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Gompertz, Makeham, and Siler models explain Taylor’s law
in human mortality data

Joel E. Cohen1

Christina Bohk-Ewald2

Roland Rau3

Abstract

BACKGROUND
Taylor’s law (TL) states a linear relationship on logarithmic scales between the variance
and the mean of a nonnegative quantity. TL has been observed in spatiotemporal
contexts for the population density of hundreds of species including humans. TL also
describes temporal variation in human mortality in developed countries, but no
explanation has been proposed.

OBJECTIVE
To understand why and to what extent TL describes temporal variation in human
mortality, we examine whether the mortality models of Gompertz, Makeham, and Siler
are consistent with TL. We also examine how strongly TL differs between observed and
modeled mortality, between women and men, and among countries.

METHOD
We analyze how well each mortality model explains TL fitted to observed occurrence–
exposure death rates by comparing three features: the log–log linearity of the temporal
variance as a function of the temporal mean, the age profile, and the slope of TL. We
support some empirical findings from the Human Mortality Database with
mathematical proofs.

RESULTS
TL describes modeled mortality better than observed mortality and describes Gompertz
mortality best. The age profile of TL is closest between observed and Siler mortality.
The slope of TL is closest between observed and Makeham mortality. The Gompertz
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model predicts TL with a slope of exactly 2 if the modal age at death increases linearly
with time and the parameter that specifies the growth rate of mortality with age is
constant in time. Observed mortality obeys TL with a slope generally less than 2. An
explanation is that, when the parameters of the Gompertz model are estimated from
observed mortality year by year, both the modal age at death and the growth rate of
mortality with age change over time.

CONCLUSIONS
TL describes human mortality well in developed countries because their mortality
schedules are approximated well by classical mortality models, which we have shown
to obey TL.

CONTRIBUTION
We provide the first theoretical linkage between three classical demographic models of
mortality and TL.

1. Introduction

Taylor’s law (TL) states that the logarithm of the variance of some nonnegative
quantity is approximately a linear function of the logarithm of the mean of that quantity
in multiple sets of observations. TL describes the population densities of hundreds of
species in ecology (Taylor 1961; Kilpatrick and Ives 2003; Kendal 2004) and many
other nonnegative quantities (reviewed by Eisler, Bartos, and Kertész 2008), such as
numbers of cancer metastases, numbers of cases of infectious diseases, numbers of
single-nucleotide polymorphisms, sizes of tornado outbreaks (Tippett and Cohen 2016),
and prime numbers (Cohen 2016). In human demography, TL describes the density
(people per area) of Norway’s population (Cohen, Xu, and Brunborg 2013) and the age-
specific force of mortality (henceforth, simply ‘mortality’) in developed countries
(Bohk, Rau, and Cohen 2015). A restrictive view of TL limits its application to
apparently random variability without dominating systematic trends, that is, to what is
sometimes called ‘fluctuation scaling.’ A broader view of TL, adopted here, includes
applications of TL to nonnegative quantities that may change deterministically, for
example, in purely mathematical structures (Kendal and Jørgensen 2011; Kendal 2013;
Cohen 2013, Kendal and Jørgensen 2015; Xiao, Locey, and White 2015; Cohen 2016)
or that may fluctuate apparently chaotically or randomly to some extent while
dominated by systematic trends (Cohen, Xu, and Brunborg 2013; Bohk, Rau, and
Cohen 2015). We discuss some unanswered questions raised by this broader view of TL
in the concluding section 4.2 on future research.

http://www.demographic-research.org/
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As an empirical generalization, TL invites attempts at explanation. Why is there an
approximately linear relationship between the log of the temporal mean and the log of
the temporal variance of mortality in many developed countries? Is this empirical
regularity in human mortality just a coincidence, or does it come from an underlying
pattern or mechanism? Here we answer these questions by comparing the completely
empirical results of Bohk, Rau, and Cohen (2015) with the results of fitting three
human mortality models: those of Gompertz (1825), Makeham (1860), and Siler (1979,
1983), which belong to the same family. We show that fitted mortality of these models
obeys TL, exactly or approximately. Hence these models provide a theoretical basis for
TL in human mortality.

Mortality models express mathematically the age schedule of mortality (that is,
mortality  as  a  function  of  age)  in  a  given  year.  Models  differ  in  the  number  of
parameters they use and in the age ranges for which they model mortality well. The
more parameters they use, the more flexibly they can fit mortality at different ages, but
the more difficult they are to analyze mathematically. Gompertz’s model (1825), with
two parameters, is one of the most popular models in demography. It assumes a linear
increase in the logarithm of mortality with age. It usually describes well mortality at
ages 30 to 90 (so-called senescent mortality). The model of Makeham (1860) adds to
Gompertz’s model an additional age-independent constant to represent nonsenescent
background mortality effective at all ages. This improves the fit at some younger ages.
The model of Siler (1979, 1983) adds to the Makeham model an exponential decay in
mortality to represent the decline in mortality from infancy to childhood. We discuss
still more complicated mortality models in the concluding section 4.2 on future
research.

The main objectives of this study are to examine whether the models of Gompertz,
Makeham, and Siler are consistent with TL and can help to explain why and to what
extent TL holds. In addition, we examine how strongly TL differs between observed
mortality and model mortality schedules, between women and men, and among
countries.

We base our analysis on empirical occurrence–exposure death rates, statistical
analysis, and theoretical explanations, and thus provide the first theoretical linkage
between three classical demographic models of mortality and TL: We show
mathematically that the Gompertz model (the simplest of the three models we
considered) with linearly changing modal age at death and a constant rate of growth of
mortality with age predicts TL with a slope that is exactly equal to 2. As the Gompertz
model is a special case of the other two models, it is evident that the results from the
Gompertz model are also valid for certain parameter values of the more complex
models of Makeham and Siler. We find that observed mortality obeys TL with a slope
generally less than 2, and that, when the parameters of the Gompertz model are

http://www.demographic-research.org/
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estimated from observed mortality year by year, both the modal age at death and the
growth rate of mortality with age change over time.

Our analyses yield theoretical and empirical insights into the occurrence of TL in
human mortality, giving a comprehensive picture of the extent to which TL describes
the temporal variance in age-specific mortality in human populations. As we have
confirmed TL to be a regular pattern (rather than a coincidence) in human mortality, it
can be validly applied in other demographic studies such as generating and evaluating
mortality forecasts.

In the remainder of this article, Section 2 describes data and methods; Section 3
presents results; and Section 4 summarizes the main findings. Appendices 1 and 2 give
theorems, mathematical proofs, and approximations of TL for the Gompertz and
Makeham models respectively. Supplementary material (online) includes estimates of
model parameters, figures, and descriptive files.

2. Data and methods

We extracted deaths and life-years of exposures to the risk of death by single year of
age, 0 to 100, and calendar year, 1960 to 2009, for 12 countries of the Human Mortality
Database (2015). Given this data, we estimated observed mortality (or ‘observations’)
defined as deaths divided by exposures by single years of age and calculated predicted
mortality for each year separately with the models of Gompertz, Makeham, and Siler.
Henceforth the word ‘observations’ means ‘occurrence–exposure death rates’.

2.1 Three theoretical models of mortality

We used mathematical expressions of the models of Gompertz, Makeham, and Siler
that are based on the (old age) modal age at death (Horiuchi et al. 2013; Missov et al.
2015; Bergeron-Boucher, Ebeling, and Canudas-Romo 2015). The modal age at death is
the age (beyond infancy and childhood) at which the probability density of life table
deaths has a maximum. The conventional formulas for the models of Gompertz and
Makeham use a parameter for an initial level of mortality instead of the modal age at
death. The formulas based on the modal age at death, given below, are numerically
more stable, have a better demographic interpretation, and are more comparable across
populations and points of time (Horiuchi et al. 2013; Missov et al. 2015).

The Gompertz model expresses mortality μ at age x in year t as

௫,௧ߤ = ,௧݁ఉ೟(௫ିெ೟)ߚ ௧ߚ > ௧ܯ,0 > 0, for		ݐ = 1, … , ܶ, ݔ = 0, … ,ܺ.          (1)

http://www.demographic-research.org/
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Here βt is the growth rate of mortality with age, Mt the modal age at death in year t,
T the number of years of observations, and X the  maximum  observed  age.  The
Gompertz model predicts, on a logarithmic scale of mortality and a linear scale of age, a
linear increase in mortality from some young age to the oldest age X = 100 here.

The Makeham model expresses mortality μ at age x in year t as

௫,௧ߤ = ܿ௧ + ,௧݁ఉ೟(௫ିெ೟)ߚ ܿ௧ > 0.          (2)

The parameter βt is  the  same  as  in  the  Gompertz  model.  Makeham  added ct to
represent background mortality in year t,  assumed  to  be  the  same  at  all  ages x. The
Makeham model predicts slowly increasing mortality from infancy through childhood
to young adulthood; thereafter, it models a nearly linear increase in log mortality with
increasing age.

