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How many old people have ever lived?
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Dalkhat Ediev2
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Alexia Prskawetz4

Abstract

BACKGROUND
Uninformed generalizations about how many elderly people have ever lived, based on a
poor understanding of demography, are found in a surprising number of important publi-
cations.

OBJECTIVE
We extend the methodology applied to the controversial question “how many people have
ever been born?” initiated by Fucks, Winkler, and Keyfitz, to the proportion of people
who have ever reached a certain age y and are alive today (denoted as π(y,T )).

METHODS
We first analyze the fraction π(y,T ) by using demographic data based on UN estimates.
Second, we show the main mathematical properties of π(y,T ) by age and over time.
Third, we complete our analysis by using alternative population models.

RESULTS
We estimate that the proportion who have ever been over 65 that are alive today (as of
2010) ranges between 5.5 and 9.5%. We extend the formal demographic literature by
considering the fraction of interest in two frequently referred models: the stable and
hyperbolic growth populations.
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CONCLUSIONS
We show that statements claiming half of all people who have ever reached the age of
65 are alive today ranges would never be attainable, neither theoretically nor empirically,
according to existing data.

CONTRIBUTION
We have produced for the first time a harmonized reconstruction of the human population
by age throughout history. For a given contemporaneous time T , we demonstrate analyti-
cally and numerically that π(y,T ) is nonmonotonic in age y. For a given age y, we show
that π(y,T ) may also be nonmonotonic with respect to T .

1. Introduction

Global population ageing, caused by fertility decline and increasing survival at older
ages, has become a challenging issue of our times. The shift in the age structure of
the population will profoundly reshape the social structure of our world as well as its
economy.

There are around 600 million people aged 65 or older alive today. While their share
is now about 8% of the total population, it will increase to some 13% in the next 20 years.
According to the UN’s population projections the world had 16 people aged 65 and over
for every 100 adults between the ages of 25 and 64, but this dependency ratio will rise to
26 by 2035.

A recent article in the Economist describes how those “age invaders” are about to
change the global economy. Besides the old age dependency ratio, in this publication
another indicator of aging is mentioned: The ratio 65 or older alive today relative to all
humans who have ever reached the age of 65. According to the Economist, Fred Pearce
presumed that it is possible that half of all people who have ever been over 65 are alive
today. Motivated by these discussions, in our paper we reconsider indicators that estimate
the share of people above a specific age alive today in relation to all the humans who have
ever reached this specific age. By using formal demography together with historical data
on population processes, we show how such indicators can be estimated. Our results
indicate that far fewer than half of all people who have ever been over 65 are alive in
2010.

Clearly, this paper is closely related to a question that has been posed by several
prominent demographers, namely “How many people have ever lived on earth?” In his
seminal book Applied Mathematical Demography, Keyfitz (1977) gives a brief introduc-
tion to the problem. Among the demographers who have dealt with this problem are Petty
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(1682), Winkler (1959), Deevey (1960), Desmond (1962), and Keyfitz (1966). More re-
cent references are Tattersall (1996), Johnson (1999), Haub (2011), and Cohen (2014).

Cohen (2014) shows a table with various estimates of the number of people ever
born by year t starting with Petty (1682) until Haub (2011). It illustrates the wide range
of the various estimates. For instance Haub’s (2011) semi-scientific approach yields an
estimate of 108 billion births since the dawn of the human race, assumed as 50,000 B.C.
Thus 6.5% of those ever born were living in mid-2011.

Asking the question whether this fraction rises or falls, Cohen (2014) comes to the
robust conclusion that at present it is increasing. On the other hand, if world population
were to reach stationarity or decline, the fraction would fall. The significance of Cohen’s
analysis lies in the fact that he uses mathematical demography to obtain his results. The
present paper follows his reasoning. By extending his approach we study the fraction of
people ever surpassing a certain age limit y, say 65 years, who are now alive.

The paper is organized as follows. In Section 2 we introduce an analytic expression
of the ratio of the number of people at ages above y in year T to the number of those that
ever reached the age y and present a first rough and a more refined estimate of this number
based on given historical population estimates. In Section 3 we analyze the behavior of
π(y,T ) under different formal population models. In particular, we apply an exponential
growth model (i.e., stable population) and alternatively a hyperbolic population model.
Section 4 is devoted to an analytic and numerical investigation of the dynamic change
in this expression with respect to the age threshold y and the time T . The final section
concludes and highlights how far off estimations of our expression could be by using
wrong models of historical populations.

2. Analytical framework and empirical assessments

In this section we first present the general formula to calculate the fraction of people over
age y who ever lived who are currently alive in year T , which we denote by π(y,T ).
Second, we calculate using data from several authors the ratio of people at age 65 alive
in 2010 to the number of those who ever reached age 65.

2.1 Analytical framework

Let N(a, t) be the population size at age a in year t; B(c) be the number of births in year
c; and `(a, c) be the survival probability to age a for the birth cohort c. The number of
people that ever reached old age y since the original cohort c = 0 is:∫ T−y

0

N(y, c+ y)dc =

∫ T−y

0

B(c)`(y, c)dc, (1)
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while the number of people currently alive at ages y and older is (assuming T > ω, where
ω is the maximum age):∫ ω

y

N(a,T )da =

∫ T−y

T−ω
B(c)`(T − c, c)dc. (2)

The proportion of interest is the ratio of the number of people currently at ages y+ to the
number of those ever reached the age y:

π(y,T ) =

∫ ω
y
N(a,T )da∫ T−y

0
N(y, c+ y)dc

=

∫ T−y
T−ω B(c)`(T − c, c)dc∫ T−y

0
B(c)`(y, c)dc

. (3)

The numerator of Equation (3) accounts for the living population older than age y in year
T , which is represented by the vertical solid line in Figure 1, while the denominator of
Equation (3) is the population that ever lived to age y until year T , or the solid horizontal
line in Figure 1.

Figure 1: Lexis diagram illustrating the calculations of π(y,T )
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2.2 Empirical assessments

Up to now Equation (3) has been empirically estimated several times since the pioneering
article by Fucks (1951) for age y equal to zero. However, to our knowledge, no one has
ever rigorously estimated the value of π(y,T ) for an age y greater than zero. In this
section we present the first estimations of π(y, 2010) for an age y equal to 65 using two
different approaches. One approach is based on breaking human history into several time
intervals and assuming that the population grew at a constant rate within each interval.
In our second approach we relax the assumption of a constant population growth within
each time interval.

For a first estimate of π(65, 2010), we took data on total population and births be-
fore 1945 from Deevey (1960), Keyfitz (1966), Westing (1981), and Haub (2011). These
four authors cover plausible minimum (5.5%) and maximum (13.9%) values of the peo-
ple who ever lived to age 65 who are alive in 2010. In all papers, the births born are
calculated by dividing human history into several time intervals, within which the pop-
ulation is assumed to grow at a constant rate. Differences in the number of people who
ever lived among all authors stem mainly from the number of intervals used, the assumed
life expectancy at birth, and the crude birth rate in the first periods.5

For instance, the number of time intervals up to 1945 used by Deevey (1960) is 11,
8 intervals are applied by Haub (2011), 6 intervals by Westing (1981), and 4 intervals by
Keyfitz (1966). In the first time intervals, the life expectancy at birth ranges between age
13 (Haub 2011) and 25 (Deevey 1960; Keyfitz 1966), with a middle value of 20 assumed
by Westing (1981). To compute the number of people that ever lived to age 65, shown in
Table 1, we multiply the total population born by the corresponding survival probability
to age 65 in each period. The values of the survival probability to age 65 by different
life expectancy are drawn from the UN General Model Life Table. See Table A–1 in the
Appendix D for the calculations performed for each author.

