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Why does Taylor's law in human mortality data have slope less than 2, contrary to the Gompertz model? 2 

Response by Joel E. Cohen, Christina Bohk-Ewald, Roland Rau to comments by Guillot and Schmertmann on: 3 

Gompertz, Makeham, and Siler models explain Taylor's law in human mortality data, Demographic Research 4 

By Joel E. Cohen, Christina Bohk-Ewald, Roland Rau 5 

The central theoretical result of Cohen, Bohk-Ewald and Rau (2018; hereafter CBR) is the theorem in Appendix 6 
1. It states: The Gompertz mortality model with modal age at death increasing linearly in time obeys a cross-7 
age-scenario of Taylor’s law (TL) exactly with slope b = 2. A cross-age-scenario of TL is a temporal TL in 8 
which the mean and variance of age-specific rates over time are calculated separately for each age group. We 9 
are delighted that our paper has stimulated Guillot and Schmertmann to discover illuminating generalizations. 10 

Guillot teaches us that any initial age distribution (not only Gompertz') of age-specific mortalities such that 11 
every age's mortality rate changes geometrically by the same factor over time and at every age will obey TL 12 
exactly with slope b = 2. 13 

Schmertmann teaches us that any time series of age-independent non-zero factors of change in age-specific 14 
mortality leads to TL exactly with slope b = 2, even if the factors change in time, as long as the same factors 15 
apply to changes at every age. We thank Guillot and Schmertmann for their valuable additions to theory. 16 

CBR's central empirical result confirmed our earlier finding (Bohk et al. 2015) that observed mortality obeys 17 
TL with a slope generally (but not in every case) less than 2. So some assumption of the above mathematically 18 
correct theory is empirically wrong. According to CBR's empirical estimates, the two parameters of the 19 
Gompertz model, the modal age at death and the growth rate of mortality with age, both increased 20 
approximately linearly from year to year. The resulting Gompertz model was too complicated for CBR to 21 
extract much analytical insight (CBR, p. 799, Case 2). 22 

Here we propose a simplified model to identify conditions under which mortality rates obey a cross-age-23 
scenario of TL with slope b < 2 or b > 2. To summarize our main result in advance, we assume two age groups, 24 
young and old. We assume the young age group has lower average mortality over time than the old. We assume 25 
each age group's mortality declines geometrically at a rate that depends on the age group. We show that if 26 
mortality falls faster (over time) for the old than for the young, then b > 2, while if mortality falls faster (over 27 
time) for the young than for the old, then b < 2. These conclusions raise further empirical questions, which we 28 
begin to address after proving our main new theoretical result. 29 

Now, the details. Generally, we follow the notation of CBR, except that, following Guillot and Schmertmann, 30 
we here let the index of time run from 𝑡 = 0 to 𝑡 = 𝑇 instead of from 1 to T as in CBR. We assume 0 < 𝑇 < ∞. 31 

By way of background, the temporal mean of mortality μ at age x is defined by 𝐸(𝜇௫) ≔
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. 38 

From this expression, it is obvious that, when TL holds, 𝑅௫ does not change with increasing mean mortality 39 
𝐸(𝜇௫) if and only if b = 2, and in this case (only), 𝑅௫ is unaffected by 𝜇௫,଴. When TL holds, 𝑅௫ increases with 40 
increasing mean mortality 𝐸(𝜇௫) if and only if b > 2, and 𝑅௫ decreases with increasing mean mortality 𝐸(𝜇௫) if 41 



and only if b < 2. When either b > 2 or b < 2, 𝑅௫ depends on 𝜇௫,଴. We focus on the moment ratio 𝑅௫ because it 42 

is simpler to analyze mathematically than the squared coefficient of variation 𝑉𝑎𝑟(𝜇௫) ൫𝐸(𝜇௫)൯
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but it provides equivalent information about the slope b of TL. 44 

Suppose mortality rates in each age group x decline geometrically by an age-specific factor 𝑞௫ according to 45 

𝜇௫,௧ = 𝜇௫,଴𝑞௫
௧ ,    , 0 < 𝑞௫ < 1,      𝑡 = 0, 1, … , 𝑇. 46 

For each age group 𝑥, the temporal mean (averaged over time) is (following Guillot) 47 
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Figure 1(a) plots 𝐴௫ = 𝐸(𝜇௫)/𝜇௫,଴ for 0 < 𝑞௫ < 1 and selected values of T. The temporal mean squared 49 
mortality (averaged over time) is (again following Guillot) 50 
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Figure 1(b) plots 𝑉𝑎𝑟(𝜇௫)/𝜇௫,଴
ଶ = (𝐶௫ − 𝐴௫

ଶ) for 0 < 𝑞௫ < 1 and selected values of T. The moment ratio at age 52 
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Figure 1(c) illustrates the decrease in 𝑅௫ as a function of increasing 𝑞௫ for finite values of T. 56 

How does 𝑅௫ behave with increasing 𝑞௫ when T is large? The factor in curly braces on the right depends on T 57 

but the factor in square brackets does not. As 𝑇 → ∞,  𝑞௫
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1, 1 + 𝑞௫ increases from 1 to 2, and 1 − 𝑞௫ decreases from 1 to 0, so the ratio in square brackets (1 − 𝑞௫)/(1 +60 
𝑞௫) decreases monotonically from 1 in the limit as 𝑞 → 0 to 0 in the limit as 𝑞 → 1. Therefore, for fixed large T, 61 
𝑅௫ decreases monotonically as 𝑞௫ increases from 0 to 1. Explicitly, by elementary calculus and algebraic 62 
simplification, we find that 63 

