ) should be used in place of the 
standard Chiang formula for estimating the LE variance. The adjusted Chiang variance 
with overdispersion (Equation 4, Section 2.5, 𝜎𝐿𝐸.𝑎𝑑𝑗.𝑁𝐵

2 ) is recommended when the 
choice has already been made to model overdispersion in mortality counts in the other 
age intervals. The addition of population error (Section 2.3) is found to affect the LE 
variance negligibly and need not be used. The variance model of the Kannisto LE 
(Section 2.6) is valid but requires Monte Carlo simulation to evaluate, and applies only 
when the Kannisto life table closure method is used in place of the Chiang closure 
method. 

The findings of this study extend beyond the basic life expectancy from birth (LE) 
metric that was examined as a test case. The derived variance corrections are readily 
adapted (cf. Appendix 1) for the estimation of LE from advanced ages (i.e., 25 or 65 
years), for example, and for which the last age interval contribution will be 
proportionately even higher. The Chiang method also forms the basis for a broad 
spectrum of health expectancy (HE) metrics that have gained global acceptance for the 
assessment and monitoring of population health (Robine, Romieu, and Cambois 1999; 
Salomon et al. 2012) and which are frequently presented together with LE estimates 
(Bajekal 2005; Geronimus et al. 2001; Salomon et al. 2012). It is recommended that 
correction terms due to the variance contribution of the last age interval be applied as 
needed to these metrics as well, to avoid the same substantial variance underestimation 
problems. An example of this is shown in Appendix 3 for health adjusted life 
expectancy (HALE) estimated at the regional scale. 
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5.1 Study limitations 

Although tests were done on a wide range of empirical data, these data are not 
completely general and do not represent the full range of possible life tables. 
Nevertheless, the results are sufficient to demonstrate the substantial impact of the last 
age interval on LE variance, which is the principal objective of the study. Overall, the 
great variability in stratum-specific results observed in the current study, and the 
demonstrated inadequacy of the previously identified 0.02 limit (which was estimated 
from simulations of a single test population), underscore the need for empirical datasets 
when assessing the performance of life-table-based metrics. 

Life table data were restricted to those of Canada (for province level analyses) and 
Quebec (for regional and intra-regional analyses), though these data are expected to be 
comparable to other developed nations. LE in fact varies quite widely (from 64.1 to 
94.5 years) over strata, indicating a broad range of demographic conditions, some of 
which may resemble those of other countries at different stages of development. In 
particular, Figure A-2.1e illustrates that substantial variance underestimation may occur 
regardless of the magnitude of estimated LE, and thus indicates the likely importance of 
the last age interval for non-Canadian datasets.  

In reality, the true or correct LE variance is inherently unknown, since LE can only 
be sampled or observed once for a given time period and population. Therefore the 
increase in false positive rate was estimated approximately by comparing statistical 
tests using ‘uncorrected’ vs. ‘corrected’ variances. This likely results in conservative 
estimates of false positive rate increase and thus of impact, since ‘corrected’ variances 
are likely underestimates of the true LE variance due to the presence of additional, 
unaccounted-for sources of variability. The hypothetical use of true LE variances would 
therefore tend to further increase the impact of the estimated LE variance corrections 
and thus further strengthen the conclusions the study. Overall, the ‘corrected’ LE 
variance formulae derived in this study account for the stochastic contribution of age-
specific death counts according to established statistical theory (Brillinger 1986; Chiang 
1960; Keyfitz 1966), and thus are expected to be reasonable estimates of the true LE 
variance. 

Variability in the last age interval population counts (𝜎𝑃𝑤) is likely produced by 
age misreporting and other sources of error, whose exact mechanisms and thus 
probability distributions are in fact largely unknown. Nevertheless, the finding that the 
impact of 𝜎𝑃𝑤 on the overall LE variance is likely negligible is both general and robust 
with respect to assumptions made in its estimation. Firstly, the delta method applies to 
the variance of LE and its component variables and is independent of the actual 
underlying probability distributions. From the delta method it can be shown 
mathematically that the LE variance is much less sensitive to population error as 
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compared with error in death counts. Using an empirically based 5% proportional error, 
it can be further demonstrated that the variance contribution of population counts 
becomes comparable to that of death counts only for very large (≈1.2×106) population 
sizes, where the total LE variance is likely small. Finally, additional validation analyses 
have shown that the impact of population error remains negligible despite varying the 
assumed coverage associated with the observed empirical error, as well as consideration 
of corresponding ‘opposing’ population count error in younger age intervals. Detailed 
discussion and analyses of these issues are presented in Appendix 3. 

The delta method utilizes a first order Taylor expansion of the function for which 
the variance is estimated. For this reason, the various derived expressions for variance 
are in fact first order approximations. However, validation studies that have compared 
the delta method standard error with Monte Carlo simulated standard errors have shown 
that the delta method is accurate (Eayres and Williams 2004). The delta method was 
used by Chiang in his original derivation of the LE variance (though the contribution 
the last age interval was neglected): it also sees widespread use for variance estimation 
in biostatistics in general (Cox 2005). 

