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Abstract

BACKGROUND
Mortality trends for subpopulations, e.g., countries in a region or provinces in a country,
tend to change similarly over time. However, when forecasting subpopulations indepen-
dently, the forecast mortality trends often diverge. These divergent trends emerge from an
inability of different forecast models to offer population-specific forecasts that are con-
sistent with one another. Nondivergent forecasts between similar populations are often
referred to as “coherent.”

METHODS
We propose a new forecasting method that addresses the coherence problem for subpop-
ulations, based on Compositional Data Analysis (CoDa) of the life table distribution of
deaths. We adapt existing coherent and noncoherent forecasting models to CoDa and
compare their results.

RESULTS
We apply our coherent method to the female mortality of 15 Western European countries
and show that our proposed strategy would have improved the forecast accuracy for many
of the selected countries. The results also show that the CoDa adaptation of commonly
used models allows the rates of mortality improvements (RMIs) to change over time.

CONTRIBUTION
This study opens a discussion about the use of age-specific mortality indicators other
than death rates to forecast mortality. The results show that the use of life table deaths
1 Max Planck Odense Center on the Biodemography of Aging, Institute of Public Health, University of
Southern Denmark, Odense, Denmark. E-Mail: mpbergeron@health.sdu.dk.
2 Max Planck Odense Center on the Biodemography of Aging, Institute of Public Health, University of
Southern Denmark, Odense, Denmark. E-Mail: vcanudas@health.sdu.dk.
3 Max Planck Odense Center on the Biodemography of Aging, Institute of Public Health, University of
Southern Denmark, Odense, Denmark. E-Mail: joeppen@health.sdu.dk.
4 Max Planck Institute für Demographic Research, Rostock, Germany. E-Mail: jvaupel@health.sdu.dk.

http://www.demographic-research.org 527



Bergeron-Boucher et al.: Coherent forecasts of mortality with compositional data analysis

and CoDa leads to less biased forecasts than more commonly used forecasting models
based on the extrapolation of death rates. To the authors’ knowledge, the present study is
the first attempt to forecast coherently the distribution of deaths of many populations.

1 Introduction

Accurate life expectancy forecasts are crucial inputs for decision-making by individuals
and by financial, social, and health care institutions. The best way to obtain accurate fore-
casts is still debated. Different methods for forecasting mortality have been introduced
over the years. Booth and Tickle (2008) classify mortality forecasting models into three
broad approaches: expert judgment, extrapolation of past trends, and epidemiological
models. Most recent developments in forecasting mortality focus on extrapolative mod-
els (Booth and Tickle 2008). The extrapolative approach generally finds its robustness in
the linear changes over time of different indicators used for forecasts and the limited sub-
jective judgment required (Stoeldraijer et al. 2013; Booth and Tickle 2008; Booth et al.
2006; Oeppen and Vaupel 2002).

A well-known extrapolative approach is the Lee–Carter model (Lee and Carter 1992).
The Lee–Carter model uses linear extrapolations of the logarithms of age-specific death
rates to forecast mortality, using principal component techniques. While the model works
reasonably well (Lee and Miller 2001), one of its flaws is its assumption of a constant rate
of age-specific mortality improvement over time. This assumption has been shown to be
inadequate in many cases, especially at higher ages, and to overestimate the future level
of mortality (Booth, Maindonald, and Smith 2002; Booth and Tickle 2008; Kannisto et al.
1994).

More recently, Oeppen (2008) suggested forecasting life table deaths using Compo-
sitional Data Analysis (CoDa), a method pioneered by Aitchison (1986). Compositional
data is defined as positive values summing up to a fixed constant, which carry only rel-
ative information and represent part of a whole. A compositional vector can be, for
example, a vector of proportions or percentages. Oeppen (2008) suggested treating life
table distributions of deaths (dx) as compositional data and using a principal component
approach, similar to the Lee–Carter model, to forecast mortality within a CoDa frame-
work. Within this framework, the data is constrained to vary between two limits (0 and
a given constant), which conditions the relationship between the components, such as
ages and causes of deaths, and is manifested in their covariance structure (Pawlowsky-
Glahn and Egozcue 2006). This last property can represent an important advantage in a
forecasting context (Lee 1998). Furthermore, Oeppen (2008) showed that using CoDa
to forecast mortality by age and cause of death does not lead to more pessimistic results
than forecasting mortality by age only, as found by previous studies based on death rates
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(Wilmoth 1995). It has been shown that when forecasts are based on cause-disaggregated
measures, mortality forecasts by components tend to be dominated by an increase or slow
decrease of certain subgroups, leading to more pessimistic forecasts (Wilmoth 1995). By
using CoDa, this limitation can be avoided (Oeppen 2008).

An important issue related to extrapolative approaches to forecasting is that they of-
ten do not consider analogous mortality trends for males and females or for countries in
a region or provinces/states in a country. Mortality trends are often projected separately,
which tends to increase the divergence between groups in the long run, even when using
similar extrapolative procedures (Li and Lee 2005; Wilmoth 1995). Coherent forecasts,
i.e., nondivergent forecasts, among industrialized countries are justified, since conver-
gence of mortality levels across industrialized countries has been observed since the mid-
dle of the 20th century (White 2002; Wilson 2001, 2011; Li and Lee 2005; Oeppen 2006).
This occurred as a general process; populations became integrated via communication,
transportation, trade, and technology, without however totally eliminating regional speci-
ficities (Li and Lee 2005). Considering this convergence, forecasting mortality by single
countries becomes less acceptable and coherent forecasts are often necessary (Li and Lee
2005; Schinzinger, Denuit, and Christiansen 2016; Bohk-Ewald and Rau 2017; Hynd-
man, Booth, and Yasmeen 2013; Raftery et al. 2013; Cairns et al. 2011; Torri and Vaupel
2012).

Among the solutions offered for the regional coherence problem, Li and Lee (2005)
suggest modifying the Lee–Carter method by identifying a factor for central tendency for
a group of countries and a factor for individual-country trends. Carter and Lee (1992)
and Russolillo, Giordano, and Haberman (2011) suggest using a single time-pattern of
mortality change for many populations. Following a suggestion by Oeppen and Vaupel
(2002), Torri and Vaupel (2012) forecast the best-practice in life expectancy, which has
risen at a steady pace since 1840 (Oeppen and Vaupel 2002), and then forecast the gap
between countries’ life expectancy and the record level. All these methods suggest using
a common trend, reflecting a general mortality process, which influences the country-
specific mortality.

Coherent regional mortality forecasts within a CoDa framework have not been ex-
plored previously. In this article, we refer to CoDa methodology as a forecast performed
within the CoDa framework. The main purpose of this study is to explore the use of an
added common factor to the CoDa methodology to obtain an improved coherent forecast
method based on the forecast of life table deaths.

There are seven sections in this article. The following section on methods summa-
rizes the Lee and Carter (1992) and Li and Lee (2005) models. It also introduces their
respective CoDa adaptation. Section three reports the data used and section four inter-
prets the parameters and shows the explained variance and the fitted models. In the fifth
section we present the results of the female forecasts for 15 countries as well as compar-
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ing previous models with the new proposal. As final sections, a discussion and conclusion
are included.

2 Methods

We compare four forecasting models: Lee–Carter and CoDa, both with and without a
common factor. We briefly describe them here.