The Siler model expresses mortality μ at age x in year t as

௫,௧ߤ = ௧݁ିఉభ,೟௫ߙ + ܿ௧ + ,ଶ,௧݁ఉమ,೟(௫ିெ೟)ߚ ௧ߙ > ଵ,௧ߚ,0 > 0.          (3)

Here ଶ,௧ߚ = ௧ߚ  of the Makeham and Gompertz models. Siler adds two additional
parameters: αt is infant mortality, and β1,t is the rate of decline with increasing age x of
childhood mortality in year t. The Siler model predicts decreasing mortality from
infancy to childhood, slowly increasing mortality from childhood to young adulthood,
and nearly linearly increasing log mortality with increasing age throughout adulthood.

2.2 Taylor’s law, mean and variance of mortality

A temporal TL describes a linear relationship of log10 of temporal variance (variance
over time) to log10 of temporal mean (mean over time) of mortality μ at age x:

(௫ߤ)ݎଵ଴ܸܽ݃݋݈ = ܽ + ܾ ⋅ ,(௫ߤ)ܧଵ଴݃݋݈          (4)

where a is the intercept and b is the slope. With T years of observations or theoretical
(fitted) values of mortality, the temporal mean of mortality μ at age x is

(௫ߤ)ܧ = ଵ
்
∑ ௫,௧ߤ
்
௧ୀଵ ,          (5)

and the temporal variance is

http://www.demographic-research.org/
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(௫ߤ)ݎܸܽ = ଵ
்
∑ ቀߤ௫,௧ ቁ(௫ߤ)ܧ−

ଶ
்
௧ୀଵ .          (6)

We plot (on log–log coordinates) temporal variances and means of mortality for
each age x in one national population at a time, separately for different national
populations. These plots depict so-called cross-age-scenarios of TL (Bohk, Rau, and
Cohen 2015).

2.3 Statistical methods and visualization

2.3.1 Parameter estimation

We estimated the values of the parameters of the models of Gompertz, Makeham, and
Siler from deaths and exposures using the method of maximum likelihood. Specifically,
we maximized a Poisson log-likelihood in R (2015) with the function DEoptim (Mullen
et al. 2011).

2.3.2 Analysis of log–log linearity

To analyze how closely TL approximates the log temporal mean and log temporal
variance of observed and/or modeled mortality, we used the linear correlation
coefficient r2. The closer r2 is to one, the better TL describes the relation of log
temporal variance to log temporal mean of mortality.

2.3.3 Visualizing the age profile of TL

To compare the age profiles between observed and modeled mortality, we plotted the
log10 temporal variance of mortality as a function of the log10 temporal mean by single-
year age groups using yellow and orange to represent children (0 to 20 years of age),
red and magenta for adults (21 to 60 years of age), and blue and green for older ages
(61 to 100 years of age).

http://www.demographic-research.org/
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2.3.4 Analysis of covariance

To analyze how well a theoretical model predicts the slope of TL fitted to observed
mortality, we used the analysis of covariance.

1. To determine whether the slopes of TL differ between observed and modeled
mortality (by sex, country, and model), we estimated a linear regression with an
interaction term between the variables log10E(μx) and a dichotomous variable
model (with values ‘observed’ and ‘model’) using the lm() function in R:

(௫ߤ)ݎଵ଴ܸܽ݃݋݈ = ܿ଴ + ܿଵ݈݃݋ଵ଴ܧ(ߤ௫) + ܿଶ݈݉݁݀݋ + ܿଷ(݈݃݋ଵ଴ܧ(ߤ௫) × (7)  .(݈݁݀݋݉

We use observed mortality as the reference level for the categorical variable
model. The null hypothesis was that ܿଷ = 0, that is, that there was no difference
between the model and the observations in the slope of as a linear (௫ߤ)ݎଵ଴ܸܽ݃݋݈
function of A very low p-value indicated that the coefficient .(௫ߤ)ܧଵ଴݃݋݈ ܿଷ of  the
interaction term is non-zero, and that the slope of TL of a model life table is not equal
to the slope of TL of observed mortality data.

2a. We also used analysis of covariance to determine whether the slopes of TL differ
between males and females (by country and mortality model). To analyze if the
slopes of TL differed between males and females, we estimated a linear regression
with an interaction term between the variables log10E(μx) and a dichotomous
variable sex (with values ‘male’ and ‘female’):

(௫ߤ)ݎଵ଴ܸܽ݃݋݈ = ݀଴ + ݀ଵ݈݃݋ଵ଴ܧ(ߤ௫) + ݀ଶݔ݁ݏ + ݀ଷ(݈݃݋ଵ଴ܧ(ߤ௫) × (8)          .(ݔ݁ݏ

We used female mortality as the reference level. For the null hypothesis that
݀ଷ = 0, a very low p-value indicated that the coefficient ݀ଷ of the interaction term is
non-zero, and that the slope of TL is different between males and females.

2b. To analyze if sex differences in the slope of TL differ between observed and
modeled mortality (by country and model), we estimated a linear regression with
pairwise and three-way interaction terms among the variables log10E(μx), sex, and
model. Here, unlike equation (7) above, the variable model had four values: 0
(observed), 1 (Gompertz), 2 (Makeham), 3 (Siler):

(௫ߤ)ݎଵ଴ܸܽ݃݋݈ = ଴݂ + ଵ݂݈݃݋ଵ଴ܧ(ߤ௫) + ଶ݂ݔ݁ݏ + ଷ݂݈݉݁݀݋
+ ସ݂(݈݃݋ଵ଴ܧ(ߤ௫) × (ݔ݁ݏ + ହ݂(݈݃݋ଵ଴ܧ(ߤ௫) × (݈݁݀݋݉ + ଺݂(ݔ݁ݏ × (݈݁݀݋݉
+ ଻݂(݈݃݋ଵ଴ܧ(ߤ௫) × ݔ݁ݏ × .(݈݁݀݋݉          (9)

http://www.demographic-research.org/
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Observed mortality was the reference level for model, as in equation (7), and
female mortality was the reference level for sex. The null hypothesis was that f଻ = 0,
that is, that model had no influence on the interaction between sex and .(௫ߤ)ܧଵ଴݃݋݈

2.4 Availability of data and supplementary information

In addition to the data on mortality, which is publicly available from the Human
Mortality Database (2015), supplementary information deposited with this paper
includes a spreadsheet (TLinMortalityModels.csv) with the values of 41 variables and a
text file (TLinMortalityModels-Documentation-Variables.txt) that defines these
variables. The spreadsheet gives the parameter estimates of the models of Gompertz,
Makeham, and Siler for observed female and male mortality from 1960 to 2009 in 12
countries of the Human Mortality Database (2015). This information is graphed in
Figures 1–17 and supplementary figures A-1–A-20. R code is available at:
https://github.com/christina-bohk-ewald/taylor-law-mortality.

3. Results

3.1 Fitted mortality of Gompertz, Makeham, and Siler models

Before we analyze how consistent the models of Gompertz, Makeham, and Siler are
with TL, we first show how well they fit observed mortality. Figures 1 and 2 display the
observed age-specific mortality (on a logarithmic scale) as a function of age from 0 to
100, for women and men, respectively, from 1960 (light gray) to 2009 (black) in 12
countries of the Human Mortality Database (2015). Fitted mortality is depicted in green,
blue, and red for the models of Gompertz, Makeham, and Siler, respectively, in 2009
for each country.

The observed mortality shows a typical age pattern: a fall from infancy to around
age 10, an ‘accident bump’ around age 20 (often more pronounced for men than for
women), and a roughly linear rise on the log scale beyond age 30. Mortality at each age
declined with time in many developed countries since 1960. The declines occurred
mainly at younger ages before they spread towards higher ages (Christensen et al. 2009;
Rau et al. 2008; Vaupel 2010).

https://github.com/christina-bohk-ewald/taylor-law-mortality
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Figure 1: Observed female mortality from 1960 (light gray) to 2009 (black),
and fitted female mortality with models of Gompertz (green),
Makeham (blue), and Siler (red) in 2009 for 12 countries of the
Human Mortality Database (2015)

http://www.demographic-research.org/
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Figure 2: Observed male mortality from 1960 (light gray) to 2009 (black), and
fitted male mortality with models of Gompertz (green), Makeham
(blue), and Siler (red) in 2009 for 12 countries of the Human
Mortality Database (2015)

http://www.demographic-research.org/
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The Gompertz model fits observed mortality better at adult and older ages than at
younger ages, where the predicted mortality is systematically and substantially too low.
The Makeham model fits better than the Gompertz model, particularly for younger
ages, but the modeled mortality increases monotonically with age, unlike the
observations. The Siler model fits the age profile of mortality better than the Gompertz
and Makeham models. None of the models reproduces the observed ‘accident bump’ of
excess mortality of young adult ages. The findings in this paragraph confirm prior
observations by others about the fit between human mortality data and the Gompertz,
Makeham, and Siler models (e.g., Bongaarts 2005; Canudas-Romo 2008; Horiuchi et
al. 2013; Bergeron-Boucher, Ebeling, and Canudas-Romo 2015).