Performance of the Chiang LE variance was examined using a closure age of 90 
years, which is the established norm in the Quebec Public Health Network (MSSS 
2011) and ensures robust LE estimation over datasets that include small strata. At 
provincial or national scales, however, sufficiently large age-specific population sizes 
and data quality often permit LE estimation using elevated closure ages of up to 100 
years or higher (CHMD 2015; Martel et al. 2012; Wilmoth et al. 2007). An increase in 
closure age to 100 years would result in a greatly reduced life table survival probability 
from birth to the last age interval (𝑝0𝑤), which would in turn reduce the magnitude of 
the last age interval contribution to the LE variance (cf. Equation 2). Furthermore, due 
to the inverse scaling with population size, the absolute magnitudes of the total LE 
variance and the last age interval contribution become quite small. Thus it must be 
emphasized that the scope of the current study pertains to LE estimation at subnational 
scales (down to population sizes of 5,000 PY), where the LE variance is relatively 
substantial and closure ages of 90 years or less are typically used. 

Conversely, reduction of the life table age to below 90 years could also represent a 
possible strategy to alleviate large variance contributions from the last age interval, by 
effectively increasing the last age interval population size and thereby reducing the 
frequency of sparse death counts. Validation tests show, however, that the last age 
interval variance contribution (∆𝜎𝐶ℎ.𝑎𝑑𝑗) remains substantial and widespread even when 
the life table closure age is reduced to 85 years (cf. Appendix 4). A further test 
demonstrates the reduction in the variance contribution in the last age interval when the 
life table closure age is increased to 95 years (cf. Figure A-4.2, Appendix 4); there is a 
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substantial increase in excluded strata due to zero age-specific population counts or zero 
death counts in the last age interval for this case however12. 

While a specific though widely used parameterization of the negative binomial 
distribution was used to describe heterogeneity in death counts, the actual degree of 
heterogeneity in real populations is unknown and difficult to estimate. However, the 
negative binomial parameterization used in the current study results in a variance 
inflation effect that increases with age, consistent with the expected increases in frailty 
in mortality rates due to survivorship effects (Vaupel, Manton, and Stallard 1979), and 
is thus a reasonable, representative model for heterogeneity. As a result, the general 
finding of the study ‒ that the impact of the last age interval on the LE variance is 
amplified in the presence of overdispersion ‒ is expected to hold for other realistic 
heterogeneity or frailty models. 

Finally, the present study focuses on the variance properties of the Chiang LE 
estimator, which is but one of many existing LE estimators. It should be noted, 
however, that the Chiang closure method is identical to that used by numerous other 
classic LE methods including the ‘actuarial’, Greville, Sirken, Keyfitz-Frauenthal, and 
Schoen approaches (Greville 1943; Keyfitz and Frauenthal 1975; Schoen 1978; Siegel 
2012). Thus the findings regarding the last age interval variance are applicable to a 
range of LE estimators. More generally, the Chiang method remains the most widely 
used and accessible procedure for the estimation of LE and its variance, and thus 
represents an important subject of study. 
 
 

6. Conclusions 

The present study represents the first detailed assessment of the variance properties of 
the last age interval and its impact on LE variance. The delta method framework has 
been extended to model population data error and mortality rate overdispersion 
properties of the underlying vital rates. Tests done on a range of empirical sub-national 
life table data demonstrate that the variance contribution of the last age interval can lead 
to severe underestimation of the total LE variance, as well as substantial increases in the 
false positive rate in statistical tests. It is hoped that this study will thus unambiguously 
demonstrate to practitioners and users the need to correct the standard Chiang LE 
variance. To facilitate implementation, accessible, additive correction formulae are 
provided for correcting the standard Chiang LE variance. Additionally, an Excel tool is 
provided that computes the life expectancy variances for all variance models (excepting 
the Kannisto) for a sample life table. The Chiang LE estimator is a widely accepted 

                                                           
12 Although methods (such as imputation) exist for dealing with these strata, examination of this issue is 
beyond the scope of the present study. 
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standard for use by demographers, epidemiologists, and public health officers, due to its 
accessibility, ease of computation, robustness for smaller populations (≳ 5,000 PY), 
and available variance formula. It is hoped that the present study will contribute toward 
the improved validity of the numerous previous, ongoing, and future analyses done 
using this estimator. 
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Appendix 1: Detailed derivation of variance formulae 

In the following sections, formulae for LE variance are derived for the variance models 
examined in this study. Symbols for life table variables and indices follow the 
convention used in Chiang, which may differ slightly from standard demographic 
conventions, in order to facilitate comparison between the standard Chiang variance and 
the variance formulae of this study. All formulae are generally applicable to the 
variance of life expectancy from age ‘∝’. Thus for life expectancy from birth as 
presented in the main text, ∝= 0. 

 
 

1. The standard Chiang variance model 

The standard Chiang variance formula is shown below: 
 

𝜎𝑒𝛼
2 = 𝜎𝐶ℎ∝

2 = �𝑝∝𝑥2 [(1− 𝑎𝑥)𝑛𝑥 + 𝑒𝑥+1]2  × 𝜎𝑝𝑥
2

𝑤−1

𝑥=𝛼

, (A1.1) 

where 𝑝∝𝑥 is the survival probability from age interval ∝ to age interval 𝑥, 𝑎𝑥 is the 
fraction of age interval lived for age interval 𝑥, 𝑛𝑥 is the width (in years) of the age 
interval, 𝑒𝑥+1 is the life expectancy from age 𝑥 + 1, and 𝜎𝑝𝑥

2 = 𝑞𝑥2(1 − 𝑞𝑥)/𝐷𝑥 is the 
(binomial) variance of the survival probability 𝑝𝑥 for the 𝑥𝑡ℎ age interval. 