2.1 The Lee–Carter (LC) model

The Lee and Carter (1992) model is a principal components approach, based on the log-
transformed age-specific death rates (mt,x). The model is written as:

ln(mt,x)− αx = κtβx + εt,x, (1)

where αx is the age-specific log-mortality average, κt is the level of mortality in year t,
βx is an age-pattern of mortality change at age x (also interpreted as the rate of mortality
improvement once multiplied by the change in κt as shown in Appendix F), and εt,x is
the error term. The parameters κt and βx are the normalized first left and right singular
vectors of the singular value decomposition (SVD) of the centered matrix log(mt,x)−αx,

κt = uts

120∑
x=0

vx (2a)

βx =
vx

120∑
x=0

vx

, (2b)

where ut is the first left-singular vector (years, e.g., from 1960 to 2011), s is the leading
singular value, and vx is the first right-singular vector (ages, e.g. from 0 to 120) of the
SVD. Lee and Carter (1992) found that κt changes linearly and can be forecast using a
random walk with drift. Other time series methods could also be used.
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2.2 The Li–Lee model: LC-coherent

Li and Lee (2005) modified the Lee–Carter model to forecast different populations in a
coherent way. Their model uses a common factor, representing an average mortality trend
for the whole group of countries. The death rates at time t, age x and for population i,
mt,x,i, are modeled as

log(mt,x,i)− αx,i − κtβx = kt,ibx,i + εt,x,i, (3)

where αx,i is the average log-mortality at a given age x for population i, and κtβx is
the common factor for all populations. The common factor is obtained by applying the
ordinary Lee–Carter method to the average mortality of the group, as in equation (1).
The term kt,ibx,i represents the SVD components, as presented in equations (2a) and
(2b), of the difference between the centered logged death rates of population i and the
rates implied by the common factor (Li and Lee 2005). As stated by the authors, this
method is “taking advantage of commonalities in [the populations’] historical experience
and age patterns, while acknowledging their individual differences in levels, age patterns,
and trends.” (Li and Lee 2005: 590)

For the model to work, kt,i should each approach some constant (Li and Lee 2005).
“In this way, the fitted model will accommodate some continuation of historical conver-
gent or divergent trends for each country before it locks into a constant relative position
in the hierarchy of long-term forecasts of group mortality.” (Li and Lee 2005: 578) Li
and Lee (2005) suggest forecasting kt,i with a random walk without drift or with an au-
toregressive model (AR) with intercept. The authors, however, noted that the model can
fail if kt,i has a trending long-term mean, which would not guarantee that kt,i will reach
a constant.

2.3 Forecasting with compositional data analysis (CoDa)

A key difference between the LC method and the Compositional Data Analysis (CoDa)
model is that the former forecasts the death rates (mt,x) while the latter is based on the life
table death distribution (dt,x). Both estimators can be derived from the other based on the
life table relations (for more information on the life table and its indicators, see Preston,
Heuveline, and Guillot (2001)). By using dt,x, we model and forecast a redistribution of
the density of life table deaths, where deaths at young ages are shifted towards older ages.

By using the dt,x, one should be aware of the indicator constraint: The values of
dt,x can only vary between 0 and the life table radix, and the sum of the deaths by age
for one year t should equal the life table radix. CoDa is a full framework to analyze
multivariate data in which the components represent parts of a whole (Aitchison 1986;
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Pawlowsky-Glahn and Buccianti 2011). Compositions are vectors of components which
are strictly positive, carry only relative information, and always sum to a constant (per-
centage, per thousand, etc.). According to this definition, the life table deaths can be seen
as compositional data (Oeppen 2008). Mert et al. (2016) and Lloyd, Pawlowsky-Glahn,
and Egozcue (2012) have shown more generally the utility of CoDa in epidemiology and
population studies, and we here suggest a concrete application.

Because the dt,x are constrained to sum to the life table radix, the components are
enclosed in a subspace where they can only vary between 0 and the radix value. Such a
subspace is referred to as a simplex and does not follow the rules of Euclidean geometry,
making the use of standard statistical analysis problematic (Aitchison 1986). Unlike un-
constrained multivariate statistical analysis, CoDa offers a framework to deal with such a
constraint. CoDa provides a set of tools to deal with compositional problems inside the
simplex and to move back and forth from the simplex to the “real space” through log-
ratio transformations (Aitchison 1986; Egozcue et al. 2003). These transformations are
analogous to the logit transform and its inverse used in logistic regression and the Brass
relational mortality model (Brass 1971). In this paper, we use the clr transformation
defined as the logarithm of the composition divided by its geometric mean:

clr(dt,x) = ln
(dt,x
gt

)
, (4)

where gt is the geometric mean of the age-composition at time t. Unlike other more stan-
dard transformations (e.g., log transformation), the clr transformation preserves the dis-
tance between components from the simplex to the real space (Aitchison 1986;
Pawlowsky-Glahn and Egozcue 2006; Pawlowsky-Glahn and Buccianti 2011). More
details of this methodology are presented in Appendix A.

Values for components, here the ages, within CoDa are not free to vary indepen-
dently, an aspect that is manifested in their covariance structure (Aitchison 1986;
Pawlowsky-Glahn and Egozcue 2006): If the value of a specific component is decreasing
over time, values of at least one other component will have to increase to preserve the
constant sum. Modeling and forecasting the dt,x can thus be seen as a lifesaving process
as defined by Vaupel and Yashin (1987): Saving a life at a specific age will lead to an
extra death at a later age.

Oeppen (2008) proposed forecasting the dt,x using Principal Component Analysis
(PCA), similar to Lee and Carter’s (1992) suggestion for themt,x, but applied to the death
distribution in a CoDa framework:

clr(dt,x 	 αx) = κtβx + εt,x, (5)
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where αx is the age-specific geometric mean of the dt,x over time; κt is the time index
and βx is the age pattern found by SVD; and εt,x are the errors. The operator 	 is a stan-
dard CoDa operator and is defined as a perturbation procedure (see details in Appendix
A). This operator is used to center the matrix while retaining the constant sum. In the
CoDa methodology and based on a rank-1 approximation, the parameters κt and βx are
estimated by

κt = uts (6a)

βx = vx, (6b)

where ut is the first left-singular vector (years), s is the leading singular value, and vx is
the first right-singular vector (ages) of the SVD. The way to estimate κt and βx in CoDa
differs from that suggested by Lee and Carter (1992). With the model introduced in equa-
tion (5), the clr coordinates are double centered (over time and age). This last property
makes the normalization suggested by Lee and Carter (1992), shown in equations (2a) and
(2b), of reaching a unique solution unnecessary, as κt and βx are automatically normal-
ized to sum to 0. However, κt and βx are not unique as their estimates can be symmetric
around 0, i.e., sometimes both sets of parameters increase over time or age and some-
times they both decrease. The former case (increase) was found for all countries included
in the Results section and is thus considered the standard. If the latter case occurs, the
parameters could be multiplied/divided by –1.

Once the parameters are estimated from equation (5), the estimated dt,x are found
by

dt,x = αx ⊕ C[eκtβx+εt,x ], (7)

where C[] is a closing procedure used to transform the estimates into compositional data
summing up to the initial constant. This is equivalent to calculating the proportions in
each year t. To re-enter compositional data form, following a clr transformation, the
inverse clr is used (see Appendix A). This procedure comprises exponentiating the clr
coordinates and then closing the result. The ⊕ is also a perturbation operator and is
here used to reverse the centering perturbation shown in equation (5). The step-by-step
approach of equations (5) and (7) is presented in Appendix A. As for the LC model, the
time index is forecast using time series methods.