5 Recall that in a stable population, for a given population growth rate there exists in a single parametric family
of life tables a one-to-one relationship between life expectancy at birth and crude birth rate.
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Table 1: Fraction of people who ever lived to age 65 and were alive in 2010

Deevey (1960) Westing (1981) Keyfitz (1966) Haub (2011)

Persons ever born until 1945 (millions)† 83,719 45,951 67,138 99,803
Persons age 65 ever lived (millions)‡ 9,575 7,991 6,640 3,762
Persons age 65+ in 2010 (millions)[ 524 524 524 524
π(65,2010) 0.055 0.066 0.079 0.139

Source: † Data collected from Johnson (1999). ‡ Author’s calculations based on UN Model Life Tables by life
expectancy and people who ever lived collected by Johnson (1999). [ Data taken from the United Nations Depart-
ment of Economic and Social Affairs, Population Division (UN 2013).

These assessments led to the estimate that the number of people who have survived
to age 65 until 2010 ranges between 3,762 and 9,575 million people. The lowest value,
obtained by Haub (2011), crucially depends on a low life expectancy even for the most
recent decades, while the highest value obtained by Deevey (1960) is due to the combi-
nation of a long time span (i.e., more than one million years) together with a high initial
population size (i.e., 125,000 people). Given that the UN estimates a total number of
people age 65+ in 2010 at close to 524 million, we obtain that between 5.5% and 13.9%
of the total population who ever reached age 65 were alive in 2010. It is clear that these
values fall below the presumption that half of people who have ever been over age 65 are
alive today.

Unlike the previous estimate, in our second approach we more realistically assume
that fertility and mortality vary within each time interval. As a consequence, this assess-
ment better accounts for the rapid change in the vital rates during the last century. We
do so by using a Generalized Inverse-Projection (GIP) model, which allows us to recon-
struct the historical population by taking as a priori information the population numbers
used in Table 1 (Lee 1966; Oeppen 1993). More importantly, the GIP model allows us to
match the reconstructed populations until 1950 with population data from 1950 to 2100
estimated by the UN (2013).6 The match of the historical population to this UN data from
1950 to 2010 can be seen in Figure A–4 in Appendix C. The population numbers will be
used in Section 4 to illustrate the dynamic features of π(y,T ). See Appendix C for the
model details.

Table 2 shows the total number of people age 65 who ever lived from 50,000 B.C
until 2010 A.C that results from using in the GIP model the population data of Haub
(2011) – column 3 – and Deevey (1960) – column 5.

6 Note that combining population numbers that result from a stable population model with UN (2013) data,
which is clearly unstable, would have caused misleading results because of artificial jumps in π(y,T ).
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Table 2: Number of people age 65 who ever lived (in millions)

Haub (2011) Deevey (1960)
Year t Population Pop. age 65 Population Pop. age 65

who ever lived who ever lived

–50000 0 0 3 1,921
–8000 5 36 6 2,404

1 309 1,547 139 4,699
1200 432 2,350 369 5,882
1650 516 2,823 544 6,743
1750 800 3,003 732 7,006
1850 1,277 3,342 1,199 7,389
1900 1,681 3,620 1,637 7,678
1950 2,587 4,118 2,577 8,126
1970 3,758 4,422 3,760 8,427
1990 5,354 4,861 5,361 8,869
2000 6,177 5,159 6,184 9,168
2005 6,573 5,330 6,579 9,340
2010 6,896 5,514 6,896 9,524

Source: Haub (2011), Deevey (1960), are used until 1900 and UN (2013) is used from 1950 to 2010.

These assessments give a total number of people who have survived to age 65
through 2010 as ranging from 5,514 to 9,524 million people (see the last row in Table 2).
Therefore, if the population older than 65 in 2010 was 524 million people, π(65, 2010)
ranges between 5.5% and 9.5%. The difference between the first empirical assessment
and the refined assessment for Haub (2011) stems from the fact that in the latter, more
people survived to age 65 because the rapid mortality improvements during the last half
of the 20th century are taken into account. Similarly, we do not observe a large differ-
ence between the assessments made for Deevey’s (1960) population data because the life
expectancies assumed in the last intervals are closer to the actual values.

The GIP model also provides interesting additional insights. For instance, Figure 2
shows the persons-years ever lived up to each age until 2010 based on different histor-
ical population data. In panel 2 the absolute numbers are provided and we can see the
comparison between the relative shares of the persons-years ever lived across age to the
population distribution in 2010.7. Given that under a stable population the current popu-
lation distribution should coincide with the relative size of the persons-years ever lived,
Figure 2 gives us information about the pace of aging of the population.

In particular, based on Figure 2 the average age of the total population in 2010 was
30.9 years, while the average age of the people who ever lived up to 2010 is either 22.3
or 25.9, assuming Haub’s or Deevey’s population data, respectively. Thus, this result
provides us information about the unusual stage that the population is facing and how the
pace of ageing is increasing.

7All figure numbers are summarized in Table A–2 in Appendix D
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Figure 2: Persons-years ever lived up to 2010
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3. Formal population models

In this section, we study the concept of population ever lived to a given age under two
common population models. Such a formal demographic approach allows us to derive
analytical expressions of our indicator of interest. First, we consider the classical model
where numbers of births and all population numbers grow in exponential fashion consis-
tent with time-invariant fertility and mortality rates, the model referred to as the stable
population (Keyfitz and Caswell 2005; Preston, Heuveline, and Guillot 2001). Because
the population growth rate historically increased over time, the exponential mode over-
estimates person-years in the past and therefore produces a lower estimate for the pro-
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portion of people who ever lived who are alive now. The other model considered here,
the hyperbolic growth model, assumes that the population growth rate is proportional to
population size. As a consequence, the hyperbolic model leads to a higher estimate of the
proportion of people who ever lived who are alive now. These two models provide useful
formal demographic boundaries to the proportion of interest. Our results also contribute
to a better understanding of the two important formal demographic models of population
growth, i.e., which of these two models might better approximate demographic numbers
such as the population who ever lived to a given age.

3.1 Exponential population growth

In the simplest case of a stable population, where life tables are assumed to be constant
across cohorts (i.e., `(a, c) = `(a)) and births are assumed to grow exponentially at a
constant rate r (i.e., B(c) = B(0)erc), π(y,T ) becomes

r
1−e−r(T−y)

∫ ω
y
e−r(a−y) `(a)

`(y)da if r 6= 0

1
T−y

∫ ω
y

`(a)
`(y)da if r = 0.