For comparability with the other variance models in this study, the expression of 
the standard Chiang variance in terms of the variance of age-specific death counts is 
readily obtained: 𝑝𝑥 = 1 − 𝐷𝑥/𝑃𝑥− where 𝑃𝑥− is the population at the start of age 
interval 𝑥 and is considered a constant with no statistical variability; thus 𝜎𝑝𝑥

2 =
𝜎𝐷𝑥
2 /𝑃𝑥−2 = 𝜎𝐷𝑥

2 (𝑞𝑥/𝐷𝑥)2. Direct substitution into Equation A1.1 then yields: 
 

𝜎𝑒𝛼
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2 �
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𝐷𝑥
�
2𝑤−1

𝑥=𝛼

, (A1.1a) 

Overall, it can be seen that the Chiang LE variance is a weighted sum of the 
variance contributions of each age interval, with no contribution from the last (𝑤𝑡ℎ) 
interval. The detailed derivation of the standard Chiang LE variance using the delta 
method approach can be found in Chiang (1984). This derivation and the associated 
notation form the basis of the derivation of the adjusted and extended variance models 
shown in the following sections. 
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2. The ‘adjusted’ Chiang variance model 

The derivation of the adjusted Chiang variance model is based closely on derivation of 
the standard Chiang LE variance and makes use of the same notation.  

For the last age interval (𝑥 = 𝑤), the mortality rate or hazard is assumed to be 
constant in time, which leads to the standard Chiang closure method13 for the life-years 
lived in the last age interval: 

 

𝐿𝑤 =
𝑙𝑤
𝑀𝑤

  

As life expectancy from age ∝ equals the sum over age intervals of the life-years 
lived divided by the starting population at age ∝ (𝑒∝ = 1

𝑙∝
∑ 𝐿𝑥𝑤
𝑥=∝ ), the last age interval 

thus contributes the following additive term to the life expectancy: 
 

1
ℓ𝛼
𝐿𝑤 =

1
ℓ𝛼

𝑙𝑤
𝑀𝑤

=
𝑝𝛼𝑤
𝑀𝑤

=
𝑃𝑤𝑝∝𝑤
𝐷𝑤

 (A1.2) 

The life expectancy variance, accounting for the contribution of the last age 
interval death count (𝐷𝑤), can then be expressed using the delta method in terms of the 
known variances of 𝑝∝, 𝑝∝+1, … , 𝑝𝑤−1,𝐷𝑤  while noting that these variables are 
statistically independent: 

 𝜎𝑒𝛼
2 = ��

𝜕𝑒∝
𝜕𝑝𝑥

�
2𝑤−1

𝑥=∝

𝜎𝑝𝑥
2 + �

𝜕𝑒∝
𝜕𝐷𝑤

�
2

𝜎𝐷𝑤
2  (A1.3) 

Note that the first part of Equation A1.3 is identical to the standard variance 
equation (Chiang 1984) since the partial derivatives �𝜕𝑒∝

𝜕𝑝𝑥
� are unaffected by 𝐷𝑤. 

Therefore Equation A1.3 can be expressed as the sum of the standard Chiang variance 
and an additive correction term: 

 𝜎𝑒𝛼
2 = 𝜎𝐶ℎ2 + �

𝜕𝑒∝
𝜕𝐷𝑤

�
2

𝜎𝐷𝑤
2  (A1.4) 

Using Equation A1.2 the partial derivative 𝜕𝑒∝
𝜕𝐷𝑤

 is: 

                                                           
13 This closure method is also used by the ‘actuarial’, Greville, Sirken, Keyfitz and Frauenthal, and Schoen 
LE estimators. 
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𝜕𝑒𝛼
𝜕𝐷𝑤

=
𝜕
𝜕𝐷𝑤

�
𝑃𝑤𝑝∝𝑤
𝐷𝑤

� = −
𝑃𝑤𝑝∝𝑤
𝐷𝑤2

 (A1.5) 

Assuming a Poisson distribution for the number of deaths in the last age interval, 
the variance of the death count in the last age interval is: 

 𝜎𝐷𝑤
2 = 𝐷𝑤  (A1.6) 

Therefore the variance contribution term for the last age interval becomes: 

 �
𝜕𝑒∝
𝜕𝐷𝑤

�
2

𝜎𝐷𝑤
2 = �

𝑃𝑤𝑝∝𝑤
𝐷𝑤2

�
2

(𝐷𝑤) =
𝑃𝑤2𝑝∝𝑤2

𝐷𝑤3
=

𝑝∝𝑤2

𝑀𝑤
3𝑃𝑤

 (A1.7) 

The final expression for the adjusted Chiang variance is thus:  

 𝜎𝑒𝛼
2 = 𝜎𝐿𝐸.𝑎𝑑𝑗

2 = 𝜎𝐶ℎ∝
2 +

𝑝∝𝑤2

𝑀𝑤
3𝑃𝑤

 (A1.8) 

For life expectancy from birth ∝= 0, and the adjusted Chiang variance is written: 

 𝜎𝑒0
2 = 𝜎𝐿𝐸.𝑎𝑑𝑗

2 = 𝜎𝐶ℎ2 +
𝑝0𝑤2

𝑀𝑤
3𝑃𝑤

 (A1.9) 

 
 

3. The adjusted Chiang variance model with error in population 
counts 

A delta method expansion, accounting for the additional contribution of population 
error in the last age interval, results in an additional variance contribution term to the 
adjusted Chiang variance: 

 𝜎𝑒𝛼
2 = ��

𝜕𝑒∝
𝜕𝑝𝑥
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𝜕𝐷𝑤
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2
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2
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 ∴ 𝜎𝑒𝛼
2 = 𝜎𝑎𝑑𝑗2 + �
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𝜕𝑃𝑤
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2