3.2 Statistical and visual tests of TL in observed and fitted mortality

This section reports the statistical analysis and visual tests proposed in Section 2.
Figures 3–10 display the cross-age-scenarios of TL for observed and fitted mortality of
women and men, respectively, in 12 countries of the Human Mortality Database (2015).
Odd-numbered figures are for females, even-numbered for males.

3.2.1 Log-log linearity and r2 values

Figures 3–4 compare the temporal means and temporal variances of observed mortality
with TL (the fitted least squares straight line), on log–log coordinates. In these figures,
r2 measures the linearity of observed log temporal variance as a function of observed
log temporal mean. In Figures 5–10, r2 measures the linearity of the log temporal
variance of modeled mortality as a function of the log temporal mean of modeled
mortality.

TL  describes  well  the  observed  mortality  (Figures  3,  4)  and  the  mortality  of  the
models of Gompertz (Figures 5, 6), Makeham (Figures 7, 8), and Siler (Figures 9, 10).
For observations of women, 0.96 ≤ r2 ≤ 0.99,  and  of  men,  0.95  ≤ r2 ≤ 0.99,  in  the
selected countries. Where the mortality models had r2 ≥ 0.999,  sometimes  there  was
excellent agreement with the strictly linear relationship posited by TL (e.g., the
Gompertz model for East Germany in Figure 5 and the Makeham model for France and
Japan in Figure 7). In some cases the models, and particularly the Gompertz model,
predicted a relation of log variance to log mean that was closer to linear than was the
relation of log variance to log mean based on observed mortality. The Gompertz model
had r2 ≥ 0.99 more often than the other two models.

http://www.demographic-research.org/
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Figure 3: TL (solid black line) in observed female mortality for the ages 0
(yellow) to 100 (green) from 1960 to 2009 on a logarithmic scale (base
= 10) for 12 countries of the Human Mortality Database (2015)

Note: This figure essentially reproduces Figure 2 of Bohk, Rau, and Cohen (2015), with the addition here of a color scale and greater
precision in the values of r2.

http://www.demographic-research.org/
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Figure 4: TL (solid black line) in observed male mortality for the ages 0
(yellow) to 100 (green) from 1960 to 2009 on a logarithmic scale (base
= 10) for 12 countries of the Human Mortality Database (2015)

Note: This figure essentially reproduces Figure A-1 of Bohk, Rau, and Cohen (2015), with the addition here of a color scale and
greater precision in the values of r2.

http://www.demographic-research.org/
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Figure 5: TL (solid black line) in fitted female mortality of the Gompertz
model for the ages 0 (yellow) to 100 (green) from 1960 to 2009 on a
logarithmic scale (base = 10) for 12 countries of the Human Mortality
Database (2015)

http://www.demographic-research.org/
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Figure 6: TL (solid black line) in fitted male mortality of the Gompertz model
for the ages 0 (yellow) to 100 (green) from 1960 to 2009 on a
logarithmic scale (base = 10) for 12 countries of the Human Mortality
Database (2015)

http://www.demographic-research.org/
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Figure 7: TL (solid black line) in fitted female mortality of the model of
Makeham for the ages 0 (yellow) to 100 (green) from 1960 to 2009 on
a logarithmic scale (base = 10) for 12 countries of the Human
Mortality Database (2015)

http://www.demographic-research.org/
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Figure 8: TL (solid black line) in fitted male mortality of the model of
Makeham for the ages 0 (yellow) to 100 (green) from 1960 to 2009 on
a logarithmic scale (base = 10) for 12 countries of the Human
Mortality Database (2015)

http://www.demographic-research.org/
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Figure 9: TL (solid black line) in fitted female mortality of the model of Siler
for the ages 0 (yellow) to 100 (green) from 1960 to 2009 on a
logarithmic scale (base = 10) for 12 countries of the Human Mortality
Database (2015)

http://www.demographic-research.org/
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Figure 10: TL (solid black line) in fitted male mortality of the model of Siler for
the ages 0 (yellow) to 100 (green) from 1960 to 2009 on a logarithmic
scale (base = 10) for 12 countries of the Human Mortality Database
(2015)

http://www.demographic-research.org/
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According to the r2 values, TL describes Gompertz mortality best among these
three models. Appendix 1 gives a mathematical proof that TL describes Gompertz
mortality exactly if the modal age at death Mt increases linearly in time and if the rate of
growth of mortality with age βt is constant in time. The first assumption is close to
reality, as we shall see. The second assumption is not: βt increased slightly over time
within a narrow range, even though βt is hypothesized to be constant across individuals
and over time (Vaupel 2010). Nevertheless, the excellent agreement between TL and
Gompertz mortality is at least partially explained by this mathematical analysis.

3.2.2 Visually comparing age profiles between observed and modeled mortality

In this section, we visually compare the age pattern of TL between observed and
modeled mortality.

TL in observed mortality data (Figures 3–4) has a typical pattern that is similar for
women and men in many populations. Both the log10 temporal variance and the log10
temporal mean of mortality increase linearly from young adulthood (red) to the elderly
(green), and they decrease from infancy (yellow) to childhood (orange). The changes in
the log10 temporal mean are expected from the increasing mortality with age at older
ages  and  the  decreasing  mortality  with  age  from  infancy  to  childhood.  The
corresponding linear changes in the log10 temporal variance were not known prior to the
work of Bohk, Rau, and Cohen (2015).

TL of Gompertz mortality (Figures 5–6) mirrors the pattern of TL of the
observations well at adult and old ages. However, both the log10 temporal variance and
the log10 temporal mean of mortality of infants and children (yellow to orange) are
modeled to be smaller than those of young adults (red), unlike the observations. This
major difference between observed mortality and the Gompertz model arises because
the Gompertz model assumes a log-linear increase in mortality from the youngest to the
oldest age. The Gompertz model captures neither declining mortality from infancy to
childhood nor its related effect on TL.

TL of Makeham mortality  (Figures  7–8)  mirrors  the  pattern  of  TL  of  the
observations well at adult and old ages. However, both the log10 temporal variance and
the log10 temporal mean of mortality are modeled to be almost equal for infants and
children (yellow to orange) on the one side, and young adults (red) on the other side,
unlike the observed mortality and Gompertz mortality. These major differences arise
because the Makeham model assumes that mortality increases slowly from infancy to
young adulthood and increases exponentially thereafter. As a consequence, the
Makeham model captures neither the decline in observed mortality from infancy to
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childhood nor its related effect on TL. As expected, TL of Makeham mortality is closer
than TL of Gompertz mortality to TL of observations.

TL of Siler mortality (Figures 9–10) mirrors reasonably well the pattern of TL of
the  observations  for  all  ages  in  most  of  the  12  countries.  The  term in  the  Siler  model
that models declining mortality from infancy to childhood captures the related effect on
TL.

From visually comparing the age profiles, we conclude that the TL of the Siler
model (fitted to observed mortality) is closest to the TL of observed mortality.

3.2.3 Slopes of TL

In this section, we compare the slopes of TL between observed and modeled mortality.

A. Visual overview

Figure 11 displays the slope of TL for women on the horizontal axis and the slope of
TL  for  men  on  the  vertical  axis  for  12  countries  of  the  Human  Mortality  Database
(2015). Slopes are estimated from observed mortality (black) and from the fitted models
of Gompertz (green), Makeham (blue), and Siler (red). Figure 11 summarizes 96 slopes
(96 = 12 × 4 × 2). Only two slopes exceed 2 (for TL fitted to the Gompertz model for
Russian males, b = 2.02; and for TL fitted to the Siler model for French females, b =
2.1). We regard these two slopes as outliers. All slopes exceed 1.

Slopes of TL estimated from observed mortality are closer to slopes estimated
from the Makeham model than they are to the slopes estimated from the other two
models. Women and men have greater slopes according to the Siler model than are
estimated from observed mortality. Hence the Siler model assumes more rapid increases
in the variance of mortality with increasing mean mortality than is observed. Women
and men have substantially smaller slopes according to the Gompertz model than are
estimated from observed mortality. The Gompertz model assumes slower increases in
the variance of mortality with increasing mean mortality than is observed.