(4)

The integral in Equation (4) is the stable population at ages y+ divided by the stable
population of exact age y, while the fraction in front of the integral is the ratio between
the total births born in year T − y and the person-years lived between 0 and T − y.

In a stable population the fraction π(y,T ) converges to zero for r ≤ 0. Assuming
positive population growth and T � y, the ratio converges to the limit value:

π(y,T ) = r

∫ ω

y

e−r(a−y) `(a)

`(y)
da. (5)

Hence, under a stable population, the value of the integral is given by the inverse of
the proportion of people aged 65 divided by those age 65+, which according to the UN
estimates is about 7.50% at age y = 65 in 2010. On the other hand, the geometric
mean of the long-run population growth rate from the origin of our race (50,000 BC) is
approximately 0.035%. Consequently, if we use the existing data and assume a stable
population model, the value of π(65, 2010) will be 0.00035

0.075
' 0.47%, which according to

Figure 3 is above the range 0.20–0.35% that is obtained if a stable population with a life
expectancy at birth between age 20 and 40, respectively, is assumed.
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Figure 3: Ratio of people age 65+ who are alive in 2010 to people who ever
lived to age 65, by life expectancy at birth and growth rate of
births
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Note: Survival probabilities by life expectancy taken from the UN General Model Life Tables.

This result shows that the stable population model is not capable of reproducing well
the empirically assessed values of π(65, 2010) shown in Section 2. Partly this is because
the exponential growth model does not account for recent improvements in survival to
old age. However, even if we use an expression that takes into account actual data on cur-
rent population size and age composition, this model yields a low value of π(65, 2010).8

Partly this is because the low historical growth rate produces a high number of people
ever born relative to those who are currently alive. Thus, if we fit the exponential growth
model to more recent data with faster population growth, the number of people ever -
born would be too low and the proportion π(65, 2010) too high. Fitting the model to the
growth of population aged 65 from 1950 until 2010 (UN estimates) yields the estimate
of about 1,953 million people who ever lived to age 65. Combining this estimate with
the current number of people aged 65+ gives a π(65, 2010) value equal to 26.8%, which
is above the more accurate empirical assessments of the previous section (but still well

8Assuming a stable population, we can calculate π(y,T ) using only current population data as follows

π(y,T ) =

∫ ω
y N(a,T )da∫ T−y

0 N(y, c+ y)dc
=

∫ ω
y N(a,T )da

N(y,T )
∫ T−y
0 e−r(T−y−c)dc

. (6)

Note that this expression reflects the recent mortality decline.
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below the 50% level). In sum, the estimates based on the exponential growth model are
too sensitive to the growth rate assumed in the model, and a single growth rate may not fit
well to the actual population history with many periods of accelerated population growth
(Keyfitz 1966).

3.2 Hyperbolic population growth

The inability of the exponential growth model to fit the historically varying growth rate
led researchers to super-exponential models (von Foerster, Mora, and Amiot 1960; von
Hoerner 1975; Kapitza 1992; Kremer 1993), where the growth rate increases in relation
to a stock population variable.9 Here we consider one particular type of such a model, the
hyperbolic growth where (to better account for the varying vital rates affecting a specific
age, we write the model for the population size at age y and not the total population size)

1

N(y, t)

∂N(y, t)

∂t
= αN(y, t). (7)

Solving this equation leads to

N(y, t) = N(y, 0)
τ

τ − t
for any t < τ , (8)

where N(y, 0) is the population size of age y at the onset of the hyperbolic growth and
τ = 1

αN(y,0) is the time when the model produces a vertical asymptote. Integrating the
number of people at age y until year T gives∫ T

0

N(y, t)dt = N(y,T )(τ − T ) log
τ

τ − T
. (9)

Therefore, the ratio of the number of people currently at ages y+ to the number of those
ever reached age y is:

π(y,T ) =
1

(τ − T ) log τ
τ−T

∫ ω

y

N(a,T )

N(y,T )
da. (10)

Applying the hyperbolic growth model to the population at age 65, and fitting the model
to the empirical numbers N(65, 2010) = 39.1 million and N(65, 1950) = 12.8 million
yields τ = 2039 AC. Realize that the value τ would get closer to T when longer time
intervals are used. Then, given that the UN estimates a total number of people age 65+
of 524.4 million people, Table 3 shows the following estimates for the people who ever
reached age 65 and π(65, 2010):
9 To account for the acceleration of the population growth rate, Cohen (2014) also uses a super-exponential

model.
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Table 3: Number of people age 65 ever lived: Hyperbolic model

τ 2015 2030 2039 2045 2060 2075

Persons age 65 ever lived (millions) 1,807 6,145 8,489 9,988 13,573 16,979
Persons age 65+ in 2010 (millions) 524 524 524 524 524 524
π(65, 2010) 0.290 0.085 0.062 0.052 0.039 0.031

Note: Numbers are calculated assuming 50000 B.C as our initial year.

Note in Table 3 that as τ gets closer to T = 2010, the model produces very rapid
population growth rates and hence smaller values for the number of people who ever
reached age 65. Nevertheless, even when τ = 2015, π(65, 2010) is notably well below
the 50% level. Fitting the model to the recent past, i.e., by setting τ = 2030, the model
yields π(65, 2010) = 6.2%. This rate is between the range of plausible values obtained in
the refined assessment (5.5%–9.5%) and higher than the exponential population growth
model.

4. Dynamic features of π(y,T )

An analytical study of the dynamics of the ratio π(y,T ) is key to understanding its plausi-
ble boundaries. It also provides the necessary tools for analyzing in a systematic way past,
present, and future values of π(y,T ). Recently, Cohen (2014) has shown that π(0,T )
(i.e., the fraction of people ever born up to time T who are alive at time T ) decreases
over time for a stable population model, but it can increase or decrease with a super-
exponential or with a doomsday model. In this section we extend the analysis of Cohen
(2014) by studying the dynamic features of the new indicator π(y,T ). Moreover, we
provide values for π(y,T ) across different ages and over time using actual world popula-
tion projections. Since π(y,T ) is a two dimensional function, we explore the change of
π(y,T ) over time and over the threshold age y. Thus, we first differentiate log π(y,T )
with respect to time and, second, with respect to the threshold age y.

4.1 Changing time T

To analyze whether π(y,T ) might reach values close to 50% in the near future, we dif-
ferentiate log π(y,T ) with respect to time T . After rearranging terms, we obtain10

πT (y,T )

π(y,T )
=
N(y,T )−

∫ ω
y
N(a,T )µ(a,T )da∫ ω

y
N(a,T )da

− N(y,T )∫ T−y
0

N(y, c+ y)dc
. (11)

10 For an illustration of the derivative of π(y,T ) with respect to T , see Figure A–1 in Appendix A.
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Equation (11) is the difference between the fractional change over time in the number of
people alive above age y and the fractional change over time in the number who have
ever reached age y. Equation (11) coincides with Equation (2) in Cohen (2014), page
1562, when y = 0. The fractional change over time in the number of people alive above
age y in year T can be either positive or negative. Indeed, the first term is the crude
growth rate in year T of the population older than age y. In contrast, the second term in
Equation (11) is always negative. As a result, π(y,T ) can either increase or decrease over
time. Another important difference is that the first term in Equation (11) depends only on
current information, whereas the second term depends on the historical population.

