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Assessing the contribution from changing educational distributions by means of
regression analysis

In a regression-based approach where only the periods 1975-79 and 2005-08 are considered,
one would typically start by estimating the following equation (for women and men
separately):

log (p/(1-p)) = b0 + b1a55 + b2a60 + b3a65 + b4a70 + b5a75 + b6a80 + b7a85 +
                         b8 n(n) + b9n(w) +b10 n(d) + b11 t + b12n(n)t + b13n(w)t + b14n(d)t

where a55, a60 and up to a85 are dummies for five-year age groups (50-54 is the reference
category),   n(n), n(w) and n(d) are dummies for the three groups of non-married (i.e. the never-
married, widowed and divorced), and t is a dummy for the period 2005-08 (1975-79 is the
reference category). n(n)t, n(w)t and n(d)t are interactions between marital status and the period
2005-09, and can thus be interpreted as the effect of marital status in 2005-08 that comes in
addition to that in 1975-79. b1 – b14 are the corresponding coefficients and b0 is the intercept.

In order to find out how much of the interaction between marital status and period that
is explained by education, education variables must be added to the equation. However, there
are three problems with such an approach, and these are discussed below. Results are shown
at the end.

Interactions in logistic model

First, it should be noted that it is generally problematic to consider interactions in logistic and
other non-linear models (Ai and Norton 2003; Greene 2010). For example, when the model is
estimated for women, the interaction effect b12 is 0.4226. This means that the odds of dying
among the never-married relative to that of the married is 1.526 (=exp(0.4226)) times larger
in 2005-08 than in 1975-79. However, the ratios of the death probability among the never-
married to that among the married in various groups of women are not necessarily 1.526 times
larger in 2005-08 than in 1975-79. In extreme cases, even if an odds ratio is larger in one sub-
population than another, the probability ratio may be smaller. The magnitude of this problem
depends on how large the death probabilities generally are.

We predicted the ratio of the death probability among the never-married to that among
the married for the age group 50-54, when death probabilities are quite small, and found that
the ratio was 1.524 times higher in 2005-8 than in 1975-79. At age 85-89, when death
probabilities are generally higher, the corresponding number was 1.478, and thus more
different from the estimated 1.526, but still not vastly different. Such a high degree of
similarity between ratios of predicted probabilities ratios and ratios of odds ratios was, of
course, more general and means that consideration of interactions after all is unproblematic in
our particular case. (Obviously, if we had considered absolute differences in probabilities
rather that relative measures, the interaction pattern could have been much more different
from that appearing on the “odds ratio scale”.) However, because of the differences that after
all exists, one should be careful to place much emphasis on the usual measures of significance
based on the “odds ratio scale”.
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Adding confounding or causally intermediate variables

A second concern is that, when models are logistic it is difficult to learn about the importance
of confounding or causally intermediate variables by adding such variables. For example, the
effect of n(n)t will change (actually be strengthened) even if a variable that is uncorrelated with
it is added.  Karlson, Holm and Breen have suggested a solution to this so-called “scaling
problem” (e.g., Karlson et al., 2012). The first step of their approach is to estimate linear
models for all the potentially confounding or mediating variables that at a later stage will be
included in the logistic model. In our case, these are education variables, which we for the
moment refer to simply as e1 and e2. Each of these models includes all the variables in the
logistic model, in our case a55 - a85, n(n), n(w),n(d), t, n(n)t, n(w)t, and n(d)t. Second, values of the
confounding or mediating variables are predicted from these regression estimates, and the
differences between the observed and predicted values (i.e. the residuals), referred to with
superscripts res below, are added to the logistic equation.  This new equation would in our case
be

log (p/(1-p)) = b0
* + b1

*a55 + b2
*a60 + b3

*a65 + b4
*a70 + b5

*a75 + b6
*a80 + b7

*a85 +
                         b8

*n(n) + b9
*n(w) +b10

* n(d) + b11
* t + b12

*n(w)t + b13
*n(w)t + b14

*n(d)t +
                         b15

*e1
res + b16

*e2
res.