The diagonal line in Figure 11 represents equal TL slopes for women and men.
Sex differences in slopes of TL are given in Figure 11 by vertical deviations above or
below the diagonal. Sex differences appear to be slightly smaller for observed mortality
and the Makeham model than for the Gompertz and Siler models. Exceptional outliers
are the slopes of TL of Gompertz mortality for countries with relatively high mortality
such as Russia, Hungary, and Poland (Grigoriev, Doblhammer-Reiter, and Shkolnikov
2013; Grigoriev et al. 2010; Shkolnikov et al. 2013).
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Figure 11: Scatterplot of slope of TL for women (horizontal axis) and men
(vertical axis) for 12 countries of the Human Mortality Database
(2015)

Note: Observations are in black, fitted data of the models of Gompertz, Makeham, and Siler are depicted in green, blue, and red
respectively.
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B. Covariance analysis

We examine differences in the slopes of TL between sexes and models using
covariance analysis.

B1. Does the slope of TL for observed mortality differ from the slopes of TL for
models?

The p-values of the test for the significance of the interaction term c3 in the analysis of
covariance, eq. (7), are given by sex, country, and model (Gompertz, Makeham, Siler)
in Table 1. This analysis confirms the findings from Figure 11. Specifically, the slope
of TL of the Makeham model is not significantly different from the slope of TL of
observed mortality for women and men in almost all of the 12 countries. By contrast,
the slope of TL of the Siler model is significantly different from the slope of TL of
observed mortality for women and men in almost all 12 countries. An exception is, for
example, Poland. The slope of TL of the Gompertz model is significantly different from
the slope of TL of observed mortality for women and men in almost all 12 countries.

Table 1: P-values to test the null hypothesis of no differences in TL slope
between observed data and the fitted models of Gompertz,
Makeham, and Siler, for women and men in 12 countries of the
Human Mortality Database (2015)

Equal to TL of
observed data?

Gompertz Makeham Siler
Women Men Both Women Men Both Women Men Both

All countries 0 0 0 0.073200 0.284200 0.032000 0 0 0

Denmark 0.005358 0 0 0.022461 0.231000 0.284805 0.000312 0.208000 0.000392

France 0 0 0 0.748900 0.076500 0.486783 0 0 0

East Germany 0 0.000006 0 0.000580 0.329880 0.011300 0 0.000120 0

West Germany 0 0 0 0.351730 0.986726 0.432000 0 0.000014 0

Hungary 0.000007 0.001720 0.005730 0.296356 0.078070 0.106000 0.000661 0.008880 0.000077

Italy 0 0 0 0.003660 0.000132 0.000004 0.000001 0.001448 0

Japan 0 0 0 0.035169 0.001420 0.001870 0 0 0

Poland 0 0.032000 0 0.021900 0.811000 0.141000 0.233800 0.177000 0.153

Russia 0.009401 0 0.789410 0.000337 0.028860 0.002170 0.213779 0.000048 0.01896

Sweden 0 0 0 0.000002 0.532277 0.001853 0 0.000214 0

United Kingdom 0 0 0 0.002140 0.009960 0.000722 0.000380 0.000650 0.000003

United States 0 0 0 0.051616 0.114000 0.970258 0.000395 0 0

Note: A p-value below 0.001 indicates that the coefficient of the interaction term is statistically significantly non-zero. An entry of 0
means that the rounded value of p is 0.000000.
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B2a. Does the slope of TL differ between males and females for observed mortality
and for models?

The p-values of the test for the significance of the interaction term d3 in eq. (8) are
given by country for observed mortality and models in Table 2.

Table 2: P-values to test the null hypothesis of no differences between females
and males in the slope of TL fitted to observed death rates and in the
slope of TL fitted to the models of Gompertz, Makeham, and Siler, in
12 countries of the Human Mortality Database (2015)

Sex differences in TL? Observed data Gompertz Makeham Siler

All countries 0.023190 0.087000 0.199000 0.000290

Denmark 0.644000 0 0.000844 0.000736

France 0.031800 0.204590 0.069400 0.000017

East Germany 0.306800 0.187000 0.943370 0.510000

West Germany 0.000968 0.336000 0.000136 0

Hungary 0.426000 0 0.920000 0.106000

Italy 0.126570 0.582600 0.000200 0.000514

Japan 0.003760 0 0.068200 0.000128

Poland 0.827000 0.000021 0.068100 0.335000

Russia 0.936100 0 0.095200 0.000035

Sweden 0.005600 0 0 0

United Kingdom 0.042600 0.000009 0 0

United States 0.171000 0 0.001040 0.001610

Note: A p-value below 0.001 indicates that the coefficient of the interaction term is statistically significantly non-zero. An entry of 0
means that the rounded value of p is 0.000000.

Slopes of TL fitted to observed mortality are not significantly different between
males and females in almost all 12 countries. With p = 0.001, West Germany is the only
exception. However, the slopes of TL differ between males and females almost as
strongly in countries like France, the United Kingdom, Japan, and Sweden. The vertical
deviations from the diagonal in Figure 11 are similar for these four countries.

The slopes of TL of modeled mortality differ significantly between males and
females for many countries. These sex differences are slightly more pronounced in the
models of Gompertz and Siler than in the Makeham model. This supports the finding
from Figure 11.

East  Germany  is  the  only  country  for  which  the  slopes  of  TL  of  observed  and
modeled mortality do not differ between males and females. All the points for this
country are almost on the diagonal in Figure 11. We do not know if this agreement of
male and female slopes indicates a problem in the mortality data or a statistical
fluctuation or some special feature of East Germany.
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B2b. Do the sex differences in the slope of TL differ between observed mortality
and models?

Table 3 lists the p-values of the test for the significance of the coefficient f7 of the three-
way interaction among log10E(μx), sex, and model of eq. (9). Consistent with the
findings from Figure 11 and Table 2, the sex differences in the slope of TL do not differ
much between the observed mortality and the models of Gompertz, Makeham, and
Siler. Specifically, the sex differences in the slope of TL are not significantly different
between observed mortality and the Makeham model in each of the 12 countries. The
sex differences in the slope of TL differ significantly between observed mortality and
the Gompertz model in only three countries: Hungary, Russia, and the United States;
and, though less significantly, in Sweden, Japan, West Germany, France, and Denmark.
The sex differences in the slope of TL differ significantly between observed mortality
and the Siler model in only two countries: Sweden and the United States; and, though
less significantly, in Russia, France, and Denmark.

Table 3: P-values to test the null hypothesis of no differences in the sex
differences in TL slope between observed mortality rates and fitted
models of Gompertz, Makeham, and Siler, in 12 countries of the
Human Mortality Database (2015)

Sex differences in TL of models
equal to sex differences in
observed data? Gompertz Makeham Siler
All countries 0.005060 0.581010 0.349870

Denmark 0.025680 0.011860 0.045340

France 0.008070 0.164250 0.056650

East Germany 0.447548 0.392768 0.586554

West Germany 0.003030 0.527880 0.237640

Hungary 0 0.648766 0.515661

Italy 0.226781 0.329177 0.414148

Japan 0.029082 0.165447 0.817667

Poland 0.00917 0.128900 0.650510

Russia 0 0.303197 0.046573

Sweden 0.004344 0.006243 0.000250

United Kingdom 0.401217 0.643469 0.354857

United States 0.000003 0.013959 0.000247

Note: A p-value below 0.001 indicates that the coefficient of the interaction term is non-zero. An entry of 0 means that the rounded
value of p is 0.000000.

That the sex differences in the slope of TL are significant for Hungary, Russia, and
Japan could be explained by the increasing sex gap in life expectancy at birth in those
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countries in the 1980s and 1990s. By contrast, other European countries experienced a
decline in the female–male differences in mortality (Oksuzyan et al. 2008).

3.3 Mathematical proof and theoretical explanations for TL in Gompertz
mortality

In this section, we prove mathematically that the Gompertz model can explain the form
of TL under certain conditions. We investigate theoretically whether the Gompertz
model can explain the observed parameter values of TL.

3.3.1 Gompertz mortality predicts TL with slope 2 under certain conditions

We prove mathematically (in Appendix 1) that the Gompertz model eq. (1) with modal
age at death ௧ increasing linearly in time andܯ ௧ߚ = ߚ > 0 obeys a cross-age-scenario
of TL exactly with slope b = 2. Appendix 1 gives an explicit form for the intercept of
TL and a detailed proof. This theorem gives analytically the exact relation between the
parameters of the Gompertz model and the parameters of TL in one simple case.

3.3.2 Temporal trend of alters the slope of TL fitted to Gompertz mortality ࢚ࢼ

The theorem’s assumptions that βt is constant over time and that the modal age at death
Mt increases linearly with time t cannot describe the reality of many countries since,
empirically, the slope b of TL fitted to the temporal mean and the temporal variance of
observed mortality was always less than 2 (Figures 3–4), ranging from 1.65 to 1.87.