Assuming a stable population, we know from Proposition 1 that π(y,T ) is a de-
creasing function with respect to time T (see proof in Appendix A), which converges in
the limit to Equation (5).

Proposition 1. In a stable population, for all r, π(y,T ) is monotonically decreasing
with respect to time T .

Proposition 1 implies that for any stable population growth rate r, our fraction of
interest π(y,T ) decreases over time at any age threshold y. This proposition extends
to any arbitrary age y the result of Cohen (2014) for a stable population. The fact that
π(y,T ) monotonically decreases over time is explained by two properties. First, in a
stable population, the number of people currently alive at age y+, or numerator, increases
at the same rate as the population. Second, in a stable population, the growth rate of the
number of people who ever reached the age y, or denominator, is also positive but, when
the time horizon is finite (0,T ), it increases at a decreasing rate over time. Thus, when
T tends to infinity, the growth rate of the number of people who ever reached age y
asymptotically converges to the population growth rate. This explains why π(y,T ) starts
at T = ω at a high value and monotonically decreases towards Equation (5).

Figure 4 illustrates Proposition 1 by plotting all possible values of π(y = 65,T )
between year T = ω and T ↑ ∞ by different life expectancies at birth and growth rates
of births. All feasible values are contained in the blue area. Since π(y,T ) decreases
over time, the highest value of π(65,T ) for a given population growth rate occurs when
T = ω, while the lowest value occurs when T ↑ ∞. Figure 4 also provides two interesting
results. First, higher population growth rates lead to higher values of π(y,T ). Second, a
higher life expectancy also increases the value of π(y,T ). Therefore, given that during
the demographic transition both fertility and mortality changes, the sign of Equation (11)
is a priori ambiguous and we need to perform an empirical analysis. Nevertheless, the
first term in Equation (11) will typically be higher than the second one when the growth
rate of births increases, because the population reaching age y increases faster than the
deaths above that age (Cohen 2014). For this reason, as shown in Figure 5, π(y,T ) has
continuously increased during the 20th century at all ages analyzed. In the 21st century,
however, according to the medium variant UN (2013) estimates, the proportion π(y,T )
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may eventually decline at different ages after reaching a maximum due to the expected
slowdown in the growth rate of births.

Figure 4: Ratio of people age 65+ who are alive in year T to people who ever
lived to age 65 until year T , by life expectancy at birth and growth
rate of births

(a) Life expectancy (at birth)=20
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(b) Life expectancy (at birth)=80
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Note: Survival probabilities by life expectancy taken from the UN General Model Life Tables.

For instance, π(0,T ) is expected to reach a maximum value between 8-12% during
the second half of the 21st century, π(65,T ) will peak between 13-19% in the 2060s.

4.2 Changing age threshold y

In the first case, taking logarithms of both sides of Equation (3) and differentiating with
respect to y gives

πy(y,T )

π(y,T )
=
N(y,T ) +

∫ T−y
0

N(y, c+ y)µ(y, c+ y)dc∫ T−y
0

N(y, c+ y)dc
− N(y,T )∫ ω

y
N(a,T )da

. (12)

Equation (12) is the difference between the fractional change over age in the number of
people who have ever reached age y and the fractional change over age in the number
alive above age y. The first term, which is always positive, is the ratio between the
number of people at y in year T and the number of people who ever reached age y,
i.e., N(y,T )∫ T−y

0
N(y,c+y)dc

, plus the average mortality rate at y, weighted by the population
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ever reached age y, or
∫ T−y

0
N(y,c+y)∫ T−y

0
N(y,t+y)dt

µ(y, c+ y)dc. The second term, which is

always negative, is the proportion of people age y exactly among all age y+ in year T . A
priori, the sign of Equation (12) is ambiguous. Higher ages imply a greater contribution
of mortality on π(y,T ) due to the positive correlation between age and mortality. But
higher ages also imply a greater proportion of people age y among all age y+ in the same
year.

Figure 5: Fraction of people above alternative threshold ages who ever lived
who are alive in year T
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The sign of (12) is, nonetheless, known for some special cases. For example, in
a stable population, Proposition 2 shows that π(y,T ) is monotonically decreasing with
respect to the age threshold y (see proof in Appendix B).

Proposition 2. In a stable population with r > 0, π(y,T ) is monotonically de-
creasing with respect to the age threshold y if the death rate from age y onwards is
nondecreasing.

Proposition 2 implies that, in a stable population with r > 0, the reduction in the
number of people alive at age y and older is, in relative terms, smaller than the reduction
in the number of people who ever reached age y if, and only if, the death rate from
age y onwards is nondecreasing. Therefore, in a growing stable population, π(y,T ) is
increasing early in life, due to the fact that infant death rates are historically higher than
the proportion of people at age y (y belonging to infant ages) among all y+; it reaches
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a maximum and it monotonically decreases until very old ages (see Figure 3 in Johnson
(1999) for an illustration with a constant population growth rate).

In reality, however, the population growth rate is not constant over time. As in
Equation (30), the population growth rate is driven by gains or losses in life expectancy
and by increases or decreases in the fertility rate. In this setting, Proposition 2 does not
necessarily hold, and it is necessary to perform an empirical analysis. Figure 6 shows, for
the two extreme cases modeled with the GIP method, the decomposition of the fractional
change over age in the fraction of people above age y ever lived who are alive in 2010.

Figure 6: Decomposition of the fractional change over age in the ratio
between the number of people above age y ever lived who are alive
in 2010
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The solid lines (black for Haub-UN and gray for Deevey-UN) represent the frac-
tional change over age in the number of people who ever reached age y (or the first term
in Equation (12)), while the dashed red line is the fractional change over age in the num-
ber of people alive in 2010 above age y (or the second term in Equation (12)). The second
term is the same in both cases since it is based on current population data. In contrast,
the black solid line and the gray solid line differ because they are based on historical
estimates. Consequently, since historically the age-specific mortality rates are higher in
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Haub (2011) than in Deevey (1960), the black solid line is higher than the gray solid line.
Recall that Haub (2011) starts with a life expectancy at birth of age 13, while Deevey
(1960) assumes, similar to Keyfitz (1966), a life expectancy of 25 at the onset of Homo
sapiens. The crossing point between the gray and black solid lines at old age is due to the
higher weight of historical data in Deevey (1960) than in Haub (2011), since the former
assumed that more people reached old age. From Figure 6, we know that Equation (12)
is positive at young and old ages, i.e., when the solid lines are above the dashed line, and
it is negative from age 7 to the end of prime working age (around age 60). Therefore,
according to Figure 6, the fraction π(y, 2010) should have a local maximum early in life
and a local minimum late in life.