𝜎𝑃𝑤
2  (A1.10) 
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Bourbeau and Lebel (2000) (Table 3) provided estimates of the population error in 
Canadian data for the census years 1971, 1976, 1981, 1986, and 1991, for the age 
interval 90+, using the extinct generation method; both over-estimation and under-
estimation of population counts were found. Based on these data, a +/‒ 5% proportional 
error in the population counts for the age interval 90+ was judged to be a reasonable 
approximation. Interpretation of this error estimate as a 95% confidence interval for a 
normally distributed variate leads to the following estimate for the variance of the last 
age interval population count: 

 2𝜎𝑃𝑤 ≈ 0.05𝑃𝑤 (A1.11) 

 ∴ 𝜎𝑃𝑤2 ≈ �
0.05

2
�
2

𝑃𝑤2 (A1.12) 

Using equation A1.2, the partial derivative weight for the population count 
variance is: 

 �
𝜕𝑒∝
𝜕𝑃𝑤

�
2

= �
𝜕
𝜕𝑃𝑤
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𝑃𝑤𝑝∝𝑤
𝐷𝑤

��
2

= �
𝑝0𝑤
𝐷𝑤

�
2
 (A1.13) 

Therefore the incremental variance contribution due to population error is: 
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𝜕𝑒𝛼
𝜕𝑃𝑤
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 (A1.14) 

 
For life expectancy from birth, ∝= 0 and the extended variance formula 

accounting for population error becomes: 

 𝜎𝑒0
2 = 𝜎𝐿𝐸.𝑎𝑑𝑗.𝑝𝑜𝑝

2 = 𝜎𝐶ℎ2 +
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 (A1.15) 
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4. The adjusted Chiang variance model in the presence of 
overdispersion 

A natural parameterization (Casella and Berger 2002; DeGroot 1986) of the negative 
binomial distribution is as follows: 

 𝐷𝑥~𝑁𝐵(𝑃𝑥+,𝑞𝑥), (A1.16) 

where the age-specific death counts are interpreted as the result of a sequence of 
Bernoulli trials such that 𝐷𝑥 deaths (successes) occur with probability 𝑞𝑥 for a given 
number, 𝑃𝑥+, of survivors (failures). 𝑃𝑥+ is thus the number of survivors at the end of age 
interval 𝑥, and 𝑞𝑥 is the probability of death for the age interval which can be written 
𝐷𝑥/(𝑃𝑥+ + 𝐷𝑥). 

Under this parameterization, standard formulae (Casella and Berger 2002; 
DeGroot 1986) for the negative binomial distribution can be used to express the mean 
and variance of 𝐷𝑥 in the following terms: 

 𝐸(𝐷𝑥) =
𝑞𝑥𝑃𝑥+

(1 − 𝑞𝑥) = 𝐷𝑥, and (A1.17) 

 𝑉𝑎𝑟(𝐷𝑥) = 𝜎𝐷𝑥.𝑁𝐵
2 =

𝑞𝑥𝑃𝑥+

(1− 𝑞𝑥)2 = 𝐷𝑥 �
𝑃𝑥−

𝑃𝑥− − 𝐷𝑥
� = 𝐷𝑥 �

𝑃𝑥−

𝑃𝑥+
�, (A1.18) 

where 𝑃𝑥− = 𝑃𝑥+ + 𝐷𝑥 and represents the number of survivors at the start of age interval 
𝑥. 

For age intervals other than the last (𝑥 < 𝑤), it can be shown that the negative 
binomial variance 𝜎𝐷𝑥.𝑁𝐵

2  is equal to the corresponding non-overdispersed binomial 
variance, 𝜎𝐷𝑥2 , multiplied by an inflation factor: 

 𝜎𝐷𝑥2 = 𝑃𝑥−𝑞𝑥(1− 𝑞𝑥) = 𝐷𝑥 �1−
𝐷𝑥
𝑃𝑥−
� = 𝐷𝑥 �

𝑃𝑥− − 𝐷𝑥
𝑃𝑥−

� = 𝐷𝑥 �
𝑃𝑥+

𝑃𝑥−
� (A1.19) 

 ∴ 𝜎𝐷𝑥.𝑁𝐵
2 = 𝜎𝐷𝑥2 �

𝑃𝑥−

𝑃𝑥+
�
2

 

 
(A1.20) 

For the last age interval (𝑥 = 𝑤), 𝜎𝐷𝑥2 = 𝐷𝑥 , and therefore 
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 𝜎𝐷𝑤.𝑁𝐵
2 = 𝜎𝐷𝑤2 �

𝑃𝑥−

𝑃𝑥+
� (A1.21) 

expresses the degree of variance inflation. Note that for the last age interval, 𝐷𝑥 
represents number of deaths that occur in this age interval over an ‘observation’ period 
of 5 years (= the number of years of data aggregation). Thus 𝑃𝑥+ represents the number 
of survivors aged 90+ at the end of this observation period. Insertion of equations 
A1.20 and A1.21 into the equations for the Chiang or adjusted Chiang variance 
equations can then be done to readily obtain the overdispersed versions of these two 
variance models (e.g., Equation 4 of the manuscript). 