These residualized e variables are uncorrelated with all the other variables, but the
coefficients for the latter are still different from those in the first equation because of the
“scaling” issue. For example, while the interaction effect corresponding to being never-
married in 2005-08 (b12) was 0.423, the estimate (b12

*) was 0.454 when we took into account
some education variables specified below and used the mentioned procedure.

In the next step, the observed confounding or mediating variables (e1 and e2) are added
instead of the residualized ones (e1

res and e2
res), so the equation becomes

log (p/(1-p)) = b0
** + b1

**a55 + b2
**a60 + b3

**a65 + b4
**a70 + b5

**a75 + b6
**a80 + b7

**a85 +
                         b8

**n(n) + b9
**n(w) +b10

** n(d) + b11
** t + b12

**n(w)t + b13
**n(w)t + b14

**n(d)t +
                         b15

**e1 + b16
**e2.

The new coefficient b12
**for the mentioned interaction is the effect net of education, and it is

common to calculate how much the confounding or mediation contributes to the coefficient
corresponding to the gross effect, which is

1-b12
**/b12

* = (b12
*-b12

**)/b12
*.

In our case, six education variables obviously have to be considered: dummies for own
education being lower secondary, upper secondary or tertiary, and similar dummies for
spouse’s education (only relevant for the married, so all of them are 0 for the non-married).
Additionally, one should allow for the possibility that associations between marital status and
mortality, and between spousal education and mortality, vary across categories of own
education. Finally, one should add interactions to reflect that the associations between
education and mortality change over time.

Interactions between time and education

The results from such a regression approach deviate from our preferred approach because of
the mentioned issues. Additionally, one cannot expect exactly the same results when age is
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included in a model as when age-standardized measures are used. The existence of an
interaction between (in our case) education and time is another source of deviation between
the results, and makes the regression approach less appealing for reasons discussed below by
means of simple examples.

Let us first assume that a death probability is given by

log (pne
(t)/(1-pne

(t))) = log(b0)+ log(bn)n + log(bt) t + log(bnt)nt + log(be)e + log (ben)en

where n is marital status (1=non married; 0=married), t is time (either 0 or 1), and e is
education (1=high; 0=low). The b’s are the corresponding coefficients. Assuming that the
death probabilities are low, so that log p = log p/(1-p), the death probabilities are as shown
here:

t=0 t=1

Non-married, low education b0bn b0bn bt bnt

Non-married, high education b0bnbe ben b0bn bt bnt be ben

Married, low education b0 b0bt

Married, high education b0be b0bt be

Assume further that the proportions with high education are qn
(0) and qm

(0) among non-
married and married, respectively, at time t=0. The corresponding proportions at time t=1 are
qn

(1) and qm
(1).

The ratio of the death probability among the non-married to that among the married at
t=0 is z(0)= p1

(0)/p0
(0)

, where p1
(0) and p0

(0) are averages over the education-specific p1e
(0) and

p0e
(0). At t=1 this ratio has changed to z(1)= p1

(1)/p0
(1) . The ratio of these ratios can be

interpreted as the interaction between marital status and time. Let z(1’)= p1
(1’)/p0

(1’) be the ratio
of the death probabilities at time t=1 if educational distributions had changed as observed
while death probabilities in each educational group in each marital status category had
remained the same as at t=0. Similarly, let z(1’’)= p1

(1’’)/p0
(1’’) be the ratio of the death

probabilities at time t=1 if educational distributions had remained constant while death
probabilities in each educational group in each marital status category had changed as
observed.

