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Life lived and left: Estimating age-specific survival in stable
populations with unknown ages

James W. Vaupel1

Francisco Villavicencio2

Abstract

BACKGROUND
Demographers sometimes observe remaining lifespans in populations of individuals of
unknown age. Such populations may have an age structure that is approximately stable.
To estimate life tables for these populations, it is useful to know the relationship between
the number of individuals at a given age a, and the number of individuals that are expected
to die a time units after observation. This result has already been described for stationary
populations, but here we extend it to stable populations.

RESULTS
In a stable population, the population at a given age a is a simple function of the num-
ber of deaths at remaining lifespan a, the number of deaths at remaining lifespans a and
higher, and the population growth rate. This property, which can be useful when ages
are unknown, but individuals are followed until death, permits estimation of the under-
lying unknown survival schedule of the population and calculation of the usual life table
functions and statistics, including the stable age structure.

CONTRIBUTION
The main contribution of this article is to provide a formal proof of the relationship be-
tween life lived and life left in stable populations. We also discuss the challenges of
applying theoretical relationships to empirical data, especially due to the fact that in real-
world applications time is not continuous and some adjustments are necessary to move
from a continuous to a discrete-time framework. Two applications, one with simulated
data and a second with Swedish data from the 19th century, illustrate these ideas.
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1. Relationship

Consider a stable population with constant growth rate r that is first observed at time t.
Let N(a, t) be the unknown number of individuals in this population at any age a. Let
D̃(a, t) be the number of individuals in the population at time t who die a time units after
first observation. These are the individuals at time t who have exactly a time units of life
left. The term ‘life left’ pertains to the remaining lifetime until death, as opposed to ‘life
lived’ or age of an individual or cohort.3 Let Ñ(a, t) =

∫∞
a

D̃(x, t) dx: This function
gives the number of individuals from the initial population who are still alive at time t+a.
Then, we have that

(1*) N(a, t+ a) = D̃(a, t) + r Ñ(a, t),

where N(a, t + a) is the number of individuals at age a at time t + a.4 Furthermore,
given a population in which ages are unknown but individuals are followed until death,
this result can be used to derive the underlying unknown cohort survival schedule,

(2*) `(a) =
N(a, t+ a)

N(0, t)
=

D̃(a, t) + r Ñ(a, t)

D̃(0, t) + r Ñ(0, t)
.

2. Proof

Stable population theory implies that

D̃(x, t) =

∫ ∞
0

B(t) e−ra d(a+ x) da =

∫ ∞
x

B(t) e−r(a−x) d(a) da,

where B(t) are the births at time t and d(a+ x) is the unconditional risk of death at age
a+ x. Applying the Leibniz rule for differentiation under the integral sign, we get

d

dx
D̃(x, t) =

d

dx

∫ ∞
x

B(t) e−r(a−x) d(a) da = lim
M→∞

d

dx

∫ M

x

B(t) e−r(a−x) d(a) da

= −B(t) d(x) + lim
M→∞

r

∫ M

x

B(t) e−r(a−x) d(a) da

= −B(t) d(x) + r D̃(x, t),

3 Other terms such as ‘time-to-death,’ ‘remaining lifespan,’ ‘follow-up duration,’ or ‘residual life’ are also
frequently used to refer to life left.
4 All the main results not previously published are marked with an asterisk next to the equation number.
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and, rearranging terms,

(3) B(t) d(x) = − d

dx
D̃(x, t) + r D̃(x, t).

Because `(a) =
∫∞
a

d(x) dx for all a ≥ 0, integrating both sides of (3) yields

B(t) `(a) =

∫ ∞
a

− d

dx
D̃(x, t) + r D̃(x, t) dx

= lim
M→∞

∫ M

a

− d

dx
D̃(x, t) dx+ r

∫ ∞
a

D̃(x, t) dx

= − lim
M→∞

D̃(M , t) + D̃(a, t) + r Ñ(a, t)

= D̃(a, t) + r Ñ(a, t).