2.4 The CoDa-coherent model

In order to reach coherence in mortality forecasts, we suggest modifying the above CoDa
model by adding a common factor as suggested by Li and Lee (2005). The common
factor is found in equation (7) when applying the CoDa methodology to the average dt,x
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for a group of populations and is denoted as C[eκtβx ]. The CoDa-coherent model can
then be written analogously to the Li and Lee (2005) formulations in equation (3):

clr(dt,x,i 	 αx,i 	 C[eκtβx ]) = kt,ibx,i + εt,x,i, (8a)

or

dt,x,i = αx,i ⊕ C[eκtβx ]⊕ C[ekt,ibx,i+εt,x,i ]. (8b)

As with the LC-coherent model, κtβx is the common factor for all populations found
by applying the CoDa methodology presented by equation (5) to the average mortality of
a group of populations. The term kt,ibx,i is the country-specific perturbation factor from
the common factor and represents the SVD components presented in equations (6a) and
(6b) of the matrix clr(dt,x,i 	 αx,i 	 C[eκtβx ]).

To avoid diverging trends, kt,i should, as for the LC-coherent model, approach a con-
stant. Different time series models fulfill this criterion. However, as for the LC-coherent
model, the CoDa-coherent model cannot guarantee that kt,i will reach a constant, espe-
cially if the index is recording a long-term increasing or decreasing trend. In this context,
the coherence with other countries might not occur.

The prediction intervals (PI) for all four models presented in sections 2.1 to 2.4,
referred to as the LC, LC-coherent, CoDa, and CoDa-coherent models, respectively, are
built with a bootstrap process and based on the Keilman and Pham (2006) procedure. The
method is detailed in Appendix B.

3 Data

The data used in this study comes from the Human Mortality Database (HMD 2016).
The HMD offers historical data on mortality. The data series is constructed according to
a common protocol, making the HMD an excellent comparative source (Barbieri et al.
2015). The study will focus on forecasting the female mortality of 15 Western Euro-
pean countries: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy,
the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United King-
dom.

The number of years with available mortality data differs for each country within
the HMD. However, the HMD covers the period 1960–2011 for all the selected coun-
tries, after combining East and West Germany (see Appendix C). These years will be the
reference period to forecast mortality.
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We extracted the observed death counts and exposure-to-risk estimates from the
HMD and calculated life tables. The calculation of the average mortality of the 15 coun-
tries and how we deal with 0 values and data at old ages are explained in Appendix C.

4 The underlying models

4.1 The parameters’ interpretation and forecasts

In the methods section, we used similar notation for the parameters of the LC and CoDa
models and their coherent versions, as they have similar interpretations but are not iden-
tical. The parameters βx, shown in Figure 1, provide an age pattern of the mortality
changes. In the LC model, the βx produce the different rates of mortality improvement
by age, when multiplying by the time factor κt. In a CoDa model, this parameter indi-
cates the transfer of dt,x from one age to another. The density of deaths for ages where
βx are negative will be transferred towards ages where βx are positive in relative terms
(Oeppen 2008).

Figure 1: Age pattern (βx) of the Lee–Carter and CoDa models for the aver-
age (in black) and country-specific (in grey) female mortality of 15
European countries, 1960–2011

0.00

0.01

0.02

0.03

0 25 50 75 100 125
Age

A
ge

 p
at

te
rn

: 
β x

Lee−Carter 

−0.2

−0.1

0.0

0.1

0.2

0 25 50 75 100 125
Age

A
ge

 p
at

te
rn

: 
β x

Compositional data analysis

Source: HMD (2016) and authors’ calculations.

The parameters κt are indices of the general level of mortality over time for both
models. Figure 2 shows that both κt estimates change linearly over time, although the κt
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for the CoDa model have more pronounced fluctuations. The coefficient of determination
(R2) of a linear regression applied to the κt of the average for each of the models is 99.6%
for the LC model and of 97.1% for the CoDa model.

Figure 2: Time index (κt) of the Lee–Carter and CoDa models for the aver-
age (in black) and country-specific (in grey) female mortality of 15
European countries, observed 1960–2011 and forecast 2012–2050
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Source: HMD (2016) and authors’ calculations.

In the CoDa model, the ages with negative βx recorded a decrease of their density
of deaths over time, in relative terms, once multiplied by κt. They start with a dt,x value
higher than the estimated average αx and this value decreases over time. The dt,x become
smaller than αx when κt crosses zero. For the ages where the βx are positive, the dt,x
is initially lower than the average and then increases over time. In Figures 1 and 2, the
density of deaths is thus transferred from younger ages toward older ages.

Lee and Carter (1992) suggest forecasting κt using a random walk with drift (ARIMA
(0,1,0)). We use this procedure to forecast the LC κt. Based on the best BIC value, the
κt of the CoDa model is forecast with an ARIMA(0,1,1) model. This model was the one
with the best BIC values for most of the selected countries. We here use the same time se-
ries for all countries to introduce and compare our model with existing models. However,
other time series models could easily be used when forecasting country-specific mortality
with CoDa.

In the present article, we compare four models: LC, LC-coherent, CoDa and CoDa-
coherent. For the models considering the coherence between countries (CoDa-coherent
and LC-coherent), the time index of the difference between the average and the country-
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specific trends, kt,i, should also be forecast. Based on the best BIC values for ARIMA
models excluding the use of a drift and moving average (MA) components – i.e., selection
between random walk without drift and autoregressive model (AR) as suggested by Li and
Lee (2005) – an ARIMA(1,1,0) without drift was selected. This model allows the kt,i to
reach a constant while fitting the trends of many countries. This procedure was applied
to both LC-coherent and CoDa-coherent models.

4.2 Explained variance and fitted models

Within a singular value decomposition (SVD), the combination of the first left and right
singular vectors and first singular value, called a rank-1 or one-dimensional approxima-
tion, is the one explaining the greatest variance. If the explained variance for a rank-1
approximation is low, higher rank approximations can be used. Table 1 presents the ex-
plained variance for a rank-1 and rank-2 approximation for the four models and the 15
countries. The Table shows that a rank-1 approximation of the centered matrix of themt,x

with the LC model and of the dt,x with the CoDa model explains most of the variance for
most countries. With the CoDa model, a rank-1 approximation explains more than 80%
of the variance for 13 out of 15 countries. A rank-2 approximation would increase the
explained variance by 7% or less for all countries. Similar results are found for the LC
model for most countries. In most cases, no major gains in terms of explained variance
would come from adding additional parameters for the second rank in the models. For the
coherent models (LC-coherent and CoDa-coherent), the explained variance is lower as it
is estimated from the mt,x and dt,x matrices after the common trend has been removed.

The variance explained by the LC model is lower than for the CoDa model for most
countries. The errors in modeling and forecasting mortality with the LC and LC-coherent
models could then be more important than with the CoDa and CoDa-coherent models.