Finally, it should be noted that the parameters for the negative binomial 
distribution represent a specific though standard and widely used choice; the actual 
degree of heterogeneity in real populations is unknown and difficult to estimate. 
However, the parameterization used results in a variance inflation effect that increases 
with age and is consistent with the expected increases in frailty in mortality rates due to 
survivorship effects (Vaupel, Manton, and Stallard 1979), and is thus a reasonable and 
representative model for heterogeneity. 
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Appendix 2: Scaling trends in ∆𝝈𝒂𝒅𝒋.𝑪𝒉 vs. a range of life table  
   parameters 

Scatterplots of ∆𝜎𝑎𝑑𝑗.𝐶ℎ versus a range of life table parameters were done to investigate 
scaling trends and the possibility of thresholds that could be used to classify or identify 
population strata with elevated last age interval variance contributions. In addition to 
𝑃𝑡𝑡𝑙 (described in the main text), the following seven parameters were examined: 𝑀𝑤 
(the mortality rate of the last age interval), 𝑝0𝑤 (the probability of survival from age 0 
to w), 𝑃𝑤 (the population size in person‒years of the last age interval), 𝐷𝑤 (the death 
count of the last age interval), LE (the life expectancy from birth), 𝜎𝐿𝐸.𝐶ℎ (the 
magnitude of the LE standard error), and the mean population age. 𝑀𝑤, 𝑝0𝑤 , and 𝑃𝑤 
correspond to terms present in the adjusted variance correction term (cf. Equation 2), 
𝐷𝑤 combines both 𝑀𝑤 and 𝑃𝑤, LE and 𝜎𝐿𝐸.𝐶ℎ represent basic life table summary 
statistics, while the mean age represents a proxy for the age structure of the population. 

Results are shown in Figures A-2.1a‒A-2.1g below. In these figures, crosses, 
triangles, and gray circles represent results for the provincial, regional, and intra-
regional strata respectively, while the .02 and 0.1 thresholds for ∆𝜎𝑎𝑑𝑗.𝐶ℎ are indicated 
by dashed lines for reference. ∆𝜎𝑎𝑑𝑗.𝐶ℎ generally increases with decreasing 𝑀𝑤 and 𝑃𝑤 
and with increasing 𝑝0𝑤 (Figures A-2.1a‒A-2.1c), as would be expected from the 
equation for the variance contribution term of the last age interval (Equation 2). In 
particular, scaling trends with 𝑃𝑤 are similar to those with 𝑃𝑡𝑡𝑙 but more variable: for 
this reason, the latter was chosen for presentation purposes in the main text. Scaling 
trends with 𝐷𝑤 (Figure A-2.1d) are quite similar to those of 𝑃𝑤 and 𝑃𝑡𝑡𝑙. Increasing 
trends can additionally be seen in ∆𝜎𝑎𝑑𝑗.𝐶ℎ vs. LE and 𝜎𝐿𝐸.𝐶ℎ (Figures A-2.1e and A-
2.1f). In particular, trends with 𝜎𝐿𝐸.𝐶ℎ are virtually identical to those with 𝑃𝑡𝑡𝑙 shown in 
the main text (Figure 1a) due to the close correspondence between the LE standard error 
and total population size. Finally, Figure A-2.1g shows no clear scaling trend with 
mean population age. For all cases, however, accurate classification of strata is clearly 
not possible due to the variability in ∆𝜎𝑎𝑑𝑗.𝐶ℎ over and above the general scaling trends 
that exist. Therefore, the mathematical correction of the LE variance, using the readily 
accessible correction term provided in this manuscript, is recommended to account for 
the variance contribution of the last age interval in all calculations.  
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Figure A-2.1:  ∆𝝈𝒂𝒅𝒋.𝑪𝒉 plotted against (a) 𝑴𝒘, the mortality rate of the last age 
interval, (b) 𝒑𝟎𝒘, the survival probability from age 0 to w, (c) 𝑷𝒘, the 
population count of the last age interval, (d) 𝑫𝒘, the death count of 
the last age interval, (e) LE, the life expectancy from birth, (f) 𝝈𝑳𝑬.𝑪𝒉, 
the Chiang standard error of the life expectancy, and (g) the mean 
age of the population. 
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Figure A-2.1: (Continued) 
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Figure A-2.1: (Continued) 
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Figure A-2.1: (Continued) 
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Appendix 3: The contribution of population error to the LE  
   variance – additional analyses and validation studies 

1a) Comparison of the ‘sensitivity factors’ of the last age interval 
death and population count variances 

The delta method expression of the LE variance, accounting for the last age interval 
death and population count variance, is as follows: 
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𝜎𝑃𝑤
2 , (A3.1) 

where the partial derivative multipliers can be interpreted as the ‘degree of sensitivity’ 
of the LE variance to each of the component variances. 

Noting that the first term in equation A3.1 is simply the standard Chiang variance, 
and also that the last age interval contributes the term 𝐿𝑤

ℓ0
= 𝑃𝑤

𝐷𝑤
𝑝0𝑤 to the LE, equation 

A3.1 becomes: 
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(A3.2) 

Thus the ratio of the population count to death count sensitivity factors is found to 
be equal to the square of the last age interval mortality rate: 

 
 �
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2  (A3.3) 

It can be noted that this is a general result that is independent of any distributional 
assumptions for 𝑃𝑤 and 𝐷𝑤, as well as being independent of any other population 
characteristic or parameter. While 𝑀𝑤 can vary over populations it is invariably <<1, 
explaining the reduced impact of population error on the overall LE variance. In the 
current study, at the median (inter-quartile range) value of 𝑀𝑤 of 0.19 (0.16‒0.23), the 
sensitivity factor of the population count is less than 4% (3%‒5%) that of the death 
count. 
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1b) Comparison of the magnitudes of the last age interval death and 
population count variance contributions for the specific case of a 5% 
proportional error 