The numerical estimates of the parameters of all three mortality models, separately
for females and males, for all countries and years, along with the parameters of linear
regressions of these parameters as functions of time, are given in the Supplementary
spreadsheet and graphed in Supplementary Figures A-1–A-20.

In the Gompertz model, even if the mode ௧ increases approximately linearly withܯ
time (as shown in Figures A-3–A-4), the coefficient ௧ߚ  must change in time so that,
with increasing age, the variance of mortality does not increase as fast as the square of
the mean mortality. Empirically, the annual estimates of ௧ߚ  increase approximately
linearly over time for females (Figure A-1) and males (Figure A-2) for all 12 countries.
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3.3.2.1 Theoretical analysis

We now analyze the impact of a temporal trend in ௧ߚ  on the estimated slope b of  a
cross-age-scenario of TL fitted to Gompertz mortality rates. In the Gompertz model eq.
(1), ௧ߚ  appears twice, as a linear coefficient and in the exponent. We introduce separate
notation for these two appearances of ௧ߚ  so that we may analyze separately the two
different effects of the temporal trend in :௧ߚ

௫,௧ߤ = .௧,ௗ௢௪௡݁ఉ೟,ೠ೛(௫ିெ೟)ߚ

We examine two cases:
Case 1: If ௧,௨௣ is constant over time andߚ ௧,ௗ௢௪௡ changes linearly over time, thenߚ

௫,௧ may be factored into one factorߤ ݁ఉ೟,ೠ೛௫ 	that depends on age x only,  not  on  time t,
and another factor ௧,ௗ௢௪௡݁ିఉ೟,ೠ೛ெ೟ that depends on timeߚ t only, and not on age x. In
this case, the analysis used to prove the theorem in Appendix 1 applies immediately
(with slightly different expressions for the intercept to allow for the temporal trend in
௧,ௗ௢௪௡). It follows from that analysis that TL describes Gompertz mortality exactlyߚ
with slope b = 2. Hence a temporal trend in ௧,ௗ௢௪௡ cannot explain why the empiricalߚ
estimates of b are strictly less than 2.

Case 2: If ௧,௨௣ changes linearly in time andߚ ௧,ௗ௢௪௡ is constant over time, thenߚ
௧,ௗ௢௪௡ has no effect on the slopeߚ b of TL (though ௧,ௗ௢௪௡ does affect the interceptߚ a of
TL) because ௧,ௗ௢௪௡ simply rescales the values ofߚ ௫,௧. Ifߤ ௧,௨௣ߚ = ଴ݏ + ݐଵݏ > 0, ଵݏ ≠ 0
and, as in the theorem, if ௧ܯ = ݒ + ݓ ⋅ ݐ > 0, ݒ > ݓ,0 ≠ 0, for	ݐ = 1, … , ܶ, then

ݔ)௧,௨௣ߚ − (௧ܯ = ଴ݏ) + ݔ)(ݐଵݏ − ݒ} ݓ+ ⋅ ({ݐ
= ଴ݏ)ݔ + (ݐଵݏ − ଴ݏ) + ݒ}(ݐଵݏ + ݓ ⋅ {ݐ ≡ (ݐ)݂ݔ + .(ݐ)݃

Here (ݐ)݂ ≡ ଴ݏ + is linear in time ݐଵݏ t, and (ݐ)݃ ≡ ଴ݏ) + ݒ}(ݐଵݏ + ݓ ⋅ is {ݐ
quadratic in time t. Then

(௫ߤ)ܧ =
1
ܶ
෍ߤ௫,௧

்

௧ୀଵ

=
௧,ௗ௢௪௡ߚ

ܶ
෍exp൫(ݐ)݂ݔ + ൯(ݐ)݃
்

௧ୀଵ

,

(௫ߤ)ݎܸܽ =
1
ܶ
෍൫ߤ௫,௧൯

ଶ
்

௧ୀଵ

− ൫ܧ(ߤ௫)൯ଶ

=
൫ߚ௧,ௗ௢௪௡൯

ଶ

ܶ
෍exp 2൫(ݐ)݂ݔ + ൯(ݐ)݃
்

௧ୀଵ

− ൫ܧ(ߤ௫)൯ଶ.
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In this case, we are not able to express logଵ଴ as a function of (௫ߤ)ݎܸܽ logଵ଴ (௫ߤ)ܧ
by means of a simple formula in closed form.

3.3.2.2 Numerical experiment

Instead, we conducted a numerical experiment for women and men of these 12
countries. This numerical experiment provides concrete answers conditional on the
observed mortality and may guide possible future mathematical analysis. As an
example, we describe our analysis of the observed mortality for Denmark’s females
from 1960 to 2009.

Input data

A Gompertz model fitted by maximum likelihood to each year’s mortality as a function
of age yielded time series of estimates of ௧ߚ  (Figure A-1) and of ௧ (Figure A-3) forܯ
Danish women. The supplementary spreadsheet gives numerical values. These time
series are summarized by the least-squares linear approximations (shown to fewer
significant digits in Figures A-1 and A-3),

௧ߚ = 0.085679264 + 0.00027542975 ⋅ ,	ݐ for	ݐ = 1, … , 50,
௧ܯ = ݒ	 ݓ+ ⋅ ݐ = 80.97560676 + 0.098866512 ⋅ ,	ݐ for	ݐ = 1, … , 50.

It seems helpful to appreciate the practical meaning of these two equations. The
second equation asserts that Danish females had modal age at death of nearly 81 years
in 1960, and that every year thereafter their modal age at death increased by nearly 0.1
year of age per calendar year. According to this regression, in 2009, 50 years after
1960, Danish females had a modal age of death of approximately 86 years (≈ 81 + 50 ×
0.1). If the modal age at death increases, why is the rate of increase of mortality with
age, ௧ߚ , increasing (albeit very slowly)? In the framework of the Gompertz model, the
age that matters for mortality (the ‘effective age’) is not the chronological age x but the
excess of the chronological age over the modal age at death, x – Mt. As the modal age at
death increases 0.1 year of age per calendar year, for each given chronological age x,
the effective age x – Mt gets younger by 0.1 year of age per calendar year. Deaths occur
at progressively later ages and (because of increasing ௧) mortality rises (slightly) moreߚ
rapidly (Canudas-Romo 2008, 2010).
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Experimental design

In a computational experiment, we put ௧ܯ = ݒ	 ݓ+ ⋅ as ݐ  assumed  above.  Then  we
calculated numerically three sets of values of ௫,௧ for each ageߤ x = 0, ...,  100 and each
year t =  1,  …,  50.  In  the  first  set  of  values,  for  the  standard  Gompertz  model  with
௧,ௗ௢௪௡ߚ = ௧,௨௣ߚ ௧ߚ	= ,

௫,௧ߤ = .௧݁ఉ೟(௫ିெ೟)ߚ

In the second set of values, for the Gompertz model with ௧,ௗ௢௪௡ߚ = ଶହ andߚ
௧,௨௣ߚ ௧ߚ	= ,

௫,௧ߤ
௨௣ = .ଶହ݁ఉ೟(௫ିெ೟)ߚ

In the third set of values, for the Gompertz model with ௧,ௗ௢௪௡ߚ = ௧ߚ  and ௧,௨௣ߚ =
,ଶହߚ

௫,௧ߤ
ௗ௢௪௡ = .௧݁ఉమఱ(௫ିெ೟)ߚ

From each set of values, we calculated the corresponding mean and variance of
mortality over time for each age x.

Results for all 12 countries

Figures 12 and 13 show the results if ௧,௨௣ߚ = ଶହ. Figures 14 and 15 show the results ifߚ
௧,ௗ௢௪௡ߚ = ଶହ. Figures 16 and 17 show the log temporal variance as a function of theߚ
log temporal mean for these three hypothetical mortality schedules. The results are
similar for both sexes in the 12 HMD countries. As an example, we describe the results
for Danish women.
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Figure 12: TL (solid black line) in fitted female mortality of the model of
Gompertz with βt,up = constant for the ages 0 (yellow) to 100 (green)
from 1960 to 2009 on a logarithmic scale (base = 10) for 12 countries
of the Human Mortality Database (2015)
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Figure 13: TL (solid black line) in fitted male mortality of the model of
Gompertz with βt,up = constant for the ages 0 (yellow) to 100 (green)
from 1960 to 2009 on a logarithmic scale (base = 10) for 12 countries
of the Human Mortality Database (2015)
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Figure 14: TL (solid black line) in fitted female mortality of the model of
Gompertz with βt,down = constant for the ages 0 (yellow) to 100 (green)
from 1960 to 2009 on a logarithmic scale (base = 10) for 12 countries
of the Human Mortality Database (2015)
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Figure 15: TL (solid black line) in fitted male mortality of the model of
Gompertz with βt,down = constant for the ages 0 (yellow) to 100 (green)
from 1960 to 2009 on a logarithmic scale (base = 10) for 12 countries
of the Human Mortality Database (2015)
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Figure 16: TL (solid dark blue line) in fitted female mortality of the model of
Gompertz (solid blue line), of the model of Gompertz with βt,up =
constant (solid green line) and of the model of Gompertz with βt,down =
constant (solid red line) for the ages 0 to 100 from 1960 to 2009 on a
logarithmic scale (base = 10) for 12 countries of the Human Mortality
Database (2015)
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Figure 17: TL (solid dark blue line) in fitted male mortality of the model of
Gompertz (solid blue line), of the model of Gompertz with βt,up =
constant (solid green line) and of the model of Gompertz with βt,down =
constant (solid red line) for the ages 0 to 100 from 1960 to 2009 on a
logarithmic scale (base = 10) for 12 countries of the Human Mortality
Database (2015)
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For the standard Gompertz model ௫,௧ (blue solid line) of Danish women in Figureߤ
16, the relation of log temporal variance to log temporal mean is close to linear (as
predicted by TL) except for the large values of the mean and variance of old-age
mortality in the upper right corner of the graph. A fitted TL (dark blue solid line, log10
variance = –2.35 + 1.60 log10 mean) approximates the Gompertz log temporal variance
and log temporal mean closely over most of their range.