Figure 7: Fraction of people above age y ever lived who were alive in 2010
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Figure 7 shows the fraction of people above different ages y who ever lived and
were alive in 2010 (actual numbers are summarized in Table A–2 in Appendix D). The
black solid line depicts π(y, 2010) under the assumptions and data of Haub (2011) – UN
(2013), while the gray solid line corresponds to that of Deevey (1960) – UN (2013). As
Figure 7 suggests, in both cases we find that π(y, 2010) increases early in life, reaching
a maximum between 11% and 13% at age 5 (gray line) and at age 7 (black line). Then,
it declines until age 65 (gray line) and age 60 (black line), and finally rises, reaching a
value of 8% (gray line) and almost 15% (black line) at age 80. Initially, π(y, 2010) rises
because the historical average mortality rate at age 0 – i.e., the first term in (12) – until
2010 is close to 23% (in Deevey – UN) and 35% (in Haub – UN), while the proportion
of recently born among the total population in 2010 is close to 2%. Second, the faster
decrease over age in the gray solid line from age 8 to age 60 compared to the black solid
line is explained by the lower mortality rate in the former case relative to the proportion
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of people at age y among all age y+ in 2010 (cf. Figures 6 and 7). As a consequence,
π(65, 2010) is three percentage points greater in the black solid line (9%) than in the gray
solid line (6%). Therefore, according to Figure 7 we cannot expect – based on realistic
scenarios – π(65, 2010) values close to 50% for any age threshold y < 80.11

5. Conclusion and discussion

The question of how many people have ever lived has been discussed extensively in the
demographic literature. In a recent study Cohen (2014) followed this earlier research and
studied the change over time in the fraction of people ever born who are currently alive. In
this paper, we extend the analysis by Cohen and investigate the fraction of people above a
specific age threshold y alive at time T to the population that ever was alive and reached
this age threshold, which we denote by π(y,T ). Such a measure may yield a new view
on the pace of population ageing over time. Through our analysis we can show that the
guess of Fred Pearce (Economist 2014), that half of all people who have ever reached the
age of 65 are alive today, is not true. Indeed, such a number would be never attainable,
neither theoretically (in a stable population), nor empirically according to existing data.

Since the stable population model is quite a restrictive approximation over such a
long time period, we extended our analysis to a hyperbolic growth model and a nonstable
population model where we indirectly estimated the time series of fertility and mortal-
ity allowing for differences across various subperiods. Our estimates for the fraction
π(65, 2010) ranges from 5.5% to about 9.5%, which is clearly well below the estimates
cited in Pearce (Economist 2014).

We have applied simple mathematical demography to analytically express π(y,T )
and use the framework of the Lexis diagram to illustrate this fraction. Assuming a sta-
ble population model and a hyperbolic growth model, we were able to derive analytical
expressions for π(y,T ). For the specific case of a stationary population this fraction con-
verges to 0 for T going to infinity. Assuming, however, a stable population with positive
growth rate r > 0 we could analytically derive an expression of the fraction π(y,T )
which amounts to a weighted integral of the further life expectancy at age y with the
weights being an exponential discount with the stable population growth rate.

In the rest of the paper we studied the sensitivity of the fraction π(y,T ) with respect
to the time T and the age y.

The fraction π(y,T ) may be nonmonotonic with respect to T , as we have demon-
strated in our numerical calculations for values of π(y,T ) for T between 1850 and 2100
in the case of y = 65. In this case, π(y,T ) first increases with T , while it decreases

11 Values of π(y, 2010) for y > 80 are not shown because of lack of data above age 80 for the period 1950–
1990. Nevertheless, based on data for living super-centenarians the fraction π for supercentenarians in 2000
seems to be close to 12% (see http://www.grg.org/Adams/E.HTM).
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afterwards starting at time periods around T = 2050. The behavior of π(y,T ) over time
is explained by two terms. The first one is the crude growth rate in year T of the popu-
lation older than age y, which can be either positive or negative. The second one is the
fractional change over time in the number of people who ever reached age y. During the
20th century and first half of the 21st century the first term will typically be higher than
the second one when the growth rate of births increases, because the population reaching
age y increases faster than the deaths above that age. The values obtained for various
time periods and different age thresholds are again well below 50% and could be as low
as 1% for early time periods T = 1850 and up to about 20% in 2050.

For illustrations we also provided the range of values for π(65,T ) for extreme values
of T given a stable population under various growth rates of births and for alternative
values of the life expectancy at birth. Only in case of a very high growth rate of births
could we obtain values of π(65,T ) similar to the 50% of Pearce (Economist 2014) or
even larger. Nevertheless, using our estimates of population over time, Table 4 shows
that the value of π(65, 2010) is always lower than 50% even when we start counting the
population ever lived to age 65 at more recent years.

Table 4: Estimates of π(65, 2010) according to the starting year

Starting year 4000 B.C 850 B.C 0 1857 1865 1900 1965

Deevey (1960) – 10% 11% 25% – 28.3% 43.5%
Haub (2011) 10% – 13% – 25% 27.5% 44.0%

For a given contemporaneous time T , we also demonstrated that the fraction is non-
monotonic in age y. It first increases with the age threshold at younger ages, then starts
to decline before it increases again for older ages. This property can be explained by two
opposite forces. The first one is positive and depends on the average historical mortality
rate at age y. The second is negative and it is the proportion of people at age y among all
people age y+ in year T , which depends on contemporaneous data. The nondecreasing
property of π(y,T ) over the age threshold at young and old ages is explained by the fact
that the high mortality rates at these ages in the past dominate over the present mortality
rates at these two life periods. Nevertheless, and despite π(y,T ) increasing at old ages,
our results clearly indicate for all age thresholds the value of the fraction π(y,T ) in year
T = 2010 is far below 50% and ranges from 0.05 to at most about 0.15.

Summing up through our analytical and numerical derivations, and by applying re-
alistic time series of historic and future fertility and mortality patterns, we offer realistic
estimates of the fraction of people alive today above a specific age among all those who
ever lived to this specific age. Our results indicate that this fraction for age 65 has in-
creased over time, supporting the argument that the pace of ageing has increased.

http://www.demographic-research.org 1685

http://www.demographic-research.org


Sánchez-Romero et al.: How many old people have ever lived?

6. Acknowledgements

We thank Joel Cohen, Ronald Lee, Wolfgang Lutz, Marc Luy, Samir K.C., and par-
ticipants in the 2015 Annual Meeting of the Population Association of America and the
Wittgenstein Centre 2016 Conference (Variations of the Themes of Wolfgang Lutz) for
their comments and suggestions.

1686 http://www.demographic-research.org

http://www.demographic-research.org


Demographic Research: Volume 36, Article 54

References

Coale, A.J. and Zelnik, M. (1963). New estimates of fertility and population in the United
States. Princeton: Princeton University Press. doi:10.1515/9781400874934.

Cohen, J.E. (2014). Is the fraction of people ever born who are cur-
rently alive rising or falling? Demographic Research 30(56): 1561–1570.
doi:10.4054/DemRes.2014.30.56.

Deevey, E.S. (1960). The human population. Scientific American 203(9): 195–204.
doi:10.38/scientificamerican0960-194.

Desmond, A. (1962). How many people have ever lived on earth? Population Bulletin
18(1): 1–19.

Economist (2014). Demography, growth and inequality: Age in-
vaders. [electronic resource]. London: The Economist Newspaper.
http://www.economist.com/node/21601248/print.