In Appendix D, we also show that the fit is generally good for most ages and for
both CoDa and CoDa-coherent models. The fit was especially good at higher ages, repre-
senting an advantage of the CoDa method. Changes in mortality at higher ages have been
more influential on life expectancy after 1960 (Bergeron-Boucher, Ebeling, and Canudas-
Romo 2015).
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Table 1: Explained variance of a rank-1 and rank-2 approximation of a sin-
gular value decomposition applied within four models, 15 countries
and their average, 1960–2011

LC (κtβx) LC-coherent (kt,ibx,i) CoDa (κtβx) CoDa-coherent (kt,ibx,i)
Country rank-1 rank-2 2-1 rank-1 rank-2 2-1 rank-1 rank-2 2-1 rank-1 rank-2 2-1

Germany 0.96 0.97 0.01 0.43 0.55 0.12 0.98 0.99 0.01 0.81 0.87 0.06
Italy 0.95 0.96 0.01 0.43 0.57 0.14 0.98 0.99 0.01 0.80 0.85 0.05
France 0.94 0.96 0.02 0.32 0.52 0.19 0.98 0.98 0.01 0.69 0.79 0.10
Spain 0.93 0.95 0.02 0.40 0.56 0.15 0.91 0.96 0.05 0.74 0.80 0.06
United Kingdom 0.92 0.94 0.02 0.43 0.54 0.11 0.96 0.98 0.02 0.57 0.76 0.20
Portugal 0.88 0.91 0.03 0.38 0.52 0.14 0.93 0.95 0.03 0.57 0.71 0.14
The Netherlands 0.82 0.84 0.03 0.32 0.43 0.11 0.86 0.93 0.06 0.75 0.80 0.05
Belgium 0.80 0.82 0.02 0.10 0.19 0.09 0.93 0.95 0.02 0.47 0.54 0.08
Austria 0.79 0.82 0.03 0.14 0.25 0.12 0.90 0.92 0.02 0.44 0.52 0.08
Switzerland 0.69 0.73 0.04 0.13 0.23 0.10 0.86 0.88 0.02 0.28 0.36 0.09
Finland 0.68 0.71 0.03 0.12 0.21 0.09 0.88 0.91 0.03 0.63 0.68 0.05
Sweden 0.67 0.73 0.05 0.16 0.29 0.13 0.81 0.84 0.04 0.44 0.53 0.09
Ireland 0.60 0.65 0.06 0.15 0.25 0.10 0.73 0.77 0.05 0.35 0.45 0.10
Denmark 0.55 0.61 0.06 0.16 0.27 0.11 0.80 0.83 0.03 0.28 0.39 0.11
Norway 0.48 0.57 0.08 0.16 0.28 0.13 0.66 0.73 0.07 0.36 0.46 0.10

Average 0.97 0.98 0.01 - - - 0.98 0.99 0.01 - - -

Source: HMD (2016) and authors’ calculations.
Note: The countries are listed by order of explained variance obtained with the LC model.

5 Results

5.1 Evaluating the models

Table 2 shows how well each model could have predicted the mortality age-pattern for
the period 1995–2011, based on the reference period 1960–1994. The table presents the
mean absolute error (MAE) for the logged age-specific death rates over all ages and years
for the four models. The table also shows the Aitchinson distance (AD) of the forecast
dt,x in comparison with the observed dt,x. The AD is a measure of dissimilarity in CoDa,
defined as the square root of the sum of squared difference between two compositions
expressed in clr coordinates (more details are provided in Appendix A) (Aitchison et al.
2000; Pawlowsky-Glahn and Buccianti 2011). The coherent versions of the LC and CoDa
models would have been more accurate in predicting the age pattern of mortality over the
period 1995–2011 than their noncoherent versions. The CoDa-coherent model has the
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lowest MAE average across countries for both mt,x and dt,x (0.158 and 2.584 respec-
tively). This last model would have also performed better than the other models in six
and seven countries for mt,x and dt,x, respectively. However, the LC-coherent model
performs better for seven countries for the mt,x, with an average of 0.164.

Table 2: Mean absolute error (MAE) of female logged age-specific death
rates (mt,x) over ages and years and the mean Aitchinson distance
(AD) over time for each forecast composition of life table deaths
(dt,x)

MAE: mt,x AD:dt,x
Country LC LC-coherent CoDa CoDa-coherent LC LC-coherent CoDa CoDa-coherent

United Kingdom 0.09 0.08 0.10 0.09 1.27 1.22 1.25 1.24
The Netherlands 0.12 0.12 0.12 0.13 1.92 1.94 1.90 1.97
France 0.13 0.11 0.14 0.11 1.69 1.55 1.70 1.53
Germany 0.13 0.14 0.11 0.12 1.91 1.95 1.84 1.88
Italy 0.14 0.16 0.13 0.13 2.09 2.20 2.04 2.09
Spain 0.14 0.15 0.14 0.14 2.15 2.19 2.16 2.13
Belgium 0.14 0.13 0.15 0.14 2.28 2.23 2.26 2.23
Portugal 0.15 0.16 0.14 0.14 2.38 2.41 2.39 2.33
Austria 0.19 0.19 0.17 0.17 2.79 2.78 2.71 2.71
Sweden 0.19 0.18 0.19 0.19 2.97 2.95 2.93 2.88
Finland 0.20 0.19 0.20 0.20 3.21 3.18 3.20 3.17
Norway 0.21 0.20 0.21 0.21 4.12 4.04 4.13 4.12
Switzerland 0.23 0.22 0.23 0.19 3.53 3.44 3.48 3.20
Denmark 0.25 0.20 0.24 0.20 3.68 3.46 3.63 3.44
Ireland 0.25 0.23 0.25 0.22 4.00 3.82 3.91 3.84

Mean 0.17 0.16 0.17 0.16 2.67 2.62 2.63 2.58
No. countries 0 7 2 6 0 4 4 7

Source: HMD (2016) and authors’ calculations.
Note: This table shows the mean absolute error (MAE) of female logged age-specific death rates (mt,x) over ages
and years and the mean Aitchinson distance (AD) over time for each forecast composition of life table deaths for the
forecast period 1995–2011, based on the reference period 1960–1994, their average over countries, and number
of countries recording the lowest MAE and AD by model. The countries are listed by order of MAE for the mt,x
obtained with the LC model.

Table 3 presents MAE and the mean error (ME) of female life expectancy at birth
forecast for the period 1995–2011, based on the reference period 1960–1994, for 15 coun-
tries (see also Appendix E). The MAE is a measure of forecast accuracy while the ME is a
measure of bias of the methods. The ME is here defined as: mean[eExpected0 −eObserved0 ].
The table shows that adding a factor of central tendency in the CoDa forecast model
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would have, in general, increased the accuracy of the forecasts. The coherent version of
the CoDa model would have performed better than the other models in 5 out of 15 coun-
tries, followed by the CoDa model in 4 countries.