When we average over education, we find that

zn
(0)=bn(1-qn

(0)+qn
(0) be ben)/ (1-qm

(0)+qm
(0) be),

zn
(1)= (bnbnt(1-qn

(1)+qn
(1) be ben))/( (1-qm

(1)+qm
(1) be)),

zn
(1’)=bn(1-qn

(1)+qn
(1) be ben)/ (1-qm

(1)+qm
(1) be),

and

zn
(1’’)= (bnbnt(1-qn

(0)+qn
(0) be ben))/( (1-qm

(0)+qm
(0) be)).

Now, let us to turn to a regression analysis and ignore the “scaling problem”. The first
step would then be to estimate the following model, i.e. the model assumed to generate the
death probabilities minus the education variables:

log (pne
(t)/(1-pne

(t))) = log(b0
g) + log(bn

g) n + log(bt
g) t + log(bnt

g) nt
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Obviously, the estimate of this gross interaction effect log(bnt
g) is log(z(1)/z(0)) (assuming still

small probabilities).

When we in the second step add the education variables as in the model used to
generate the death probabilities, the estimated effect of the interaction between marital status
and period (nt) is, of course, equal to log(bnt). It is easy to see from the expressions for zn

(0),
zn

(1’), zn
(1’’) and zn

(1) above that bnt =  zn
(1’’)/zn

(0) . Thus, the interpretation of bnt is that it is the
multiplicative change in z that we would see if there were no changes in the educational
distributions.

As mentioned, 1-log(bnt)/log(bnt
g ) is commonly considered a reasonable measure of

the  proportion explained by education. This can be written as 1-log(zn
(1’’)/zn

(0))/log(zn
(1)/zn

(0)),
which is the same as log(zn

(1)/zn
(1’’))/log(zn

(1)/zn
(0)). This is different from the second (version

2) of the two expressions we consider as reasonable measures of the importance of
educational changes, i.e. (zn

(1)- zn
(1’’)) / (zn

(1)-  zn
(0)), but involves the same factors. However, if

we assume that the bnt effects are close to 1, the expression 1-log(bnt)/log(bnt
g ) is

approximately the same as 1-(bnt-1)/(bnt
g-1), which can be written as (bnt

g-bnt/(bnt
g-1), which is

turn equals (zn
(1)- zn

(1’’)) / (zn
(1)-  zn

(0)).

In other words, when data are generated by a simple model such as here, a researcher
who estimates logistic models and calculates the proportion explained by educational changes
by using the expression above, will get approximately (depending on effect sizes) the same
result as one who uses the second version of our preferred approach.1

However, it gets more problematic in an alternative “world” where the effect of
education changes over time, i.e. there is an effect bet of the interaction et, so that the model
generating the death probabilities is

log pne
(t)/(1-pne

(t))=log(b0)+log(bn)n + log(bt) t + log(bnt)nt + log(be)e + log (ben)en + log(bet) et.

We have observed that such an interaction indeed is present in our data.

The death probabilities in the different groups are in this case as shown here:

1 Note that it is not only zn
(1’’)/zn

(0) that is equal to bnt.  Also zn
(1)/zn

(1’) is equal to bnt. Thus,

zn
(1)= zn

(0) bnt
g,

zn
(1’)= zn

(0) bnt
g/bnt,

and

zn
(1’’)=zn

(0)bnt.

As mentioned in the main text of the paper, although zn
(1’)/ zn

(0) and zn
(1)/zn

(1’’) are equal (both being
bnt

g/bnt), the two versions of our measure of the importance of education are different. The first is

(zn
(1’)- zn

(0)) / (zn
(1)- zn

(0)) =( bnt
g/bnt -1)/(bnt

g-1)

and  the second is, as mentioned,

  (zn
(1)- zn

(1’’)) / (zn
(1)-  zn

(0)) = ( bnt
g - bnt )/(bnt

g-1).

http://www.demographic-research.org/


Kravdal, Grundy & Keenan: The increasing mortality advantage of the married: The role played by education

supplementary material

http://www.demographic-research.org 5

Non-married, low education b0bn b0bn bt bnt

Non-married, high education b0bnbe ben b0bn bt bnt be ben bet

Married, low education b0 b0bt

Married, high education b0 be b0bt be bet.