Feichtinger, G. (1979). Demographische Analyse und populationsdynamische Modelle:
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Appendix A: Proof of Proposition 1

Let us assume a stable population whose population growth rate is equal to r and the
survival probability to age x for any cohort c is equal to `(x). Provided that for a stable
population the crude growth rate of the population above any age y is constant and equal
to the population growth rate, Equation (11) can be written as

πT (y,T )

π(y,T )
= r − N(y,T )∫ T−y

0
N(y, c+ y)dc

. (13)

Since by definition N(y,T ) = B(T − y)`(y) = B(0)er(T−y)`(y), after rearranging
terms and solving the integral, Equation (13) becomes

πT (y,T )

π(y,T )
= r − r

1− e−r(T−y)
= − re−r(T−y)

1− e−r(T−y)
. (14)

Note that Equation (14) is always negative for any r 6= 0, since sgn[r] = sgn
[

e−r(T−y)

1−e−r(T−y)

]
For the extreme case that r = 0, applying l’Hôpital’s rule we have

lim
r↑0

πT (y,T )

π(y,T )
= − lim

r↑0

e−r(T−y) − r(T − y)e−r(T−y)

(T − y)e−r(T−y)
= − 1

T − y
< 0. (15)

We thus conclude that in a stable population, πT (y,T )
π(y,T ) is always negative, which proves

Proposition 1.
An illustration of the fractional change over time in a Lexis diagram is provided in

Figure A–1.
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Figure A–1: Illustration of change over time of the fraction now alive of those
who ever survived to old age
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Appendix B: Proof of Proposition 2

Assuming time-constant death rate at age y (µy), let us define

π =
A

B
, π′ =

A′

B′
, (16)

where

B′ = (B −∆B)(1− µy∆) = B −∆B −Bµy∆ + µy∆∆B (17)
A′ = A−∆A = A−∆B + 0.5µy∆∆B . (18)
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(By contradiction:) if π′ > π it should be satisfied that

A−∆B + 0.5µy∆∆B

B −∆B −Bµy∆ + µy∆∆B
>
A

B
. (19)

Rearranging terms and multiplying by −1 gives

⇒ ∆B

A
− 0.5µy∆

∆B

A
<

∆B

B
+ µy∆− µy∆

∆B

B
. (20)

Defining ∆B = b∆ and simplifying

⇒ b

A
− 0.5µ∆

b

A
<

b

B
+ µ− µ∆

b

B
. (21)

Note that b is the total number of births per year who have survived to age y, whereas ∆
is an infinitesimal number. Rearranging terms and using the definition of π gives

⇒ b

A
(1− π) < µy

[
1 + ∆

b

A
(0.5− π)

]
. (22)

Provided that for any stable population limT→∞ π = 0, we obtain

⇒ µy >
b

A

1

1 + 0.5 b
A∆

. (23)

Under a stationary population b/A = 1/ey . Hence,

⇒ µy >
1

ey + 0.5∆
. (24)

If the death rate from age y is nondecreasing and ∆ → 0, 1/ey ≥ µy , which contradicts
the above inequality. Therefore, we have shown that π′ < π when the population is
stationary.

It is important to realize that π′ < π also applies to a stable population with a fixed
mortality schedule across cohorts. If the death rate at age y is constant, it can be shown
for ∆→ 0

∆B(T ) =

∫ T

T−∆

N(y, t)dt =

∫ T

T−∆

B(t− y)`(y)dt

= B(T − y)`(y)∆ = N(y,T )∆ = b(T )∆. (25)
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Figure A–2: Illustration of change over age of the fraction alive now of those
who ever survived to old age
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Using Equation (30), we have

A(T ) =

∫ ω

y

N(a,T )da = N(y,T )

∫ ω

y

N(a,T )

N(y,T )
da

= N(y,T )

∫ ω

y

e−r(a−y) `(a)

`(y)
da = b(T )

∫ ω

y

e−r(a−y) `(a)

`(y)
da. (26)

Therefore, if r > 0

b(T )

A(T )
=

1∫ ω
y
e−r(a−y) `(a)

`(y)da
>

1

ey
≥ µy, (27)

which also proves by contradiction that π′ < π.
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Appendix C: Reconstruction of the historical population reported in
Table 2 using the GIP method

To reconstruct the historical population, we use the Generalized Inverse Projection (GIP)
model (Lee 1966; Oeppen 1993). The main property of the GIP model is that it gives a
population structure that is consistent by age and over time for nonstable populations.
This feature is particularly important for reconstructing the change in the population
structure after the industrial revolution since the growth rate of the population markedly
differs from a constant population growth.

To account for changes in fertility and mortality over time, we consider that the
survival probability to age a of an individual born in year c, `(a, c), and the fertility rate
at age a of an individual born in year c, f(a, c) are, respectively, given by

`(a, c) = e−M(a,c), (28)

f(a, c) =

{
f · exp{φ(c)} if a = A,

0 otherwise
with φ(0) = 0, (29)

where M(a, c) =
∫ a

0
µ(x, c + x)dx is the cumulative mortality hazard rate at age a for

an individual born in year c and µ(x, c + x) is the mortality hazard rate at age x in year
c + x. In Equation (29) it is assumed that fertility is concentrated at the mean age at
childbearing, where f is the average number of children of the birth cohort 0, exp{φ(c)}
indicates the cohort-specific change from the initial cohort in the number of children, and
A is the unique age of childbearing.

Like the Lee and Carter (1992) model, we assume that logµ(x, c + x) = α(x) +
k(c+x)β(x), where α(x) and β(x) represent the fixed age effects and the rate of change
in mortality at age x in response to a change in k, and k(c+ x) is the level of mortality
at time c + x. Particular functional forms of Equation (29) have been previously studied
in the context of population growth theory. For instance, Coale and Zelnik (1963), Fe-
ichtinger and Vogelsang (1978), and Feichtinger (1979) showed that when φ(t) = φ · t
the birth trajectory is given by B(t) = B(0) exp

{
φ
2 t+ φ

2A t
2
}

, where φ is the rate of
change in the level of fertility. Here, however, we assume that total births depend on both
fertility and mortality. Thereby, combining (28) and (29) the total number of births born
in year c becomes

B(c) = B(0) exp


c/A−1∑
i=0

[φ(iA)−M(A, iA)]

 . (30)

Assuming a unique age of childbearing (A), the renewal equation at time s+A is

B(s+A) = B(s)f(A, s)`(A, s). (31)
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From (28) and (29), taking logarithms to both sides of (31) and differentiating with respect
to s gives

r(s+A) = r(s) + φs(s)−Ms(A, s), (32)

where r(s) is the growth rate of births in year s. Iterating (32) recursively until time 0
gives

r(s+A) ≈ r(0) +

s/A∑
i=0

φs(s− iA)−Ms(A, s− iA). (33)

Integrating (33) with respect to time equals the total contribution of changes in mortality
and fertility on the growth rate of births until time t (i.e., log{B(t)/B(0)})∫ t

0

r(s)ds ≈ r(0)t+

∫ t

0

s/A∑
i=1

φs(s− iA)−Ms(A, s− iA)ds.