Since `(a) is the probability of surviving from birth to age a and B(t) are the births
at time t, it follows that B(t) `(a) = N(a, t + a), the population at age a at time t + a,
which proves (1*). Equation (2*) follows directly from (1*) and the definition of the
cohort survival function `(a).

3. Related results

The main result in (1*) that describes the relationship between life lived and life left in
stable populations has already been proved for the particular case of stationary popula-
tions with growth rate r = 0 (Brouard 1989; Vaupel 2009; Villavicencio and Riffe 2016).
To our knowledge, Vaupel was the first to generalize it to stable populations in an unpub-
lished manuscript from 2013. Here we polish Vaupel’s proof and include some additional
material.

In the stable population model, the crude birth rate b and the crude death rate d are
assumed to be constant over time, which permits estimation of the constant growth rate r
of the population. Let N(t), B(t) and D(t) denote, respectively, the population size, the
number of births, and the number of deaths at time t in a stable population. Then

(4) r = b− d =
B(t)

N(t)
− D(t)

N(t)
,

and

(5) B(t) = D(t) + r N(t).

Equation (5) can be re-expressed as follows: In stable populations, at any time t
the number of individuals with 0 life lived (births) equals the number of individuals with
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0 life left (deaths), plus an extra term that only depends on the constant growth rate
and the population size. Equation (1*) extends this relationship to estimate the number
of individuals at older ages when the ages are unknown but there is information about
the remaining time until death. In population biology, for instance, one may think of
a wild population that is captured at a certain time point, and then the deaths and the
number of individuals that are still alive at each subsequent time point are recorded until
extinction. This information can be used to estimate the age-specific survival, provided
that the assumption of stability is not overly distorting and that it is possible to estimate
the population growth rate r.

Equations (4) and (5) pertain to a population with an initial age of 0, but they can be
generalized to apply to a population with any initial age a. Then, at time t, B(t) would be
the number of individuals who are age a, D(t) the number of individuals who die at age
a and older, and N(t) the number of individuals alive at age a and older. The growth rate
r also pertains to the population above age a, but in the stable model this r is the same
for the entire population. Hence, Equation (1*) can be viewed as a generalization of (5).
Note that N(0, t + 0) = B(t) because the population at age 0 at time t equals the births
at time t. Further, the individuals who at time t have 0 remaining lifetime are the deaths,
and therefore D̃(0, t) = D(t). Finally, the individuals from the initial population at time
t who are still alive at t+0 are the same, so Ñ(0, t) = N(t). As a result, (5) leads to (1*)
when a = 0:

B(t) = D(t) + r N(t) =⇒ N(0, t) = D̃(0, t) + r Ñ(0, t).

3.1 The stable population model

In 1760 Leonhard Euler (1707–1783) was the first to formally describe the concept of
a stable population, defined as a population closed to migration experiencing fixed age-
specific death rates, and births that vary in geometric progression for a prolonged period
of time (Euler 1970). Euler’s work remained rather unknown to the scientific commu-
nity, and his ideas were published during subsequent decades and centuries by scholars
who independently rediscovered them. The development of a fully articulated theory of
stable populations was due to Alfred J. Lotka (1880–1949) in a series of more than 30
articles and a book, Théorie analytique des associations biologiques. This book was first
published in two separate volumes in 1934 and 1939 and, surprisingly, not translated into
English until 1998 (Lotka 1934, 1939, 1998).

In stable populations, the population size at time t is given by

N(t) =

∫ ∞
0

N(a, t) da =

∫ ∞
0

B(t) e−ra `(a) da

where B(t) e−ra are the births at t− a. This definition implies that the population at any
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given age at time t is N(a, t) = e−ra N(a, t + a). Therefore, our basic result (1*) can
also be used to estimate the unknown age structure at initial time t,

(6*) c(a, t) =
N(a, t)

N(t)
=

e−ra N(a, t+ a)

N(t)
= e−ra

D̃(a, t) + r Ñ(a, t)

N(t)
.