When ௧,௨௣ changes linearly over time andߚ ,௧,ௗ௢௪௡ is constant over timeߚ ௫,௧ߤ
௨௣ gives

a variance-mean relationship (red solid line) that approximates the Gompertz log
variance and log mean closely but is slightly concave (on log–log coordinates). The
average slope of this curve, estimated by

log	൬௏௔௥൫ఓೣసభబబ
ೠ೛ ൯

௏௔௥൫ఓೣసబ
ೠ೛ ൯

൰ / log	൬ா൫ఓೣసభబబ
ೠ೛ ൯

ா൫ఓೣసబ
ೠ೛ ൯

൰		,

is 1.64, close to the slope b = 1.60 of the fitted TL. Thus the second case considered
above (Gompertz model with ௧,ௗ௢௪௡ߚ = ଶହ andߚ ௧,௨௣ߚ ௧) gives an approximateߚ	=
explanation of the form and slope of the fitted TL.

By contrast, when ௧,௨௣ is constant over time andߚ ,௧,ௗ௢௪௡ changes linearly in timeߚ
the relationship of log variance of ௫,௧ߤ

ௗ௢௪௡ to log mean of ௫,௧ߤ
ௗ௢௪௡, calculated numerically

(green solid line) from ௫,௧ߤ
ௗ௢௪௡, is visually indistinguishable from linear and has a

numerically estimated slope indistinguishable from 2 (to a precision of at least five
decimal places). These results confirm numerically the above mathematical analysis of
Case 1. This case cannot explain the slope of the TL fitted either to observed mortality
or to Gompertz model mortality.

In conclusion, in this example, the linear trend in ௧ and the linear trend inܯ ௧,௨௣ inߚ
combination explain qualitatively and quantitatively why TL for Gompertz-modeled
mortality has slope notably less than 2, unlike the slope of exactly 2 that would be
expected theoretically if ௧,௨௣ were constant (regardless of whetherߚ ௧,ௗ௢௪௡ is constantߚ
or changing in time).

4. Conclusion

4.1 Summary

For females and males in 12 developed countries, the temporal means and temporal
variances from 1960 to 2009 of observed age-specific mortality, when one point for
each age from 0 to 100 years was plotted on log-log coordinates, fell approximately
along a straight line, according to the data of the Human Mortality Database (2015)
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(Figures 2 and A-1 in Bohk, Rau, and Cohen 2015; and Figures 3–4 here). This
approximate linearity was consistent with Taylor’s law. Here we sought to explain this
pattern.

We compared TL fitted to temporal means and temporal variances of observed
mortality with TL fitted to mortality in the models of Gompertz (1825), Makeham
(1860), and Siler (1979, 1983). These models have progressively more parameters and,
in the same order, fit the age profile of observed mortality progressively more closely.

We analyzed how well each mortality model’s TL matched TL fitted to observed
mortality by comparisons of three features: the log–log linearity of the temporal means
and temporal variances of the modeled mortality, the age profile (defined as the set of
pairs of log(temporal mean mortality at age x) and log(temporal variance of mortality at
age x), for all ages x), and the slope.

For log–log linearity, we found that TL approximated mortality in the fitted
models of Gompertz, Makeham, and Siler more closely than TL approximated observed
mortality. As a consequence, r2 values of TL of the Gompertz model were very close,
and rounded, to 1. Compared to the Gompertz model, the models of Makeham and Siler
resulted in closer fits to observed mortality and to the TL of observed mortality.
Consequently, the r2 values of TL of the models of Makeham and Siler were often
slightly smaller than those of Gompertz but were also often closer to those of the
observed mortality.

For  the  age  profile  of  TL,  we  found  that  the  TL  of  the  Siler  model  fitted  to
observed mortality had an age profile that was closer to the age profile of TL of
observed mortality than were the age profiles of TL of the fitted models of Makeham
and Gompertz.

For the slopes of TL, we found that the TL of the Makeham model fitted to
observed mortality had a slope that was closest to the slope of TL fitted directly to
observed mortality, among the three models. Differences in the slope of TL between
males and females in the fitted Makeham models were also closest to the differences in
the slope of TL between males and females of observed mortality.

In addition to these empirical and statistical insights, we demonstrated
mathematically that the log temporal means and log temporal variances of mortality in
the Gompertz model satisfy TL exactly with slope b = 2 and an explicitly determined
intercept when the modal age at death in the Gompertz model increases linearly with
time and the βt parameter for the increase of mortality with age is constant in time t (or
௧,௨௣ is constant in time). As the Gompertz model is a special case of the more complexߚ
models of Makeham and Siler, these theoretical findings also apply to certain parameter
values of the other two models.

Empirically, however, the slopes of TL fitted to observed mortality ranged from
1.65 to  1.87  and the  slopes  of  TL for  the  mortality  models  were  all  at  least  1.28  and
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smaller than 2 (apart from the two exceptions noted above, for Gompertz model
mortality of Russian males and Siler model mortality of French females). To explain
why the slopes of TL fitted to observed mortality and the fitted models were notably
smaller than 2 (with the two exceptions just noted), our computational experiments
showed  that,  in  the  presence  of  a  linearly  increasing  modal  age  at  death,  it  was
necessary and sufficient to take into account in the Gompertz model a linear trend in
௧,௨௣. Whenߚ ௧,௨௣ increased linearly in time, the slope of TL based on Gompertzߚ
mortality was less than 2, and when ௧,௨௣ wasߚ  constant,  the  slope  of  TL  based  on
Gompertz mortality was numerically (and mathematically) indistinguishable from 2.
We tested numerically and confirmed this explanation for women and men in 12
countries of the Human Mortality Database. These numerical results indicate that, as
long as ௧,௨௣, the growth rate of mortality with age, increases linearly with time, TLߚ
fitted to mortality will have a slope that is not equal to 2.

To conclude, our empirical, statistical, mathematical, and numerical findings
confirm that the temporal TL is a regular pattern rooted in widely recognized models of
the age pattern and temporal evolution of human mortality.

4.2 Future research

These results raise further theoretical and empirical questions.
Our mathematical analysis of the Gompertz model remains incomplete when both

parameters (the modal age at death and the growth rate of mortality with age) change in
time. Our computational experiment gave clear results about this case, but we have not
proved these results mathematically. Mathematical analysis is needed to reveal the
necessary and sufficient conditions for TL fitted to Gompertz mortality to have a slope
less than 2 (not merely different from 2).

It would be desirable to complete the mathematical analysis of the Gompertz
model and to extend it to the Makeham, Siler, and other more complex models, for
example, those of Heligman and Pollard (1980) and Thiele (1872), and piecewise
constant mortality models of, for example, Brouhns, Denuit, and Vermunt (2002) and
Cairns et al. (2009). These models may provide more precise approximations to
empirical age profiles of mortality. However, their larger number of parameters and
their greater mathematical complexity make them more difficult to analyze
mathematically and to understand. Since our goal here was to understand an empirical
pattern in a transparent way, we focused on simpler mortality models.

Future research may extend the analysis to still more complex models. A
potentially productive approach to analyzing temporal trends and variations in mortality
would be to construct a generalized linear model (GLM) of all the observed mortality
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rates simultaneously, as in Brouhns et al. (2002), Cairns et al. (2009), and Renshaw and
Haberman (2006), and reviewed by Booth and Tickle (2008). In a GLM approach, the
dependent variable would be ௫,௧ߤ  for all ages x, all years t, both sexes, and all countries.
The independent variables (predictors) would be age x, year t, sex (female or male),
country, and various higher-order (e.g., x2 and t2 to model curvature) and interaction
terms to be determined in the course of the analysis. The coefficients of predictor t and
t2 would quantify the importance of systematic trends, linear and nonlinear respectively.
A GLM can estimate the mean and the variance of ௫,௧ߤ  simultaneously (for example, by
using quasi-likelihood techniques for the variance). With the estimates of means and
variances of ௫,௧ from a GLM, it would be possible to test TL with finer resolution thanߤ
has been possible with the traditional approach used here, in which temporal means and
temporal variances are computed independently for each age, sex, and country.