By changing the order of integration and rearranging terms, we have∫ t

0

r(s)ds ≈ r(0)t+

t/A∑
i=1

∫ t

iA

φs(s− iA)−Ms(A, s− iA)ds.

Solving the integral and assuming r(0)A = φ(0)−M(A, 0) gives∫ t

0

r(s)ds ≈
t/A−1∑
i=0

φ(iA)−M(A, iA).

which is equivalent to Equation (30).
Equation (30) shows to what extent former changes in fertility and mortality affect

the growth rate of births. Substituting (28) and (30) in (3) we get

π(y,T ) =

∫ T−y
T−ω B(c)e−M(T−c,c)dc∫ T−y

0
B(c)e−M(y,c)dc

. (34)

Therefore, given α(x) and β(x), Equation (34) implies that π(y,T ) is a function of the
history of φ(·) and k(·).

Our fixed age-specific mortality rates, α(·), as well as the relative rate of change in
mortality across age groups, β(·), are derived from the model life table by level of life
expectancy provided by the UN (2013). Figure A–3 shows the age components of the
underlying survival probabilities. These values are calculated taking the first principal
component from the mortality data by life expectancy reported by the UN (2013). More-
over, we set the mean age of childbearing (A) at 27, similar to that of Hutterites, given
the historical nature of our calculations.
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Figure A–3: Underlying mortality model

(a) Survival probabilities by life expectancy taken from the UN
General Model Life Tables

(b) Age pattern of mortality change, β(a)
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Objective function

Given an initial number of birthsB(0) and a time series of demographic values {N(t), e0(t)}Tt=0

and a set of population distributions {N(a, t)}t=0,...,T
a=0,...,ω , the historical populations of Haub

(2011) and Deevey (1960) are consistently calculated over time by solving the following:

min
k,φ

F (k,φ) =

T∑
t=0

(
N(t)− N̂(t)

N(t)

)2

+

ω∑
a=0

(
N(a,T )− N̂(a,T )

N(a,T )

)2

+

T∑
t=0

(
B(t)− B̂(t)

B(t)

)2

+

T∑
t=0

(
e0(t)− ê0(t)

e0(t)

)2

,

subject to

B̂(t) = B̂(t−A)f(A, t−A)`(A, t−A),

N̂(a, t) = B̂(t− a)`(a, t− a),

N̂(t) =

ω∑
a=0

N̂(a, t),

ê0(t) =

ω−1∑
a=0

0.5 [`(a, t− a) + `(a+ 1, t− a− 1)](
I2T ⊗

[
1
−1

])[
k
φ

]
≤
[
k̄ φ̄ −k −φ

]′ ⊗ 1T×1,

where `(a, t − a) = e{−
∑a−1

s=0 exp(α(s)+k(t−a+s)β(s))}, f(A, t − A) = f · eφ(t−A),
k = [k(0), . . . , k(T )], φ = [φ(0), . . . ,φ(T )], and [k̄, φ̄,−k,−φ] are the maximum and
minimum values of {k(t),φ(t)} for t = 0, . . . ,T , which are set at [30, 0.5, 50, 2], and
ffab = 0.4886 is the fraction of female at birth.

Figure A–4 depicts the matching of the GIP method to the UN population distribu-
tion for selected years. Although it is almost imperceptible due to the good matching,
green solid lines represent the population distribution obtained with the GIP method, and
blue solid lines depict UN population data by single years of age.

To derive minimum and maximum values of π(65, 2010), the values of φ(·) and k(·)
were calculated for the population data of Deevey (1960) and Haub (2011) up to 1900 and
the population estimates from 1950 through 2100 reported by the UN (2013).
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Figure A–4: Matching of the GIP method to the UN population distribution,
several years from 1950 to 2010

a) Case: Haub (2011)
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Figure A–4: (Continued)

b) Case: Deevey (1960)
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Appendix D: Population ever lived estimates

Table A–1: Estimates of people ever born by different authors

Exact Population Lotka’s r Crude Life Births at Births in Cumulated Survival Population Cumulated
date birth expec- exact period births prob. age ever lived population

rate tancy date 65 to age 65 to age 65

(millions) (in %) (years) (millions) (millions) (millions) (millions) (millions)

Haub (2011)

–50000 0 0.035 0.080 13.0 0 1,140 – 0.0151 – –
–8000 5 0.051 0.080 13.0 0 46,118 1,140 0.0153 17 17

1 300 0.034 0.060 17.0 18 26,614 47,259 0.0330 704 721
1200 450 0.023 0.060 17.0 27 12,813 73,872 0.0328 879 1,600
1650 500 0.464 0.050 22.0 25 3,181 86,686 0.0671 420 2,020
1750 795 0.464 0.040 28.0 32 4,047 89,866 0.1172 213 2,234
1850 1,265 0.539 0.040 29.0 51 2,903 93,914 0.1226 474 2,708
1900 1,656 0.837 0.033 38.0 55 2,986 96,817 0.2337 356 3,064
1945 2,516 – 0.031 – 78 – 99,803 – 698 3,762

Keyfitz (1966)

–1000000 0 0.001 0.040 25.0 0 13,508 – 0.0889 – –
–5000 5 0.078 0.040 25.5 0 12,525 13,508 0.0931 1,201 1,201

0 250 0.047 0.040 25.3 10 24,983 26,034 0.0914 1,166 2,367
1650 545 0.550 0.040 28.7 22 16,121 51,017 0.1234 2,283 4,651
1945 3,000 – 0.040 – 120 – 67,138 – 1,989 6,640

Westing (1981)

–298000 0 0.006 0.050 20.0 0 2,725 – 0.0514 – –
–40000 3 0.002 0.040 25.0 0 5,014 2,725 0.0889 140 140
–8000 5 0.046 0.034 30.0 0 14,270 7,739 0.1364 446 586

0 200 0.056 0.029 35.0 6 15,681 22,009 0.1929 1,946 2,532
1650 500 0.347 0.028 40.0 14 3,992 37,690 0.2576 3,025 5,557
1850 1,000 0.877 0.029 45.0 29 4,269 41,682 0.3292 1,028 6,585
1945 2,300 – 0.037 50.0 85 – 45,951 – 1,405 7,991

Deevey (1960)

–998040 0 0.000% 0.040 25.0 0 11,782 – 0.0889 – –
–298040 1 0.000% 0.040 25.0 0 21,344 11,782 0.0889 1,048 1,048
–23040 3 0.003% 0.040 25.0 0 2,552 33,126 0.0889 1,898 2,945
–8040 5 0.070% 0.040 25.4 0 4,658 35,678 0.0927 227 3,172
–4040 87 0.011% 0.035 28.7 3 15,132 40,336 0.1228 432 3,604

–40 133 0.083% 0.035 29.2 5 17,278 55,468 0.1282 1,858 5,462
1650 545 0.290% 0.035 30.9 19 2,212 72,746 0.1457 2,215 7,677
1750 728 0.437% 0.035 32.2 25 1,424 74,958 0.1597 322 7,999
1800 906 0.575% 0.035 33.3 32 4,286 76,383 0.1729 227 8,227
1900 1,610 0.798% 0.035 35.5 56 3,051 80,668 0.1990 741 8,968
1945 – – 0.035 – – – 83,719 – 607 9,575