Substitution of estimated expressions for the variances themselves permits comparison 
of the magnitudes of the last age interval death and population count variance 
contributions. Using a Poisson distribution for 𝐷𝑤 (cf. Appendix 1, Section 1) and a 5% 
proportional error for 𝑃𝑤 (cf. Appendix 1, Section 3) yields: 
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 (A3.4) 

Therefore the ratio of the population count to death count variance contributions 
can be expressed in terms of the last age interval mortality death count: 
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= 0.00125 × 𝐷𝑤 (A3.5) 

Thus the variance contribution of the population count is comparable to that of the 
death count when 0.00125 × 𝐷𝑤 ≳ 1 or 𝐷𝑤 ≳ 1600. This condition is satisfied only 
in very large populations where overall variance contribution is small. In the current 
dataset 𝐷𝑤 ≳ 1600 corresponds to 𝑃𝑡𝑡𝑙 ≳ 1.2 × 106. 

 
 

2. Sensitivity of the LE variance to assumptions of confidence 
interval coverage in the last age interval population count error 

The 5% proportional error suggested by Bourbeau and Lebel (Bourbeau and Lebel 
2000) could well correspond to a confidence interval coverage different from the 95% 
coverage that was assumed. It can be demonstrated, however, that the variance 
contributed by error in the last age interval population count is relatively insensitive to 
different levels of assumed confidence interval coverage. 
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Equation 3 for the LE variance including population error can be written in terms 
of a general coverage parameter or critical value z: 
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where z≈2 was used for the 95% confidence interval coverage analyzed in the 
manuscript main text. Based on a normal distribution model (reasonable, as the 
empirical data show that the error oscillates or appears distributed symmetrically 
around a central value), values of z≈1.6 and 2.6 can be taken to correspond 
approximately to 90% and 99% coverage values. 

Figure A-3.1a-c shows ∆𝜎𝑝𝑜𝑝.𝑎𝑑𝑗 calculated for critical z-values of 1.6, 2, and 2.6 
over the datasets described in the manuscript. It can be seen that although ∆𝜎𝑝𝑜𝑝.𝑎𝑑𝑗 
increases slightly with decreasing z (or coverage) it remains small overall, with values 
never exceeding 0.04 over all datasets. Expressed alternatively, there are no strata for 
which ∆𝜎𝑝𝑜𝑝.𝑎𝑑𝑗>0.02 when z=2.6: this rises to 5 strata when z=2 and to just 12 when 
z=1.6. In conclusion, the variance contribution of population error in the last age 
interval to the total LE variance is relatively insensitive to different coverage values. 
Mathematically, this is explained by the insensitivity of the population variance 
contribution term to different values of z near 2 and the fact that the overall magnitude 
of the contribution of population error is relatively small (due to its small sensitivity 
factor, as was shown above). Thus the overall finding of our study that the contribution 
of last age interval population error can be neglected is robust with respect to 
assumptions of coverage. 
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Figure A-3.1: ∆𝝈𝒑𝒐𝒑.𝒂𝒅𝒋 for coverage parameters (a) z = 1.6, (b) z = 2, and  
(c) z = 2.6 
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Figure A-3.1: (Continued) 

 
 
 

3. The effect of a corresponding ‘opposing’ error occurring in 
younger age intervals 

Age misreporting is likely a primary mechanism behind the last age interval population 
count error. This type of error in principle should entail a corresponding opposite error 
at younger age groups, as individuals are misclassified by age but not excluded from 
population counts. However, the impact of ‘opposing population error’ that might occur 
at younger age groups should be much smaller than that of the open age group due to 
the larger total population sizes at these younger age groups. For example, over all 
strata considered in the current study, the median (inter-quartile range) ratio of the 
population size of the second-to-last age group to the last open age group is 𝑃85−89/
𝑃90 ≈ 2.2 (1.9 − 2.8), while that of the third-to-last age group is 𝑃80−85/𝑃90 ≈
4.8 (3.7 − 6.8). Thus the impact of a 5% error in the population in the last age group, 
distributed over these last two age groups is expected to be much smaller. 

Any corresponding population error at younger age groups will furthermore act in 
an opposite direction and thus reduce the overall variance contribution of population 
error. As a result, the variance contribution estimate based on the last age interval 
population error can be considered as a conservative upper limit to the actual total 
population error. Consequently, the finding of our study that the contribution of 
population error is small and can be neglected remains robust and valid. 
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The above two effects can be demonstrated mathematically by considering the 
specific and not unreasonable case where error in last age interval (90+ or wth) 
population counts results in a corresponding opposite error in the second-to-last (85‒89 
or (w‒1)th) age interval. The delta method expression for the LE variance including the 
population count error of the (w-1)th age interval can be written as follows: 
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(A3.7) 

 
where the last term represents the effect of correlation between the population counts of 
the wth and (w-1)th age intervals and 𝜌𝑃𝑤,𝑃𝑤−1 represents the correlation coefficient 
between 𝑃𝑤 and 𝑃𝑤−1. Since for each possible deviation in 𝑃𝑤 there is an equal and 
opposite deviation in 𝑃𝑤−1, 𝜌𝑃𝑤,𝑃𝑤−1 = −1 and 𝜎𝑃𝑤−1 = 𝜎𝑃𝑤. Therefore,  
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Comparison with Equation A3.1, and the fact that 𝜕𝐿𝐸
𝜕𝑃𝑤

 and 𝜕𝐿𝐸
𝜕𝑃𝑤−1

 have the same 
sign, indicates that the effect of population error at a younger age group is to reduce the 
overall variance contribution due to population error. 