A  GLM  could  also  be  used  to  analyze  mortality  from  each  of  the  three  models
considered here, and the structure and coefficients of the GLM for modeled mortality
could be compared with the structure and coefficients of the GLM for observed
mortality. This comparison would permit an evaluation of the models with finer
resolution than has been possible with the traditional approach used here.

Testing TL in deterministic mortality models is a special case of applying TL to
smoothed data, with some of the initial variability removed, leaving only dominant
trends. Here the ‘smoothed data’ are the predictions of the models. Comparison of the
goodness of fit and parameter estimates of TL with such smoothed data versus with the
original data shows whether the smoothed trends or the variability about those trends
dominate the goodness of fit and parameter estimates of TL. In the examples in this
paper, because the TL fitted to models is generally close to the TL fitted to the original
mortality observations, it is clear that the smoothed trends play the dominant role in the
success of TL. Further research is needed to show the conditions under which the
smoothed data versus the fluctuations around trends dominate the performance of TL.

Another empirical question and approach prompted by a reviewer’s question is
this. For any fixed age x, observed mortality ௫,௧ over the 50 yearsߤ t = 1960, ..., 2009
may  have  a  systematic  trend,  fluctuations  from  this  trend  in  each  year t, and an
interaction between the trend and the fluctuations (e.g., temporal heteroscedasticity or
temporal changes in the skewness of fluctuations). In future research, it would be
interesting to decompose the temporal mean and the temporal variance of observed
mortality at a given age into the contributions due to a systematic trend in time,
fluctuations, and their interaction; and to decompose the overall temporal TL of
mortality into components arising from trend, fluctuations, and interaction. A parallel
theoretical analysis could decompose age-specific mortality from models that explicitly
incorporated stochastic fluctuations in mortality, unlike the Gompertz, Makeham, and
Siler models. This empirical investigation could provide a foundation for new theory
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generalizing the Gompertz and other models to allow for stochastic fluctuations in
mortality over time.

Reviewer Hal Caswell posed a more general theoretical question that is also
related to variation in mortality. Temporal fluctuations in mortality rates are a
component of a demographic model in a stochastic environment. What are the
consequences for stochastic population growth of greater temporal variance in mortality
at (older) ages where the mean mortality is also higher? This question shows the
potential use of TL applied to mortality in modeling and simulating stochastic age-
structured populations.

The above outlines of potential applications of TL in human mortality indicate
TL’s possible usefulness and relevance in formal and empirical demographic research.
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Appendix 1: Taylor’s law with slope 2 describes the Gompertz model

Theorem

The Gompertz mortality model with modal age at death increasing linearly in time
obeys a cross-age-scenario of Taylor’s law (TL) exactly with slope b = 2. Explicitly,
assuming the Gompertz model ௫,௧ at ageߤ x and time t,

௫,௧ߤ = ,௧݁ఉ೟(௫ିெ೟)ߚ ௧ߚ > ௧ܯ,0 > 0, for	ݐ = 1, … , ܶ, ݔ = 1, … ,ܺ,

with a linear change (increase or decrease) over time in the modal age at death,

௧ܯ = ݒ ݓ+ ⋅ ݐ > 0, ݒ > ݓ,0 ≠ 0, for	ݐ = 1, … , ܶ,

and an exponential rate increase of mortality with age x that is constant over time t,

௧ߚ = ߚ > 0,	for	ݐ = 1, … , ܶ,

then TL holds with slope 2 and intercept log(ܭଶ (ଵଶܭ− − 2 logܭଵ on log–log
coordinates:

log (௫ߤ)ݎܸܽ = log ቀ௄మି௄భ
మ

௄భమ
ቁ + 2 ⋅ log ,(௫ߤ)ܧ for	ݔ = 1, … ,ܺ,

where the positive constants ,ଵܭ .ଶ are defined belowܭ

Proof

From the assumptions,

௫,௧ߤ = ௧݁ఉ೟(௫ିெ೟)ߚ = ఉ(௫ି{௩ା௪⋅௧})݁ߚ = ఉ(௫ି௩)݁ିఉ௪௧݁ߚ ,

which implies that ௫,௧ is an exponentially increasing function of ageߤ x for every time t.
It also implies that ௫,௧ is an exponentially decreasing function of timeߤ t for every age x
if w > 0, and is an increasing function of time t for every age x if w < 0. Then, using the
definitions in the main text of as the temporal mean and (௫ߤ)ܧ as the temporal (௫ߤ)ݎܸܽ
variance of mortality at age x,
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(௫ߤ)ܧ =
1
ܶ
෍ߤ௫,௧

்

௧ୀଵ

=
1
ܶ ݁ߚ

ఉ(௫ି௩) ෍݁ିఉ௪௧
்

௧ୀଵ

= ݁ఉ௫ ൥
ఉ௩ି݁ߚ

ܶ
෍݁ିఉ௪௧
்

௧ୀଵ

൩,

where the first factor ݁ఉ௫ varies with age x only and the bracketed second factor varies
with time t and T only. Define

ଵܭ ≡
ఉ௩ି݁ߚ

ܶ
෍݁ିఉ௪௧
்

௧ୀଵ

ݍ								, ≡ ݁ିఉ௪ .

ଵ does not depend on ageܭ x. Then since ߚ > 0, ݓ ≠ 0,  we have ݍ < 1 if w >  0
and q > 1 if w < 0 and in both cases

ଵܭ =
ఉ௩ି݁ߚ

ܶ
ଵݍ) + ଶݍ +⋯+ (்ݍ =

ఉ௩ି݁ߚ

ܶ 1)ݍ + ݍ +⋯+ (ଵି்ݍ

=
ఉ௩ି݁ߚ

ܶ ⋅
1)ݍ − (ଵି்ݍ

1 − ݍ .

Since ଵܭ > 0, (௫ߤ)ܧ = ଵ݁ఉ௫ increases exponentially at rateܭ β with increasing x.
Also

(௫ߤ)ݎܸܽ =
1
ܶ
෍ቀߤ௫,௧ − ቁ(௫ߤ)ܧ

ଶ
்

௧ୀଵ

=
1
ܶ
෍൫ߤ௫,௧൯

ଶ
்

௧ୀଵ

− ൫ܧ(ߤ௫)൯ଶ

=
1
ܶ
෍൫݁ߚఉ(௫ି௩)݁ିఉ௪௧൯

ଶ
்

௧ୀଵ

− ൫ܭଵ݁ఉ௫൯
ଶ

= ݁ଶఉ௫ ቈ
ଶ݁ିଶఉ௩ߚ

ܶ
቉෍݁ିଶఉ௪௧

்

௧ୀଵ

ଵଶ݁ଶఉ௫ܭ− .

Define

ଶܭ ≡ ቈ
ଶ݁ିଶఉ௩ߚ

ܶ
቉෍݁ିଶఉ௪௧

்

௧ୀଵ

.

ଶ does not depend on ageܭ x. Then
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ଶܭ = ቈ
ଶ݁ିଶఉ௩ߚ

ܶ
቉ ଶ⋅ଵݍ) + ଶ⋅ଶݍ +⋯+ (்⋅ଶݍ = ቈ

ଶ݁ିଶఉ௩ߚ

ܶ
቉
ଶ(1ݍ − (ଶ⋅(்ିଵ)ݍ

1 − ଶݍ .

Also

(௫ߤ)ݎܸܽ = ଶܭ) − ଵଶ)݁ଶఉ௫ܭ .

By Cauchy’s inequality, ଶܭ ଵଶܭ− > 0. Therefore increases exponentially (௫ߤ)ݎܸܽ
at rate 2β with increasing age x. Thus, we showed that

(௫ߤ)ܧ = ଵ݁ఉ௫ܭ ,
(௫ߤ)ݎܸܽ = ଶܭ) − ଵଶ)݁ଶఉ௫ܭ .

Therefore

(௫ߤ)ݎܸܽ = ௄మି௄భమ

௄భమ
൫ܧ(ߤ௫)൯ଶ.