Source: Researchers’ own calculations based on Deevey (1960), Keyfitz (1966), Westing (1981), and Haub (2011).
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Table A–2: Results of population reconstruction for 2010 and estimates of π
(y,2010)

Age Pop. ever lived Pop. age y Pop. age y+ π(y, 2010)
up to 2010 in 2010 in 2010
(in millions) (in millions) (in millions)

y Haub (2011) Deevey (1960) UN, Pop. Div. UN, Pop. Div. Haub (2011) Deevey (1960)

0 112,931 77,249 131 6,896 0.0611 0.0893
1 77,801 64,083 129 6,765 0.0870 0.1056
2 71,110 60,629 127 6,637 0.0933 0.1095
3 64,721 57,401 125 6,510 0.1006 0.1134
4 59,550 54,903 124 6,384 0.1072 0.1163
5 56,411 53,371 123 6,260 0.1110 0.1173
6 54,743 52,431 122 6,137 0.1121 0.1170
7 53,447 51,677 122 6,015 0.1125 0.1164
8 52,414 51,049 121 5,893 0.1124 0.1154
9 51,536 50,487 121 5,772 0.1120 0.1143

10 50,707 49,953 120 5,651 0.1114 0.1131
11 49,945 49,465 120 5,531 0.1107 0.1118
12 49,286 49,025 120 5,410 0.1098 0.1104
13 48,672 48,597 120 5,290 0.1087 0.1089
14 48,039 48,143 121 5,170 0.1076 0.1074
15 47,327 47,635 121 5,049 0.1067 0.1060
16 46,522 47,075 121 4,928 0.1059 0.1047
17 45,658 46,478 121 4,808 0.1053 0.1034
18 44,747 45,849 122 4,687 0.1047 0.1022
19 43,798 45,195 122 4,565 0.1042 0.1010
20 42,824 44,514 122 4,443 0.1038 0.0998
21 41,803 43,796 123 4,321 0.1034 0.0987
22 40,721 43,038 122 4,198 0.1031 0.0975
23 39,611 42,259 121 4,076 0.1029 0.0964
24 38,503 41,481 119 3,955 0.1027 0.0953
25 37,428 40,715 116 3,836 0.1025 0.0942
26 36,387 39,960 114 3,720 0.1022 0.0931
27 35,363 39,206 112 3,606 0.1020 0.0920
28 34,352 38,452 109 3,494 0.1017 0.0909
29 33,350 37,694 107 3,385 0.1015 0.0898
30 32,351 36,931 104 3,279 0.1013 0.0888
31 31,359 36,167 101 3,174 0.1012 0.0878
32 30,372 35,399 100 3,073 0.1012 0.0868
33 29,396 34,630 99 2,973 0.1012 0.0859
34 28,436 33,862 99 2,875 0.1011 0.0849
35 27,493 33,096 99 2,776 0.1010 0.0839
36 26,571 32,332 99 2,677 0.1007 0.0828
37 25,665 31,570 99 2,578 0.1004 0.0817
38 24,776 30,808 98 2,479 0.1001 0.0805
39 23,903 30,048 96 2,381 0.0996 0.0793
40 23,047 29,290 95 2,285 0.0992 0.0780
41 22,213 28,539 94 2,190 0.0986 0.0767
42 21,398 27,791 92 2,096 0.0980 0.0754
43 20,599 27,042 90 2,004 0.0973 0.0741
44 19,811 26,289 88 1,914 0.0966 0.0728
45 19,030 25,532 85 1,826 0.0960 0.0715
46 18,261 24,775 83 1,741 0.0953 0.0703
47 17,508 24,018 81 1,658 0.0947 0.0690
48 16,765 23,257 78 1,577 0.0941 0.0678
49 16,029 22,488 76 1,499 0.0935 0.0666
50 15,296 21,709 74 1,422 0.0930 0.0655
51 14,572 20,927 72 1,348 0.0925 0.0644
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Table A–2: (Continued)

Age Pop. ever lived Pop. age y Pop. age y+ π(y, 2010)
up to 2010 in 2010 in 2010
(in millions) (in millions) (in millions)

y Haub (2011) Deevey (1960) UN, Pop. Div. UN, Pop. Div. Haub (2011) Deevey (1960)

52 13,855 20,136 70 1,276 0.0921 0.0634
53 13,146 19,338 69 1,206 0.0917 0.0623
54 12,444 18,532 67 1,137 0.0914 0.0613
55 11,748 17,719 66 1,070 0.0910 0.0604
56 11,062 16,901 65 1,004 0.0907 0.0594
57 10,387 16,078 63 939 0.0904 0.0584
58 9,723 15,252 60 876 0.0901 0.0574
59 9,071 14,423 56 816 0.0900 0.0566
60 8,432 13,592 53 760 0.0901 0.0559
61 7,810 12,763 50 707 0.0905 0.0554
62 7,202 11,936 47 657 0.0912 0.0550
63 6,615 11,118 44 610 0.0922 0.0549
64 6,052 10,313 42 566 0.0935 0.0549
65 5,514 9,524 39 524 0.0951 0.0551
66 5,003 8,754 37 485 0.0970 0.0554
67 4,520 8,006 34 449 0.0993 0.0561
68 4,065 7,282 33 414 0.1019 0.0569
69 3,638 6,585 32 381 0.1048 0.0579
70 3,239 5,918 31 349 0.1078 0.0590
71 2,868 5,282 30 318 0.1109 0.0602
72 2,524 4,680 29 288 0.1141 0.0615
73 2,208 4,117 27 259 0.1172 0.0629
74 1,921 3,593 25 231 0.1204 0.0644
75 1,662 3,113 24 206 0.1239 0.0661
76 1,430 2,674 22 182 0.1275 0.0682
77 1,222 2,276 20 161 0.1314 0.0705
78 1,039 1,922 18 141 0.1354 0.0732
79 878 1,610 17 122 0.1391 0.0759
80 739 1,338 15 105 0.1425 0.0787
81 618 1,103 14 90 0.1452 0.0814
82 514 901 13 76 0.1473 0.0841
83 425 730 11 63 0.1487 0.0866
84 348 585 10 52 0.1495 0.0890
85 283 463 8 42 0.1496 0.0914
86 228 363 7 34 0.1492 0.0936
87 181 280 6 27 0.1484 0.0959
88 143 214 5 21 0.1470 0.0979
89 111 162 4 16 0.1449 0.0996
90 86 121 3 12 0.1419 0.1005
91 65 89 2 9 0.1387 0.1012
92 49 65 2 7 0.1367 0.1029
93 36 46 1 5 0.1367 0.1059
94 26 33 1 4 0.1379 0.1098
95 19 23 1 3 0.1390 0.1135
96 13 16 1 2 0.1403 0.1174
97 9 11 0 1 0.1391 0.1191
98 6 7 0 1 0.1329 0.1160
99 4 4 0 0 0.1231 0.1093

100+ 7 7 0 0
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