It may also be interesting to observe that (6*) is equivalent to a more common ex-
pression for the proportion of the population at age a in terms of the birth rate b,

(7) c(a, t) = b e−ra `(a),

as stated by Lotka more than a century ago (Lotka 1907). Equation (7) implies that the
population structure does not depend on time because the birth rate b is constant. Here,
we use the notation c(a, t) to highlight that we refer to the age structure at the time of
capture when the follow-up of the population starts. But in stable populations, the period
age structure – as well as the cohort survival schedule – is constant over time, so one
could simply write c(a).5

Although stability is an abstract mathematical concept resulting from the continu-
ous operation of strong demographic assumptions over the long run, these restrictions
have turned out to be serviceable in many applications. Stable population theory has
been widely used in the study of human and nonhuman populations, especially when ac-
curate data is incomplete or problematic, as discussed in the manual The Concept of a
Stable Population: Application to the Study of Populations of Countries with Incomplete
Demographic Statistics (United Nations 1968). Even though perfect stability is rarely
observed, this book argues that many populations around the world are ‘semi-stable’ or
‘quasi-stable,’ and possess some of the properties of the stable population model. Semi-
stable refers to populations that have an unchanging age structure, whereas quasi-stable
describes populations in which fertility remains unchanged and mortality improves grad-
ually.

3.2 Life lived and left in stationary populations

In stationary populations, in addition to fixed age-specific death rates and closure to mi-
gration, the birth flow is constant over time because of the growth rate r = 0, which
implies that, in the long run, the number of births equals the number of deaths and the
population size remains constant. This approach is more restrictive than stability but can
lead to new insights about population dynamics. Some of these insights pertain to the
symmetries between life lived and life left. Kim and Aron (1989) – and later Goldstein

5 For a general overview of the main properties of stable populations, see for instance Preston, Heuveline, and
Guillot (2001, Chapter 7).
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(2009) – proved that the average age of a stationary population equals average remain-
ing life expectancy, whereas Riffe (2015) addressed the equivalence between the force of
mortality by age and the force of increment by life left. Moreover, stationary populations
present a symmetry between their age composition and the distribution of remaining life-
times. This relationship was first described by Brouard (1986, 1989), and was later inde-
pendently formulated by James Carey and colleagues in the study of the survival patterns
of captive and follow-up cohorts of medflies (Müller et al. 2004, 2007). Vaupel (2009)
proved that in stationary populations of infinite size and in continuous time, the probabil-
ity that a randomly selected individual is age a equals the probability that an individual
has exactly a time left until death. Villavicencio and Riffe (2016) suggested an alternative
proof for empirical and finite stationary populations in a discrete-time framework.

An alternative perspective is to consider the births and deaths in stationary popu-
lations, which need to be continuously in balance to keep the population size constant.
Hence, the number of individuals at age 0 (births) equals the number of individuals with
0 life left (deaths). Note that the first group forms a birth cohort, whereas in the second
there are individuals from different ages who share the same time of death, forming a
‘death cohort.’ The key point is that this result is true for all ages when the population
is stationary, meaning that the number of individuals at any age a equals the number of
individuals with a life left within the population. Figure 1 illustrates these ideas: Life left
is plotted in the negative horizontal axis to convey the notion of a ‘countdown.’

Figure 1: Symmetries between the age composition and the distribution of
remaining lifetimes in stationary populations

− ω − a2 − a1 0 a1 a2 ω

age
distribution

distribution of
remaining
lifetimes

age / life livedlife left

Note: Parameter ω refers to the maximum observed lifespan.

Equation (1*) extends this result to stable populations, so it can be used with less
restrictive assumptions. In this case there is not an exact symmetry between life lived
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and left because of the growth rate r, but there is still a relationship between the age
composition (captured by N(a, t)) and the distribution of remaining lifetimes (captured
by D̃(a, t)). Note that if r = 0, then N(a, t+ a) = N(a, t) and (1*) becomes

N(a, t) = D̃(a, t).