Table 3: Mean absolute error (MAE) and mean error (ME) of female life
expectancy at birth for the forecast period 1995–2011

MAE ME
Country LC LC-coherent CoDa CoDa-coherent LC LC-coherent CoDa CoDa-coherent

Switzerland 0.11 0.17 0.80 0.42 0.09 0.08 0.80 0.42
Belgium 0.13 0.10 0.45 0.42 0.11 0.05 0.44 0.41
Spain 0.14 0.34 0.16 0.16 0.00 –0.32 0.16 0.15
Finland 0.23 0.35 0.12 0.20 –0.15 –0.30 0.05 –0.17
France 0.25 0.25 0.83 0.54 0.24 –0.06 0.83 0.54
The Netherlands 0.32 0.43 0.31 0.76 0.09 0.43 0.04 0.76
Sweden 0.40 0.32 0.64 0.69 0.40 0.32 0.64 0.69
United Kingdom 0.42 0.22 0.25 0.20 –0.32 –0.02 –0.08 0.19
Italy 0.44 0.57 0.22 0.20 –0.44 –0.57 0.18 0.13
Germany 0.48 0.52 0.17 0.19 –0.48 –0.52 –0.11 –0.17
Norway 0.54 0.17 0.34 0.44 –0.54 –0.08 –0.30 0.44
Portugal 0.55 0.54 0.43 0.36 –0.35 –0.36 –0.18 –0.21
Austria 0.70 0.69 0.45 0.45 –0.70 -0.69 –0.45 –0.45
Ireland 0.79 0.71 0.87 0.54 –0.51 –0.32 –0.63 –0.06
Denmark 1.06 0.27 0.60 0.20 –1.02 0.01 –0.54 0.17

Mean 0.44 0.38 0.44 0.38 –0.24 –0.16 0.06 0.19
No. countries 3 3 4 5 9:6 10:5 7:8 5:10

Source: HMD (2016) and authors’ calculations.
Note: The table shows the mean absolute error (MAE) and mean error (ME) of female life expectancy at birth for the
forecast period 1995–2011, based on the reference period 1960–1994, for 15 countries, their average and number of
countries recording the lowest MAE by model or the number of countries with negative vs positive (negative:positive)
ME within each model. The countries are listed by order of MAE obtained with the LC model.

In terms of bias, the number of countries with negative vs positive (negative:positive)
ME is 9:6 with the LC model, 10:5 with the LC-coherent, 7:8 with the CoDa model, and
5:10 with the CoDa-coherent model. The least biased model is then CoDa. The LC and
LC-coherent models tend to underestimate life expectancy, a well-known aspect of the
LC model and its variants (Booth, Maindonald, and Smith 2002; Booth and Tickle 2008;
Kannisto et al. 1994). On the other hand, the CoDa-coherent model does not seem to
preserve the “least-bias” advantage of the CoDa model, and tends to overestimate life ex-
pectancy, especially the mortality of the Netherlands. This country had a life expectancy
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above average before the jump-off year (1994). The CoDa-coherent model predicted that
the Netherlands’ life expectancy would stay above the average, but it fell behind, an as-
pect that the model was not able to anticipate. On the other hand, the model was quite
accurate in forecasting the catch-up of Danish females, which started around the jump-off
year.

When comparing the accuracy of the two coherent models, LC-coherent and CoDa-
coherent, the latter performs better. Using a CoDa-coherent model would have increased
the accuracy of the forecast life expectancy for 9 out of 15 countries in comparison with
the LC-coherent model (Table 3). However, on average both models have an equal MAE.
When looking at the forecast age pattern (Table 2), the CoDa-coherent model would have
outperformed the LC-coherent model for 8 and 10 out of 15 countries, for the mt,x and
dt,x, respectively. As mentioned previously, the CoDa-coherent model has a lower MAE
average when estimating the accuracy of the predicted age patterns, both with mt,x and
dt,x.

Figure 3 shows the life expectancy forecast with the LC-coherent and CoDa-coherent
model in 2011, compared with the observed value. The LC-coherent model underesti-
mated the life expectancy of 13 out of 15 countries by the end of the forecast period. The
CoDa-coherent model under-predicted the life expectancy of 6 out of 15 countries in 2011
and predicted life expectancy better for 9 countries, in comparison with the LC-coherent
model. The prediction intervals (PI) with the CoDa-coherent model are generally wider
than with the LC-coherent model. The LC models are generally known to produce very
narrow PI (Keilman and Pham 2006). In 2011, the PI of the LC-coherent model con-
tains the actual life expectancy at birth for 86.7% of the countries (13/15) for the 95%
coverage; and 66.7% (10/15) of the countries for the 80% coverage. However, the CoDa-
coherent model might produce PI that are too wide. In 2011, the CoDa-coherent model
contained the actual life expectancy for 100% (15/15) and 86.7% (13/15) of the countries
for the 95% and 80% coverage, respectively.

The CoDa-coherent model produced somewhat more accurate life expectancy and
age pattern forecasts for the years 1995 to 2011. However, the CoDa-coherent model
tended to overpredict life expectancy in this period, especially the life expectancy of the
Netherlands. The noncoherent CoDa model is, however, generally less biased.

5.2 Life expectancy in 2050

5.2.1 More optimistic forecasts

Figure 4 shows female life expectancy at birth forecast for all 15 selected countries with
the LC, LC-coherent, CoDa, and CoDa-coherent models. A CoDa approach, with or
without a common factor, gives more optimistic forecasts. These more optimistic fore-
casts come from the fact that the rates of mortality improvement (RMIs) – i.e., the relative
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Figure 3: Female life expectancy at birth in 2011 for 15 countries observed
and forecast with the LC-coherent and CoDa-coherent models,
using 1960–1994 as reference period, and their 80% and 95% PI
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change in the age-specific death rates from one year to another (see Appendix F for more
details on the RMIs) – for the CoDa and CoDa-coherent models can change over time,
while they stay constant with the LC and LC-coherent models when κt is forecast with
a random walk with drift, as shown in Appendix F. By using a CoDa methodology, the
main LC model problem – i.e., the fixed RMIs (Booth, Maindonald, and Smith 2002;
Booth and Tickle 2008; Kannisto et al. 1994) – can then be overcome. As shown in the
previous section, the CoDa model is generally less biased. However, the CoDa-coherent
model tends to overestimate life expectancy at birth.

Figure 5 shows the life expectancy forecast in 2050 for all 15 countries with the LC-
coherent and the CoDa-coherent models with their prediction intervals (PI). The CoDa-
coherent model leads to more optimistic forecasts for all countries. As mentioned previ-
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Figure 4: Female life expectancy at birth, observed 1960–2011 and forecast
2012–2050 for 15 European countries using four forecasting mod-
els
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ously, the PI of the CoDa and CoDa-coherent models are generally wider than with the
LC and LC-coherent models, meaning that the uncertainty is greater when forecasting
with a CoDa methodology than with an LC model, coherent or not. In 2050, the width of
the 95% PI for France is 5.3 years with the CoDa-coherent model and 3.8 with the LC-
coherent model. However, as shown in Figure 3, the PI for the LC-coherent model are
sometimes very narrow and sometimes do not include the observed values. The wider PI
from the CoDa models might come from the more pronounced fluctuations of the CoDa
time index as shown in Figure 2, suggesting that the relative residuals after fitting the
selected time series model might be more important. Due to the bootstrap process used to
calculate the PI (see Appendix B), if the errors, or their extreme values, are more positive
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than negative, or vice versa, the PI bounds might be asymmetric. This is, for example,
the case of Norway when forecast with the LC-coherent model.

Figure 5: Female life expectancy at birth for 15 countries, observed in 2011
and forecast in 2050 with the LC-coherent and CoDa-coherent
models, using 1960–2011 as reference period, and their 80% and
95% PI
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5.2.2 Coherence in the forecasts

Figure 6 shows the range (maximum–minimum values) of life expectancy among the se-
lected 15 countries. Between 1960 and 2011, the range of life expectancy values decrease
from 8.87 years to 3.28 years, mainly due to Portugal catching up with the other countries.
Since the 1980s, the range of life expectancy values remains around 3.6 years, confirming
the need for coherent forecasting among Western European countries.