As a validation analysis, Equation A3.8 was evaluated over all strata used in the 
current study. Comparison of these results (Figure A-3.2 below) with those of the main 
text (Figure 3) confirms the overall decrease in the change in standard error (∆𝜎𝑝𝑜𝑝.𝑎𝑑𝑗) 
that results from an opposing population error in the next-to-last age group. 
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Figure A-3.2: ∆𝝈𝒑𝒐𝒑.𝒂𝒅𝒋 including the contribution of the (w-1)th age interval vs.  
 total population size 

 
 
In conclusion, mathematical and empirical validation analyses show that the 

overall finding of the manuscript, that the contribution of the last age interval 
population error is comparatively small and can be neglected, is robust and valid. 
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Appendix 4: Assessment of the impact of the last age interval on the  
   variance of health expectancy (HE) using health- 
   adjusted life expectancy (HALE) as an example 

Theory 

Health expectancy (𝐻𝐸) is most often estimated using the Sullivan method (Sullivan 
1971), in which the number of life-years contributed by each age interval of the life 
table is weighted by a measure of health status (ℎ𝑥). Therefore sources of variability in 
HE generally comprise both the age-specific death counts (𝐷𝑥) and the age-specific 
health status weights (ℎ𝑥). The variance model for health expectancy that correctly 
includes the effect of the last age interval is thus:  

 

 𝜎𝐻𝐸2 = 𝑓(𝐷𝑥 ,𝐷𝑤 , ℎ𝑥 , ℎ𝑤|𝑃𝑥 ,𝑃𝑤),   for 𝑥 = 0 … w-1 (A4.1) 

 
Mathers (1991) was the first to extend the delta method approach used by Chiang 

to derive the currently well-known formula for HE variance. Although this formula 
included the variance contribution of the health status of the last age interval, the 
contribution of the last age interval death counts was omitted, consistent with Chiang’s 
original derivation of the LE variance. 

Applying a delta method expansion to HE while including the variance 
contribution of the last age interval death counts yields the following expression for the 
HE variance: 
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where the variance contribution of the last age interval death counts, 𝐷𝑤, has been 
written as a separate term. 

The above corrected variance formula can be written as the sum of the standard 
‘Chiang-Mathers’ variance and an additional term due to the omitted last age interval 
contribution: 
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 𝜎𝐻𝐸2 ≈ 𝜎𝐻𝐸.𝐶ℎ.𝑀𝑎𝑡
2 +

𝑝∝𝑤2 ℎ𝑤2

𝑀𝑤
3𝑃𝑤

 (A4.3) 

It can be seen that the ‘standard’ Chiang-Mathers variance for HE underestimates 
the actual variance, but can be corrected with a simple additive term which represents 
the impact of the last age interval variance contribution. 

 
 

Methods 

Health-adjusted life expectancy (HALE) calculated using the Sullivan method (Sullivan 
1971) will be used as a representative example to demonstrate the potential impact of 
the last age interval contribution to the HE variance. Analyses are done for the regional-
level strata only. Health status (ℎ𝑥) for HALE is represented by the HUI (Health 
Utilities Index Mark 3) (Horsman et al. 2003), and is a continuous measure14 with an 
upper limit of 100% and that can be interpreted as the proportion of life-years spent in 
good health (Manuel, Schultz, and Kopec 2002; Salomon et al. 2012). HUI is estimated 
by sex, age group, and region, from national-level survey data. Due to lack of available 
data, HUI for regions 17 and 18 were imputed using values from region 10, which has a 
similar population size and is geographically proximate. The difference in corrected vs. 
uncorrected HE standard errors, Δ𝜎𝑎𝑑𝑗.𝐶ℎ−𝑀𝑎𝑡 = 𝜎𝐻𝐸.𝑎𝑑𝑗 − 𝜎𝐻𝐸.𝐶ℎ−𝑀𝑎𝑡, is used to assess 
the impact of the last age interval variance contribution. 

 
 

Results 

In Figure A-4.1,  Δ𝜎𝑎𝑑𝑗.𝐶ℎ−𝑀𝑎𝑡 is shown plotted vs. 𝑃𝑡𝑡𝑙 over the 36 regional-level 
strata; dashed lines indicate the 0.02 and 0.1 threshold values. The prevalence of 
Δ𝜎𝑎𝑑𝑗.𝐶ℎ−𝑀𝑎𝑡  exceeding these two thresholds is presented in Table 4.1. Overall, it can 
be seen that the last age interval can contribute substantially to the HALE variance. 
Approximately 11% (4 of 36) of strata exhibit SE.diff higher than 0.02, while 3% (1 of 
36) of strata have SE.diff higher than 0.1 years, despite all population strata being well 
in excess of 5,000 PY in size. In general, elevated variance underestimation in HALE 
occurs for the same strata as that for LE, though the magnitude of the underestimation is 

                                                           
14 Note that for the HALE metric in particular, ℎ𝑥 is a continuous measure, while for other HE metrics ℎ𝑥 is 
generally the population prevalence of a dichotomous measure of health status. Equations A3.1‒A3.3 are 
valid for either case. 
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proportionately smaller due to the additional variance contribution of the health status 
weight variable (HUI). 