Then, the expressions for zn
(1) and zn

(1’’) are different from what they were with the simpler
model: bet is added multiplicatively to the last additive term in the numerator and denominator
of both expressions.

In this situation, the multiplicative change in the mortality of the non-married to that
of the married when the educational distribution is kept constant (zn

(1’’)/zn
(0) ) is no longer

equal to bnt but depends in a complex way on bnt as well as bet, other coefficients and the
educational distributions. In other words, there is no simple interpretation of bnt as the
multiplicative change in the mortality of the non-married to that of the married that would
occur in the absence of a change in the educational distributions. Therefore, the expression
1-log(bnt)/log(bnt

g ) has no simple interpretation either, and it is no longer approximately equal
to the expression (zn

(1)- zn
(1’’)) / (zn

(1)-  zn
(0)) which constitutes the second version of our main

and preferred approach, and which we consider a reasonable and intuitively appealing
measure of the importance of educational changes.

Results from the estimation

Table 1 shows the results from the approach described above. The estimation was done with
the Proc Reg (which provides residualized variables as output) and Proc Logistic modules in
the SAS software. We included own and spousal education as well as interactions between
marital status and own education, between spousal education and own education, and between
own education and period. The latter may not adequately reflect the complexity of the data:
While we indeed observe a strengthening of the association between education and mortality,
on the whole, this development may vary between marital status groups (i.e. there may be a
three-way interaction). Note that it would not be reasonable to add interactions between
spousal education and time, because spousal education is only defined for the married, and the
interpretation of the interaction between marital status and time would then be different
(although doing so did not change the results dramatically).

The log of dying among the never-married men compared to that among the married is
0.459 higher in 2005-08 than in 1975-79 (when the residualized education variables are
included in the model). This figure is reduced to 0.379 when the actual educational variables
are included, which means that 17.4% is explained by education. Educational changes explain
more of the increase in the association between widowhood and mortality (34.2%), as also
found with the main approach, while they dramatically “over-explain” the very small increase
in the mortality disadvantage of the divorced.

Among women, educational changes explain 13.4% of the increasing mortality
disadvantage among never-married women, while they – just as among men and in
accordance with the main method – explain a larger part of the increasing disadvantage for the
widowed  (49.4%). The educational changes have contributed to reduce the mortality
disadvantage of he divorced, and “explain” -3.8%.

To summarize, the regression analysis points towards a larger contribution from
educational changes to the increasing mortality disadvantage of the never-married and the
widowed than suggested by the main approach. However, both methods show that educational
changes have played a larger role with respect to the latter changes. The results for divorced
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men are not so interesting, since the mortality disadvantage has changed so little, but among
women, the regression analysis and the main method give quite similar results, since the
former suggests a very small negative contribution, while the latter suggests that educational
changes have been unimportant.
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Table 1: Effects of interactions between marital status and period, with control for
residualized or actual educational variables1

Never-married Widowed Divorced/separated
*period 2005-08 *period 2005-08 *period 2005-08
(relative to 1975-79) (relative to 1975-79) (relative to 1975-79)

Men

Effect in model
w/residualized
education
 variables (E1) 0.459 0.389  0.008

Effect in model
w/education
variables (E2) 0.379 0.256 -0.037

Proportion explained
by educational changes
(1-E2/E1) 0.174 0.342   5.625

Women

Effect in model
w/residualized
education
 variables (E1) 0.447 0.231  0.213

Effect in model
w/education
variables (E2) 0.387 0.117  0.221

Proportion explained
by educational changes
(1-E2/E) 0.134 0.494 -0.038

1 The education variables are own and spouse’s education plus interactions between these two variables, between
own education and marital status, and between own education and period.
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