Figures 4 and 6 show that adding a common factor to the LC and CoDa models suc-
ceeds in reducing the long-term divergence in the forecast life expectancy. For example,
under the LC model the difference between the maximum and minimum in the forecast
life expectancies in 2050 is 5.77 years, while for the LC-coherent model that gap is 2.68
years. Similar results are found when comparing the CoDa and CoDa-coherent models,
with ranges of 5.68 and 2.84 respectively. Using a trend common to Western European
countries thus allows one to forecast life expectancy in a more coherent way and avoids
increasing divergence in the long term. However, the coherent models predict a further
convergence, albeit modest, of life expectancy values even if the range stayed approxi-
mately constant in the last three decades.

Figure 6: Range of female life expectancy at birth for 15 European coun-
tries, observed from 1960–2011 and forecast from 2012–2050 using
four methods
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6 Discussion

The CoDa methodology is a new forecasting approach and this article is the first to ex-
plore its potential to forecast life expectancy coherently among many countries. The
results show that using a CoDa-coherent model is a compelling strategy to forecast mor-
tality. One important advantage of the model is the changing RMIs over time, which
overcomes the problematic fixed RMI assumption of the LC model. This last aspect of
the LC model has been criticized for yielding too pessimistic forecasts (Booth, Maindon-
ald, and Smith 2002; Kannisto et al. 1994). The noncoherent CoDa methodology allows
for more optimistic and less biased forecasts for Western European countries. However,
the CoDa-coherent model might sometimes be too optimistic in its forecast.

The changes in the RMIs can come from two aspects of the model: 1) the use of the
clr transformation, which does not produce constant RMI due to the closing procedure
C[] (see Appendix F); and 2) the use of the dt,x as indicator. Due to the relation between
indicators in the life table, modeling an indicator in a certain way might lead to different
modeling of other life table indicators, producing different RMIs. More detailed analyses
should be performed on the consequences of using different indicators for the forecast
results.

Despite somewhat more accurate forecasts, the PI are wider with a CoDa method –
suggesting that the forecasts carry more uncertainty – than with an LC method. These
results can be considered as inconsistent, but the LC model is known to produce some-
what small PI (Keilman and Pham 2006). As mentioned previously, the wider PI from
the CoDa models might come from the more pronounced fluctuations of the CoDa time
index. The random variation of the respective mortality matrices seems to be captured by
κt with CoDa, but by βx with the LC model, as shown in Figures 1 and 2. Future research
should try to provide a more detailed explanation for these results, look deeper into the
causes of the wider PI for CoDa, and consider new ways to estimate the PI.

As mentioned previously, both kt,i in the LC-coherent and CoDa-coherent are not
guaranteed to reach a constant, e.g., if the trend has recorded a long-term increasing or
decreasing trend. In this case, the coherent model might fail, as the population’s mortality
diverges more and more from the average trend. Mortality for such populations should
perhaps not be forecast coherently in the remaining countries. However, in our results
such patterns were rarely observed for the selected countries.

In this study, we applied the same methodology to all Western European countries
and presented the model to make as valid a comparison as possible with the original
LC model (Lee and Carter 1992) and its coherent extension (Li and Lee 2005). We
did so to show the potential of the method as a general forecasting model and show its
adaptability with commonly used models. This paper is a first attempt to explore the use
of CoDa in a coherent forecasting context and has shown that CoDa overcomes some
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shortcomings of the LC model. Oeppen (2008) also showed that this method provides
interesting possibilities for forecasting mortality by causes of death.

Further development of the method in different contexts should be the subject of
future research, including, among others, cohort forecasts. By reading our results in a
cohort perspective, the life expectancy at birth for females born in 1960 in France is pre-
dicted to be 88.8 years with the LC-coherent model and 93.1 with the CoDa-coherent
model. However, no information on cohort effects has been considered in the models to
produce proper cohort forecasts. This could be attained, for example, by adapting the
Renshaw and Haberman (2006) model to CoDa.

7 Conclusion

Both LC and CoDa models and their coherent variants (LC-coherent and CoDa-coherent)
share some similarities: the parameters βx and κt are found by applying a SVD to a cen-
tered matrix and the time index is extrapolated using time series models. However, the
models differ in many ways. The key difference is that the forecasts are based on differ-
ent indicators: mt,x and dt,x. The use of a specific indicator implies a method adapted
to the indicator’s characteristics, as presented earlier. The use of different indicators and
methods implies that the parameters have different interpretations and the models have
different assumptions. As mentioned previously, the CoDa model is not based on a con-
stant RMI assumption, as with the LC model. Furthermore, over time, the dt,x are not
free to vary independently from one another, as the mt,x can, an aspect which appears in
their covariance structure.

In this article, we forecast mortality acknowledging that there is coherence among
Western European countries using compositional data analysis of life table deaths. This
procedure is a promising new way to provide a coherent mortality forecast, as it 1) pre-
serves coherence among countries, 2) acknowledges covariance between components, 3)
explains a large proportion of the observed variability, and 4) allows the rate of mortality
improvement to change over time. Our results show that using a CoDa-coherent model
to forecast mortality for the period 1995–2011 increased the accuracy of the forecast for
many of the selected countries.
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Appendix A: CoDa operators and method

Table A-1 summarizes the different CoDa operators and concepts used in this paper.

Table A-1: CoDa operators and methods used, their descriptions, and equa-
tions

CoDa operator Description Equation

Composition Vector of c components repre-
senting part of a whole and sum-
ming up to a constant K.

X = [x1,x2, ...,xc]
c∑
i=1

xi = K

C[] This procedure is called clos-
ing. To close the data following
certain operations and transfor-
mations on a composition, e.g.,
Y = X2, the proportions of the
vector are calculated and then
multiplied by the constant sum
chosen. This procedure ensures
that the estimates in composi-
tional data sum up to the initial
constant.

C[Y ] = [ y1∑
yi

, y2∑
yi

, ..., yc∑
yi

] ·K

⊕ Standard operation in composi-
tional data analysis named per-
turbation. To perturb a com-
position X by another composi-
tion Y , calculate the component-
wise product and then close the
result.

Z = X ⊕ Y =
C[x1y1,x2y2, ...,xcyc]

	 Standard operation in composi-
tional data analysis consisting in
perturbing a composition by the
inverse element of another com-
position. To come back to X,
divide Z component-wise by Y
and then close the result. 	Y
is named the inverse element of
Y .

Z 	 Y =
C[ z1y1 , z2y2 , ..., zcyc ] = X
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Table A-1: (Continued)

CoDa operator Description Equation

clr() The centered log-ratio (clr)
transformation is one of the
log-ratio representations of
compositional data. This trans-
formation is used to represent
a composition as a real vector
(U ), on which standard statisti-
cal analyses can be used. The
clr-coordinates of a vector X
are the logarithm of the compo-
nents divided by its geometric
mean.

g = (x1 · x2 · ... · xc)1/c
clr(X) = [ln(x1

g ), ln(x2

g ), ..., ln(xcg )]

clr(X) = U

clr−1() The inverse clr transformation is
the procedure used to re-enter
compositional data form, follow-
ing a clr transformation (from U
to X). The exponential of clr-
coordinates are obtained and
then closed.

clr−1(U) = C[eu1 , eu2 , ..., euc ]
clr−1(U) = X

AD The Aitchison distance is a mea-
sure of dissimilarity between two
compositions. In this paper,
the AD measure is used as a
measure of accuracy between a
forecast composition and an ob-
served composition. The AD is
the square root of the sum of the
squared difference between two
compositions expressed in clr-
coordinates.