This equivalence formalizes the concept of symmetry between life lived and left in sta-
tionary populations that has just been described: The number of individuals aged a at
time t equals the number of individuals who will die at time t+ a.

3.3 The population of France from a life left perspective

Brouard (1986) presents an original overview of the population dynamics of France in the
20th century from a life left perspective. He compares the age structure of the French pop-
ulation in several years with what he calls the ‘pyramide des années à vivre,’ that is, the
projected structure of remaining lifetimes of the cohorts alive in those years. He also in-
troduces the concept of ‘génération de décès’ (death cohort) mentioned above. Especially
relevant are the two pyramids from 1901, which show that the male population above age
70 is surprisingly close to the population that at that time had more than 70 years of life
left and lived at least until 1970. Lower remaining lifetimes were caused by traumatic
events such as the two world wars that increased mortality, but in general there is a fairly
close symmetry between both pyramids. In contrast, in the case of women the improve-
ments in mortality were more marked, and thus the pyramid of remaining lifetimes has
more individuals with higher values, given that more women lived longer than 70 years
after 1901 than those above age 70 in that year. Brouard concludes that the analysis of
the remaining lifetimes offers a new interesting perspective for the study of population
dynamics, notably for older ages. He suggests the estimation of life left according to
some health markers, which could provide better insights into the characteristics of the
old population and help in the assessment of proper policies.

4. Application

Demographers like to think of time as a continuous process, which permits the use of
differential calculus and facilitates the proof of demographic relationships among demo-
graphic functions. This has been the case in the statement and proof of (1*) and (2*), as
well in the works mentioned above that are based on the stable population theory devel-
oped by Lotka (1939).

In a theoretical population model, it is reasonable to assume time to be continu-
ous, and compute vital rates and the instantaneous – although theoretical and potentially
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noninteger – number of births and deaths at any time. On the contrary, in an empirical
population in which individuals are indivisible, the instantaneous number of births and
deaths would be zero, and the number of births and deaths would have to be computed
in time intervals between observations. Villavicencio and Riffe (2016) adopted this ap-
proach to provide an alternative proof of the symmetries between life lived and left in
empirical stationary populations. This approach represents a more realistic setup, but has
the disadvantage of making the demonstration more complex than in the continuous case.

4.1 Life lived and left in a discrete-time framework

In an empirical setup, some adjustments are necessary to adapt Equations (1*), (2*),
and (6*) to a discrete-time framework. In general, we can only get the population counts
at exact times t, t+1, t+2, etc., and we may not be able to know what births and deaths
occurred between observations. Moreover, a slightly different notation is usually adopted
to account for the fact that ages are not exact: In the following, we use subindices for the
age variable to refer to the ‘age interval [a, a+ 1)’ instead of the ‘exact age a.’

Suppose a population is first captured at time t and the total number of individuals
N(t) is recorded. This same population is observed again at time t + 1 and the number
of individuals still alive are recorded, obtaining Ñ1(t), the individuals from the initial
population who are alive at time t+1, all of them at age 1 and above. The assumption of
stability implies

(8) N1+(t) = e−r Ñ1(t),

where N1+(t) is the unknown number of individuals that at exact time t were age 1 and
above. Equation (8) can be used to estimate the population at age [0, 1) at exact time t:

N0(t) = N(t)−N1+(t)

= Ñ0(t)− e−r Ñ1(t),

given that N(t) = Ñ0(t), the population at age 0 and above at exact time t. Analogously,

N1(t+ 1) = Ñ1(t)−N2+(t+ 1)

= Ñ1(t)− e−r Ñ2(t),

where N1(t+1) is the number of individuals at age [1, 2) at exact time t+1, N2+(t+1)

is the number of individuals at age 2 and above at exact time t + 1, and Ñ2(t) is the
number of individuals from the initial population who are still alive at exact time t + 2.
This result can be extended to any age a, such that the population at age [a, a+1) at exact
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time t+ a is

(9*) Na(t+ a) = Ña(t)− e−r Ña+1(t).