𝑑𝑅௫

𝑑𝑞௫
= 2(𝑇 + 1)

ቀ𝑞௫
்  −  𝑞௫

்ାଶ  + 𝑞௫
ଶ(்ାଵ)

 +  𝑇𝑞௫
் −  𝑇𝑞௫

்ାଶ  −  1ቁ

(1 − 𝑞௫
்ାଵ)ଶ(1 + 𝑞௫)ଶ

. 64 

In the numerator of the fraction on the right, every term except the last, -1, goes to 0 as 𝑇 → ∞, and the 65 
denominator is always positive. So for increasing T the derivative is asymptotically negative and 𝑅௫ 66 
asymptotically decreases monotonically as a function of increasing 𝑞௫. 67 

Suppose we have only 2 age groups, the young (group 1) with mortality 𝜇ଵ,଴ in year 0 and mortality change 68 
factor 𝑞ଵ; and the old (group 2) with mortality 𝜇ଶ,଴ > 𝜇ଵ,଴ in year 0 and mortality change factor 𝑞ଶ. 69 

We seek to find the slope b of TL as a function of the moment ratios in young and old. From 𝑅௫ = 1 +70 
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young, x = 1, and take logarithms, to find 72 
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Assume the temporal mean mortality of the old exceeds that of the young, i.e., 𝐸(𝜇ଶ) >  𝐸(𝜇ଵ). It follows that 75 
logଵ଴(𝐸(𝜇ଶ) 𝐸(𝜇ଵ)⁄ ) > 0. So whether the slope of TL satisfies b > 2 or b < 2 is determined by whether the 76 
numerator on the right is positive or negative, i.e., whether 𝑅ଶ > 𝑅ଵ or vice versa. We consider 2 cases. 77 

Case 1. Suppose that mortality falls faster (over time) for the old than for the young, i.e., 0 < 𝑞ଶ < 𝑞ଵ < 1. 78 
Then 𝑅ଶ > 𝑅ଵ and, by the above equation, 𝑏 > 2. 79 

Case 2. Suppose that mortality falls faster (over time) for the young than for the old, i.e., 0 < 𝑞ଵ < 𝑞ଶ < 1. 80 
Then 𝑅ଶ < 𝑅ଵ and, by the above equation, 𝑏 < 2. 81 

Figure 1(d) illustrates both cases, with the additional assumpton that 𝐸(𝜇ଶ) = 10 × 𝐸(𝜇ଵ) so that 82 
logଵ଴(𝐸(𝜇ଶ) 𝐸(𝜇ଵ)⁄ ) = 1. 83 

This extremely simplified model, with only two age groups and mortality declining geometrically over time at a 84 
different rate in each age group, suggests hypotheses that can and should be tested empirically. How accurate is 85 
the model of geometrically declining mortality for different age groups? If that model is supported (even 86 
approximately), how do the factors of change in mortality 𝑞௫ compare for different age groups? If that model of 87 
geometric change is not supported, then how do the cumulative products of the factors of change in mortality at 88 
each age compare for different age groups? 89 

Rau et al. (2018) analyzed annual rates of improvement in smoothed estimates of mortality rates from 1950 to 90 
2014 in 19 countries, including the 12 countries analyzed by CBR. The assumption above of geometrically 91 
declining mortality rates (equivalent to a constant rate of mortality improvement) is clearly far from the facts in 92 
their Chapter 6. Though rates of mortality improvement varied over time, their analyses make it easy to 93 
compare factors of change in mortality for different age groups. In many cases, such as women in France (Rau 94 
et al. 2018, p. 53, Fig. 6.9) and Italy (Rau et al. 2018, p. 57, Fig. 6.13), in many years between 1950 and 2014, 95 
mortality fell faster at younger ages than at older ages. For women in France and Italy and in other cases, CBR 96 
estimated 𝑏 < 2. So there is at least qualitative compatibility between the assumption of Case 2 above and the 97 
estimate that 𝑏 < 2. Exact necessary and sufficient conditions for the slope of TL to be below or above 2 in a 98 
realistic age-structured model remain to be determined. The cartoon model we present here at least offers some 99 
insight and raises clear questions. 100 

We thank Guillot and Schmertmann for inspiring these further reflections on the origin, parameters, and 101 
interpretation of Taylor's law in human mortality data. 102 
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Figure 1. (a) 𝐴௫ = 𝐸(𝜇௫)/𝜇௫,଴ as a function of the factor 𝑞௫ of decline in age-specific mortality for 0 < 𝑞௫ < 1 115 
and selected time horizons T. (b) 𝑉𝑎𝑟(𝜇௫)/𝜇௫,଴

ଶ = (𝐶௫ − 𝐴௫
ଶ) for 0 < 𝑞௫ < 1 and selected values of T. (c) 116 

Moment ratio 𝑅௫ = 𝐶௫/𝐴௫
ଶ  for 0 < 𝑞௫ < 1 and selected values of T. (d) Taylor's law slope b for selected time 117 

horizons T in Case 1, 𝑞ଵ = 0.6 > 𝑞ଶ = 0.5 with 𝑏 > 2, and Case 2, 𝑞ଵ = 0.5 < 𝑞ଶ = 0.6 with 𝑏 < 2. Text 118 
gives definitions of notation. 119 
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