Table A-4.2 shows the impact of the standard Chiang variance on statistical tests 
of HALE. The induced, additional false positive rate for tests of HALE was found to be 
2.8% for nominal false positive rates (or significance levels) of 5% and 1% 
respectively. 

 
Figure A-4.1: ∆𝝈𝒂𝒅𝒋.𝑪𝒉−𝑴𝒂𝒕 vs. population size over regional-level strata 

 
 
 

Table A-4.1: Proportion of strata with elevated ∆𝝈𝒂𝒅𝒋.𝑪𝒉−𝑴𝒂𝒕 

Dataset # of Strata % ΔσCh-Mat.adj > 0.02 % ΔσCh-Mat.adj > 0.1 

Regional 36 11.1%  (4/36) 2.8%  (1/36) 

 
Table A-4.2: Induced false positive rates for 𝝈𝑯𝑬.𝑪𝒉−𝑴𝒂𝒕

𝟐  with respect to 𝝈𝑯𝑬.𝒂𝒅𝒋
𝟐  

  # of Statistical False positive False positive 

Dataset Comparisons rate, α=0.05 rate, α=0.01 

Regional 36 2.8% (1/36) 2.8% (1/36) 
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Conclusions 

The application of the adjusted Chiang method to HE has not been previously noted in 
the scientific literature, and this is an especially pertinent issue given the increasing 
usage of and preference for HE metrics to quantify and compare population health 
(Loukine et al. 2012; Molla, Wagener, and Madans 2001; Robine, Romieu, and 
Cambois 1999; Salomon et al. 2012), and the frequent presentation of LE and HE 
measures together (Bajekal 2005; Geronimus et al. 2001; Salomon et al. 2012). In the 
present study, a simple additive variance correction term is derived for HE. Using 
HALE as an example, it is demonstrated that substantial variance underestimation can 
occur unless the adjusted Chiang method is used. In particular, cases may readily arise 
when the variance contribution of the last age interval exceeds that of the health status 
component and thus dominates the total variance. 
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Appendix 5: The effect of a reduction in closure age on the last age  
   interval variance contribution 

The effect of varying the closure age on the variance contribution of the last age 
interval was examined by applying a reduced closure age of 85+ years followed by an 
increased closure age of 95+ years. For each case, the difference in LE standard error 
with and without the variance contribution of the last age interval, denoted by 
∆𝜎𝑎𝑑𝑗.𝐶ℎ.85 and ∆𝜎𝑎𝑑𝑗 .𝐶ℎ.95 respectively, was estimated and compared to the baseline 
closure age result using 90+ years. In the text that follows, ∆𝜎𝑎𝑑𝑗.𝐶ℎ.90 represents that 
estimated using a closure age of 90 years (which was denoted simply as ∆𝜎𝑎𝑑𝑗.𝐶ℎ in the 
main text). 

Figure A-5.1 shows ∆𝜎𝑎𝑑𝑗.𝐶ℎ.85 plotted vs. ∆𝜎𝑎𝑑𝑗.𝐶ℎ.90: crosses, triangles, and gray 
circles represent results for the provincial, regional, and intra-regional strata 
respectively, while the 1‒1 line of equality is indicated by the black dotted line. For 
virtually all populations, reduction of the life table closure age from 90 to 85 years in 
fact further increases the variance underestimation by the standard Chiang method, as 
indicated by the rightward shift in data points with respect to the 1‒1 line. This increase 
in variance contribution can be explained by the effect of the increased probability of 
survival from age 0 to w (𝑝0𝑤) and reduced mortality rate (𝑀𝑤), for a last age interval 
of 85+ vs. 90+ years on the variance correction term (cf. Equation 2). 

 
Figure A-5.1: ∆𝝈𝒂𝒅𝒋.𝑪𝒉.𝟗𝟎 vs. ∆𝝈𝒂𝒅𝒋.𝑪𝒉.𝟖𝟓    
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Figure A-5.2: ∆𝝈𝒂𝒅𝒋.𝑪𝒉.𝟗𝟎 vs. ∆𝝈𝒂𝒅𝒋.𝑪𝒉.𝟗𝟓 14F

15 

 
 
Figure A-5.2 shows ∆𝜎𝑎𝑑𝑗.𝐶ℎ.90 plotted vs. ∆𝜎𝑎𝑑𝑗.𝐶ℎ.95: crosses, triangles, and gray 

circles represent results for the provincial, regional, and intra-regional strata 
respectively, while the 1‒1 line of equality is indicated by the black dotted line. In this 
case, increase of the closure age is shown to decrease the variance underestimation by 
the standard Chiang method, as indicated by the leftward shift in data points with 
respect to the 1‒1 line. The decrease in variance contribution is explained by the 
decreased probability of survival from age 0 to w (𝑝0𝑤) and increased mortality rate 
(𝑀𝑤), for a last age interval of 95+ vs. 90+ years on the variance correction term (cf. 
Equation 2). Note, however, that the number of excluded strata rises substantially when 
the closure age is increased to 95+ years, to 18% of sub-regional strata and 8% of 
regional strata. 

In conclusion, reduction of the life table closure age further amplifies the variance 
contribution of the last age interval and hence the variance underestimation by the 
standard Chiang method. Increase of the life table closure age diminishes the magnitude 
of variance underestimation, but leads to a substantial increase in excluded strata, and is 
not a practical solution for LE estimation at subnational scales. 

 

                                                           
15 Note that results of Figure A-5.2 were calculated in a later validation analyses,: thus there may be minor 
shifts in the extracted death and population data used. 
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