Equation (9*) is an extension of our basic result (1*) to the case of observations
made not continuously but at points in time t, t + 1, t + 2, etc., and is valid for any
time unit – minutes, hours, days, years, or decades. It is necessary, though, that the same
unit is used to measure time and age, and that the population is observed at regular time
points. The Lexis diagram in Figure 2 provides some intuition about these concepts and
relationships.

Figure 2: Lexis diagram illustrating the relationship between life lived and
life left in a discrete-time framework

t−1 t t+1 t+2
0

1

2

3

N0(t)

N1(t + 1)

N2(t + 2)

N(t) = N0(t) N1(t) N2(t)

N1+(t)

N2+(t + 1)

e−r

e−r

e−r e−r

ag
e 

/ l
ife

 li
ve

d

time

Note: Life lived is captured by N(t),N0(t),N1(t + 1), etc., and life left by Ñ0(t), Ñ1(t), Ñ2(t), etc. following
Equation (9*).

An equivalent expression to the survival schedule in (2*) for the discrete case follows
immediately from (9*),

(10*) `a =
Na(t+ a)

N0(t)
=

Ña(t)− e−r Ña+1(t)

Ñ0(t)− e−r Ñ1(t)
,
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and the stable age structure defined in (6*) becomes

ca =
Na(t)

N(t)
=

e−ra Na(t+ a)

N(t)

= e−ra
Ña(t)− e−r Ña+1(t)

N(t)
.

(11*)

Figure 3 illustrates these two last results in a Lexis diagram: By following a stable
population with unknown ages from time t onward, and recording at each subsequent
time step the number of remaining individuals alive (Ñ0(t), Ñ1(t), Ñ2(t), etc.), we are
able to recover the cohort survival schedule `a (left panel) and the stable age structure ca
(right panel).

Figure 3: Lexis diagrams illustrating the cohort survival schedule `a (left
panel) and the stable age structure ca (right panel) that can be
estimated by following a stable population until extinction

Note: Stable population with unknown ages that is followed from time t onward, recording at each subsequent time
step the number of remaining individuals alive, and applying (10*) and (11*).

4.2 Example of application with simulated data

To check the validity of our results, we proceed with a reproducible example based on
simulating a stable population. Following the same idea that James Carey and colleagues
developed in the study of survival patterns of captive medflies (Müller et al. 2004, 2007),
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we observe a population at regular time points until its extinction, and we record the
Ña(t) values at each time step. Applying (9*), (10*), and (11*), we use these values to
estimate the survival schedule used in the data simulation and the corresponding stable
age structure. The R code (R Core Team 2018) to carry out this experiment is available
in the supplementary materials; only a few details are provided below.

We adapt the same simplified example of a stable population used by Preston, Heuve-
line, and Guillot (2001: 138–141), so the reader can refer to that book to find additional
explanation. Suppose there is a hypothetical population in which all individuals die be-
fore age 5, defined by the following life table:

Table 1: Life table (survival schedule) used in the data simulation

a 0 1 2 3 4 5

`a 1.00 0.60 0.40 0.20 0.05 0.00

Function `a gives the probability of surviving from age [0, 1) to age [a, a + 1).
All cohorts are driven by this survival schedule. We start with an initial population of
N0(t − 5) = 105 individuals at age [0, 1) at time t − 5. At time t − 4, N1(t − 4) =
N0(t− 5) `1 individuals will reach age [1, 2), and N0(t− 4) = N0(t− 5) er newly born
will join the population, since r is the constant growth rate. Following the same procedure
for older ages and assuming a growth rate of r = 0.01, at time t the population becomes
stable with a population size of 234,248 individuals. The population counts by age are
displayed in Table 2.