AD =
[ c∑
i=1

(clr(xi)− clr(yi))2
]1/2

Source: Aitchison 1986; Pawlowsky-Glahn and Egozcue 2006; Pawlowsky-Glahn and Buccianti 2011

Additionally, we give here the step-by-step procedure of the CoDa method presented
in the main text to forecast dt,x:

1. We start from a matrix D of the life table deaths (dt,x), with T rows representing
the number of years and X + 1 columns representing the ages x. This follow the
CoDa notational convention that each row represents a composition (Pawlowsky-
Glahn and Egozcue 2006). The sum of each row adds up to the life table radix.
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2. We obtain a second matrix F , with elements ft,x, by perturbing the matrix D by
the column geometric means for each age, αx, by using the CoDa perturbation
operator 	. This step centers the matrix to better visualize the structure:

ft,x = dt,x 	 αx.

3. The next step is to unrestrict the data. Aitchison (1986) showed that compositional
data is confined to a restricted space where the components can only vary between
0 and a given limit. Aitchison (1986) suggested using log-ratio transformations to
allow the data to vary freely. We here apply the centered log-ratio (clr) transfor-
mation:

ht,x = clr(ft,x) = ln(
ft,x
gt

), (9)

where gt are the geometric means over age at time t. We thus obtain a new trans-
formed matrix, H , with elements ht,x. This new space, where the data is free to
vary from −∞ to∞, is known as the “real space.”

4. A singular value decomposition (SVD) is then applied to the matrix H .

5. A low-rank approximation of the matrix H , H∗, is constructed and forecast. Oep-
pen (2008) compared a rank-1 and rank-2 approximation of the matrix H and se-
lected an ARIMA(0,2,2) model to forecast the time index for Japan, based on the
best AIC criterion. In this article, we suggest using a rank-1 approximation of the
matrix H , as no major gains in explained variance are obtained, for most countries,
by using a rank-2 approximation. The time index is forecast with an ARIMA(0,1,1)
model, based on the best BIC value.

6. To transform the matrix back into compositional data, F ∗, the inverse centered
log-ratio is used:

f∗t,x = clr−1(h∗t,x) = C[eh
∗
t,x ], (10)

where h∗t,x are the elements of the matrix H∗ and C[] is a closing procedure (see
Table A-1).

7. The last step is to compositionally add back the geometric means, to obtain the
matrix D∗:
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d∗t,x = f∗t,x ⊕ αx. (11)

Appendix B: Prediction intervals

The method used to calculate the prediction intervals (PI) is built on the Keilman and
Pham (2006) model and allows us to consider two sources of uncertainty in the forecasts:
Estimates of the parameters and extrapolated values of the time index. The following
steps apply to the PI of the LC and CoDa models.

1. Estimate the model, extrapolate the time index κt using the selected time series
model, and construct the matrix κtβx.

2. For each time-age interval, the model provides an error (εt,x) (Keilman and Pham
2006). For the CoDa model, the errors are found within the clr transform (see
equation (5)). We thus make the hypothesis that the parameter αx, found before
the clr transformation, is correct. The residuals (εt,x) are placed in a table. A new
table of residuals is created by assigning to each age and year a randomly chosen
row and column of the original table. The simulated residuals are added to the fit-
ted value, κtβx in step 1. This random allocation procedure is repeated nε times.
For each of the nε new tables of values, the model chosen in step 1 is estimated.
We thus obtain nε estimates of κt and βx, and take into account the uncertainty in
estimating these parameters.

3. For each simulation of step 2, a new time index is found and extrapolated using
the selected time series model. At each nε estimate of κt, PI are estimated using
nκ simulations with resampled errors (bootstrap). We obtain a set of nεnκ future
mortality trends. This step considers the uncertainty in the extrapolated value of
the time index.

4. For each of the nεnκ future mortality trends, a life table is calculated. Prediction
intervals for age-specific death rates, life table deaths, and life expectancy are ob-
tained by finding the 0.025 and 0.975 percentiles of the simulated data for the 95%
PI and the 0.1 and 0.9 percentiles for the 80% PI.

With the LC-coherent and CoDa-coherent models, the uncertainty in the model
comes from the common factor κtβx and from the deviation factor kt,ibx,i. Assuming
independence between these factors, the PI can be found by applying the previous step
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for both common and deviation factors, obtaining nεnκ simulations for the common fac-
tor and ndεn

d
κ simulation for the deviation term. The errors for the deviation factor at

step 2 are found by clr(dt,x 	 αx 	 eκtβx) = kt,ibx,i + εt,x,i. For each nεnκ simu-
lation of the common factor, we added the ndεn

d
κ simulation for the deviation. We thus

obtain nεnκndεn
d
κ sets of future mortality trends. The number of simulations are nε=100,

nκ=100, ndε=100, and ndκ=100, leading to a total of 100,000,000 simulations.

Appendix C: Data

Germany

Data for Germany in the HMD is available starting in 1990 only. However, data is avail-
able for East and West Germany separately starting in 1956. To obtain longer series
for Germany, we combined death counts and exposure to risk data for East and West
Germany, taking account of their population size. Life tables for Germany were then
calculated starting in 1960.

Average mortality

The average mortality for the 15 selected countries is based on the average of the observed
age-specific death rates (m̄t,x):

m̄t,x =

I∑
i=1

mt,x,i

I
,

where I is the number of countries. These average age-specific death rates weight all the
countries equally irrespective of their population size. A life table is then calculated us-
ing the average death rates following standard methods (Preston, Heuveline, and Guillot
2001).

Age 80 to 120 smoothed with a Kannisto model

For many low mortality countries, extrapolating past trends tends to shift the density dis-
tribution of deaths to higher ages and to approach the last age available in the HMD; i.e.,
110. To avoid an artificial compression against this arbitrary limit, we extend mortality
trends until age 120. To do so, we used the Kannisto model (Thatcher, Kannisto, and
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Vaupel 1998) for old-age mortality and applied it to ages 80 to 120 using a Poisson log-
likelihood procedure.

Problems with zeros

When zeros are present in a composition, the log-ratio representation of compositional
data is problematic (Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn 2003). By
applying a Kannisto model to ages 80 to 120, we avoid the problem at old ages. However,
for some countries, life table deaths can equal 0 at younger ages for some specific years.

In a life table context, the 0 values occur because no deaths have been observed
or counted at a specific age x and time t. Treatment of 0 values is thus done on the
observed death counts (Dt,x). Procedures were suggested by Martín-Fernández, Barceló-
Vidal, and Pawlowsky-Glahn (2003) to treat zero counts (essential zeros). We use a
multiplicative replacement strategy. If we have a composition X of the observed deaths
Dx with P parts, X = [x1,x2, ....,xP ], containing zeros, we want to replace it by a
composition R with P parts, R = [r1, r2, ...., rP ], without zeros:

rj =

{
δ, if xj = 0
(1− zδ

K )xj , if xj > 0

where δ is the imputed value on part xj , z is the number of zeros counted in the compo-
sition X , and K is the constant of the sum constraint (

∑
xj = K). The value of δ is half

of the minimum Dt,x observed over all ages and years, when Dt,x > 0, divided by the
total number of deaths observed the year the zero was recorded:

δt =
min
t,x

(Dt,x)/2

120∑
x=0

Dt,x

∀Dt,x > 0.