Appendix 2: Taylor’s law with slope less than 2 describes the model
of Makeham

In the Makeham model, eq. (2), the additivity of expectations yields

(௫ߤ)ெܧ = (௧ܿ)ܧ + ௧݁ఉ೟(௫ିெ೟)൯ߚ൫ܧ = (௧ܿ)ܧ	 + .(௫ߤ)ீܧ

The subscript M denotes the Makeham model, and the subscript G denotes the
Gompertz model. Calculating the variance in the Makeham model requires specifying
the relation between ܿ௧  and ௧݁ఉ೟(௫ିெ೟). Based on the parameter estimates of theߚ
Makeham model in Figures A-5–A-10, we examine this empirically plausible special
case:

ܿ௧ = ܿ݁ିௗ௧ , ܿ > 0, ݀ > 0,
௧ߚ = ߚ	 > 0,
௧ܯ = ݒ ݓ+ ⋅ ݐ > 0, ݒ > ݓ,0 > 0.

Thus

௫,௧ߤ = ܿ݁ିௗ௧ + ݁ఉ௫ି݁ߚఉ{௩ା௪⋅௧}.
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On the right side, the first term depends only on t, not on x,  and the second term
factors into one factor ݁ఉ௫ that depends on x only and another factor that depends on t
only. By summing geometric series as in Appendix 1, we can get explicit expressions
for the constant ଵ (andܥ ଵ is identical to that constant in the Gompertz model) in theܭ
expression

(௫ߤ)ெܧ = ଵܥ + .ଵ݁ఉ௫ܭ

With increasing age x, grows as the factor (௫ߤ)ெܧ ݁ఉ௫. Also,

௫,௧ߤ
ଶ = ܿଶ݁ିଶௗ௧ + ݁ଶఉ௫ߚଶ݁ିଶఉ{௩ା௪⋅௧} + 2ܿ݁ఉ௫ି݁ߚఉ{௩ା௪⋅௧}ିௗ௧ .

Therefore

௫,௧ߤெ൫ܧ
ଶ ൯ = ଶܥ ଷ݁ଶఉ௫ܭ+ + ,ସ݁ఉ௫ܭ

ெଶܧ (௫ߤ) = ଵଶܥ + ଵଶ݁ଶఉ௫ܭ + ,ଵ݁ఉ௫ܭଵܥ2
(௫ߤ)ெݎܸܽ = ௫,௧ߤெ൫ܧ

ଶ ൯ − ெଶܧ (௫ߤ)
= ଶܥ − ଵଶܥ + ଷܭ) ଵଶ)݁ଶఉ௫ܭ− + ସܭ) − .ଵ)݁ఉ௫ܭଵܥ2

The same elementary methods used in Appendix 1 can determine ଷ andܭ ସܭ
explicitly.

From Figures A-7–A-8, ௧ߚ ≈ 0.1 for both females and males. Hence as x increases
from 0 to 100, ݁ఉ௫ increases from ݁଴ = 1 to approximately ݁ଵ଴ ≈ 2.2 × 10ସ. Hence the
term of that contains the factor (௫ߤ)ெݎܸܽ ݁ଶఉ௫, which is approximately ݁ଶ଴ ≈ 4.8 ×
10଼ when x = 100, increasingly dominates the term of that contains the (௫ߤ)ெݎܸܽ
factor ݁ఉ௫. So, to a first approximation, neglecting all but the dominant terms,
scales with increasing age (௫ߤ)ெݎܸܽ x as  the  square  of Thus, asymptotically .(௫ߤ)ெܧ
for increasing age x, TL holds approximately with slope ܾ ≈ 2.

This is only a first approximation. and (௫ߤ)ெܧ each contains a constant (௫ߤ)ெݎܸܽ
term, and contains a term with factor (௫ߤ)ெݎܸܽ ݁ఉ௫, which scales more slowly than the
dominant term of that contains the square of (௫ߤ)ெݎܸܽ ݁ఉ௫. Thus scales with (௫ߤ)ெݎܸܽ
increasing x more  slowly  than  the  square  of ,(௫ߤ)ெܧ  that  is,  TL  is  expected  to  hold
approximately with a slope less than 2. In all 12 countries, the estimated values of the
TL slope never exceeded the Japanese record of b = 1.86 for females (Figure 7) and
never exceeded the Japanese and French records of b = 1.82 for males (Figure 8). Both
record values were substantially less than 2. Thus, we have given, in this special case,
an argument to explain why TL with slope less than 2 approximates the mortality of the
Makeham model reasonably well.
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Figure A-1: Annual estimates for β of the Gompertz model, which is fitted to
female mortality for the calendar years t, 1960 (light gray) to 2009
(black), along with a linear regression (solid line), for 12 countries of
the Human Mortality Database (2015)
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Figure A-2: Annual estimates for β of the Gompertz model, which is fitted to
male mortality for the calendar years t, 1960 (light gray) to 2009
(black), along with a linear regression (solid line), for 12 countries of
the Human Mortality Database (2015)
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Figure A-3: Annual estimates for M of the Gompertz model, which is fitted to
female mortality for the calendar years t, 1960 (light gray) to 2009
(black), along with a linear regression (solid line), for 12 countries of
the Human Mortality Database (2015)
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Figure A-4: Annual estimates for M of the Gompertz model, which is fitted to
male mortality for the calendar years t, 1960 (light gray) to 2009
(black), along with a linear regression (solid line), for 12 countries of
the Human Mortality Database (2015)
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Figure A-5: Annual estimates for c of the Makeham model, which is fitted to
female mortality for the calendar years t, 1960 (light gray) to 2009
(black), along with a linear regression (solid line), for 12 countries of
the Human Mortality Database (2015)
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Figure A-6: Annual estimates for c of the Makeham model, which is fitted to male
mortality for the calendar years t, 1960 (light gray) to 2009 (black),
along with a linear regression (solid line), for 12 countries of the
Human Mortality Database (2015)
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Figure A-7: Annual estimates for β of the Makeham model, which is fitted to
female mortality for the calendar years t, 1960 (light gray) to 2009
(black), along with a linear regression (solid line), for 12 countries of
the Human Mortality Database (2015)
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Figure A-8: Annual estimates for β of the Makeham model, which is fitted to
male mortality for the calendar years t, 1960 (light gray) to 2009
(black), along with a linear regression (solid line), for 12 countries of
the Human Mortality Database (2015)
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Figure A-9: Annual estimates for M of the Makeham model, which is fitted to
female mortality for the calendar years t, 1960 (light gray) to 2009
(black), along with a linear regression (solid line), for 12 countries of
the Human Mortality Database (2015)
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Figure A-10: Annual estimates for M of the Makeham model, which is fitted to
male mortality for the calendar years t, 1960 (light gray) to 2009
(black), along with a linear regression (solid line), for 12 countries of
the Human Mortality Database (2015)
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Figure A-11: Annual estimates for α of the Siler model, which is fitted to female
mortality for the calendar years t, 1960 (light gray) to 2009 (black),
along with a linear regression (solid line), for 12 countries of the
Human Mortality Database (2015)
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Figure A-12: Annual estimates for α of the Siler model, which is fitted to male
mortality for the calendar years t, 1960 (light gray) to 2009 (black),
along with a linear regression (solid line), for 12 countries of the
Human Mortality Database (2015)
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Figure A-13: Annual estimates for β1 of the Siler model, which is fitted to female
mortality for the calendar years t, 1960 (light gray) to 2009 (black),
along with a linear regression (solid line), for 12 countries of the
Human Mortality Database (2015)
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Figure A-14: Annual estimates for β1 of the Siler model, which is fitted to male
mortality for the calendar years t, 1960 (light gray) to 2009 (black),
along with a linear regression (solid line), for 12 countries of the
Human Mortality Database (2015)
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Figure A-15: Annual estimates for c of the Siler model, which is fitted to female
mortality for the calendar years t, 1960 (light gray) to 2009 (black),
along with a linear regression (solid line), for 12 countries of the
Human Mortality Database (2015)
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Figure A-16: Annual estimates for c of the Siler model, which is fitted to male
mortality for the calendar years t, 1960 (light gray) to 2009 (black),
along with a linear regression (solid line), for 12 countries of the
Human Mortality Database (2015)
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Figure A-17: Annual estimates for β2 of the Siler model, which is fitted to female
mortality for the calendar years t, 1960 (light gray) to 2009 (black),
along with a linear regression (solid line), for 12 countries of the
Human Mortality Database (2015)
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Figure A-18: Annual estimates for β2 of the Siler model, which is fitted to male
mortality for the calendar years t, 1960 (light gray) to 2009 (black),
along with a linear regression (solid line), for 12 countries of the
Human Mortality Database (2015)
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Figure A-19: Annual estimates for M of the Siler model, which is fitted to female
mortality for the calendar years t, 1960 (light gray) to 2009 (black),
along with a linear regression (solid line), for 12 countries of the
Human Mortality Database (2015)
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Figure A-20: Annual estimates for M of the Siler model, which is fitted to male
mortality for the calendar years t, 1960 (light gray) to 2009 (black),
along with a linear regression (solid line), for 12 countries of the
Human Mortality Database (2015)
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