Once the composition R is found, we multiply it by
120∑
x=0

Dt,x to create a new set

of death counts without zeros. The death rates are calculated based on these last death
counts without zeros.
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Appendix D: The fitted models

Figure A-1 shows the life table deaths for Spanish females, on a log scale, at selected
ages (0, 15, 30, 45, 60, 75, 90, and 105) observed and fitted with the LC, LC-coherent,
CoDa, and CoDa-coherent models. For most age groups and for all four models, the fit
is generally good. The coefficient of determination (R2) value for ages 0, 45, 60, 75, 90,
and 105 is 90% and over for all four models. The fit at ages 15 and 30 is however poorer,
especially for the CoDa and CoDa-coherent models, with R2 values between 75% and
90%. This value is over 85% with the LC and LC-coherent models at these same two
ages. The number of deaths at age 15 and 30 are, however, relatively low, and the errors
in modeling and forecasting them will thus have little impact on life expectancy (Lee and
Carter 1992). On the other hand, both CoDa models fit the mortality at higher ages very
well. The number of deaths at these ages is often important and has been more influential
on life expectancy since the second half of the 20th century (Bergeron-Boucher, Ebeling,
and Canudas-Romo 2015).

Using the coherent version of the LC and CoDa models also moderately increases
the fit at some ages. Similar results are found when looking at the model fits for the mt,x.

Figure A-1: Life table deaths (dt,x) at specific ages (0, 15, 30, 45, 60, 75, 90,
and 105) with a radix of 1 observed (dot) and fitted (lines) with the
LC and CoDa models, as well as their coherent extension, Spanish
females, 1960–2011
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Appendix E: Evaluating the models, all countries

Figure A-2: Female life expectancy at birth observed from 1960 to 2011 (in
black) and forecast from 1995 to 2011 for 15 European countries
using four forecasting models
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Figure A-2: (Continued)
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Figure A-2: (Continued)
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Appendix F: Rates of mortality improvement (RMIs)

The rate of mortality improvement (RMI) at each age implied by the Lee–Carter (LC)
model is not supported by empirical findings (e.g., Kannisto et al. 1994). The LC model
assumes constant RMIs, while empirical data shows that the RMIs have been increasing,
especially at older ages (Kannisto et al. 1994). When using a CoDa model, the RMIs can
change over time. The RMI for an indicator I forecast with a model M is here defined
by:

RMII,Mt,x = − İt,x
It,x

, (12)

where the dot on the top of the variable indicates its derivative with respect to time. For
the Lee–Carter model, the RMI calculated for the mt,x is equal to

RMIm,LC
t,x = −κ̇tβx, (13)

where κ̇t is equal to the drift when forecasting with a random walk with drift: κ̇t =
d+ εt; εt = 0. The RMIs for the LC model is thus constant over time, although differing
from age to age. When the life table radix is 1, the CoDa model can be rewritten as:

d̂t,x = αx
eβxκt

Sclr,t

1

Sαt
, (14)

where Sα,t and Sclr,t are the sum at time t of the matrices αxC[eκtβx ] and eκtβx respec-
tively, used in the closure procedure, as

C[eκtβx ] =
eκtβx

Sclr,t

and

αx ⊕ C[eκtβx ] =
αxC[eκtβx ]

Sα,t
.

From equation (14), the RMI for the dt,x with the CoDa model can be derived and
is equal to:

http://www.demographic-research.org 563



Bergeron-Boucher et al.: Coherent forecasts of mortality with compositional data analysis

RMId,CoDat,x =
Ṡα,t
Sα,t

+
Ṡclr,t
Sclr,t

− κ̇tβx. (15)

As for the LC model, κ̇t with the CoDa model is equal to the drift when forecasting
with a random walk with drift, making the term −κ̇tβx a constant. Thus, the terms
Ṡα,t

Sα,t
and Ṡclr,t

Sclr,t
determine if RMId,CoDat,x is constant or not. To assess how RMId,CoDat,x

changes over time, we calculated the RMIs for the forecast d̂t,x, using a random walk
with drift to forecast κt. The RMIs for discrete data can be estimated as:

RMII,Mt,x = −ln(
It+1,x

It,x
). (16)

Figure A-3 shows that the RMIs for the d̂t,x forecast with CoDa are not constant over
time. The increase of theRMId,CoDat,x over time is not linear: The increase is accelerating
until the middle of the 2030s and then starts to decelerate. The RMIs at each age evolve in
parallel and the difference between two consecutive ages is equal to −κ̇t(βx−βx+1). At
some ages, the RMI is negative, e.g., 105, meaning that the density of deaths is increasing
at these ages.

Figure A-3: Rate of mortality improvement at specific ages for French females’
life table deaths (dt,x) forecast with a CoDa methodology, 2011–
2050
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The RMIs for two different indicators are hard to compare. Thus, from the forecasts
of CoDa based on dt,x, age-specific death rates (mt,x) were constructed and their RMIs
calculated. Figure A-4 shows the RMIs of the mt,x from both LC and CoDa models. The
figure confirms that the RMIs for the CoDa model are not constant at all ages.

Figure A-4: Rate of mortality improvement at specific ages for French females’
death rates (mt,x) forecast with an LC and CoDa methodology,
2011–2050
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Appendix G: Jump-off adjustment

We adjusted the forecasts to correct for the jump-off year level for the CoDa and CoDa-
coherent models using the following equation:

djT :T+N ,x = d̂T :T+N ,x ⊕ [dT ,x 	 d̂T ,x], (17)

where T is the last year observed, N is the numbers of years forecast and dt,x, d̂t,x and
djt,x are the life table deaths observed, fitted, and forecast, and adjusted for the jump-off
level, respectively. We use a similar method for the LC and LC-coherent models:

ln(mj
T :T+N ,x) = ln(m̂T :T+N ,x) + [ln(mT ,x)− ln(m̂T ,x)], (18)

where mt,x are the age-specific death rates at time t. To avoid extrapolating the random
variation of the last year observed (T ), we smooth it using a P-spline smoothing procedure
for Poisson death counts (Camarda 2012).

We also adjusted the PI in such a way that the median of the simulations, used to
calculate the PI, is equal to the forecast value for the life expectancy at birth:

Bj0,t = B0,t + (ê0,t −M0,t), (19)

where B0,t is the PI bounds (upper or lower) of the life expectancy at birth at time t and
ê0,t and M0,t are the life expectancy at birth and the median forecasts, respectively. For
most cases, the median was very close to the forecast life expectancy.

Furthermore, the forecast of κt, in some cases, recorded a break in its trend at year
T + 1 when forecasting with the ARIMA(0,1,1) model due to the MA component. We
thus also adjust κt such as:

κjT+1:T+n = κT+1:T+n + [d− (κT+1 − κT )] (20)

where d is the drift of the ARIMA(0,1,1) model with drift used for the CoDa model.
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