Table 2: Population counts by age at time t of a simulated stable population
with constant growth rate r = 0.01

a Na(t)

0 N0(t− 5) e5r `0 = 105 e0.05 1.00 ≈ 105, 127

1 N0(t− 5) e4r `1 = 105 e0.04 0.60 ≈ 62, 449

2 N0(t− 5) e3r `2 = 105 e0.03 0.40 ≈ 41, 218

3 N0(t− 5) e2r `3 = 105 e0.02 0.20 ≈ 20, 404

4 N0(t− 5) er `4 = 105 e0.01 0.05 ≈ 5, 050

5 N0(t− 5) `5 = 105 0.00 = 0

Total N(t) = 234, 248 individuals

From this population of 234,248 individuals we draw 100 random samples of 1,000
individuals each. Then, ignoring the ages, we follow all of these samples until extinction,
recording at each time step the number of individuals who are still alive (Ña(t) values).
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At each iteration, individuals randomly die depending on the corresponding age-specific
probabilities of death. Applying (9*), (10*), and (11*), we get estimates for the survival
schedule and the stable age structure for all samples. Finally, combining the results from
the 100 samples, we obtain mean values and empirical confidence intervals for all the
estimates and compare them with the survival schedule used in the data simulation and
the age structure of the whole population. The results displayed in Table 3 show that our
method to estimate `a and ca for stable populations may provide serviceably accurate
results. Differences among the estimates and the true values observed at the population
level are due to the randomness in the data simulation and the sampling process, and also
because of the rounding to integer values of the population counts. All true values fall
within the 95% empirical confidence intervals of the estimates.

Table 3: Estimates of the cohort survival schedule ̂̀a and the age structure
ĉa of a simulated stable population, using information on life left

a
True values at the Estimates from the samples
population level
`a ca ̂̀

a (10*) ĉa (11*)

0 1.00 0.44879 1.00000 0.44847 [0.42200, 0.47662]
1 0.60 0.26659 0.60131 [0.52142, 0.68716] 0.26636 [0.24147, 0.28867]
2 0.40 0.17596 0.40345 [0.33590, 0.46453] 0.17700 [0.15225, 0.19604]
3 0.20 0.08710 0.20128 [0.15901, 0.25306] 0.08738 [0.07130, 0.10583]
4 0.05 0.02156 0.04807 [0.03019, 0.07151] 0.02066 [0.01295, 0.02978]
5 0.00 0.00000 0.00000 0.00000

Note: Estimates from 100 samples of size 1,000 that are randomly taken from a stable population of 234,248 indi-
viduals. The samples are followed until death. Values between square brackets represent 95% empirical confidence
intervals.

5. The 1805 cohort life table of Swedish females

As an example of application with actual data, we aim to recover the 1805 cohort life
table of Swedish females by applying Equations (9*) and (10*) to data on population
counts. The goal is to create a scenario in which we simulate the ‘capture’ of the Swedish
females in 1805, ignoring their ages, and follow this group of individuals until extinction.

First, we ‘capture’ the population in 1805, as in a census. Next, we follow those
individuals along the 19th century by recording the number of individuals still alive at
each subsequent five-year period, obtaining the Ña(t) values. Finally, applying (9*) we
use these estimates to compute the number of individuals in each age group at each time
period (Na(t + a) values, see Figure 2), in order to apply (10*) and estimate the sur-
vival schedule `a of the 1805 cohort of Swedish females (Figure 3, left panel). All the
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data comes from the Human Mortality Database (2018) (henceforth HMD). The results
presented below are fully reproducible from the R code (R Core Team 2018) and data
available in the supplementary materials.

5.1 Estimation of the growth rate

An estimate of the stable growth rate r is needed to apply the formulas in this article. This
parameter can be estimated in various ways because all scalable stable population param-
eters grow exponentially at the same rate, including the number of births and deaths, and
population size. Keyfitz and Caswell (2005, Chapter 5.2) provide an interesting discus-
sion about how to estimate the growth rate from a single census, given the assumption of a
stable population in which all cohorts follow the same life table. However, their approach
requires knowledge of the number of individuals at a minimum of two different ages, and
the probability of surviving between them. This is not the case in a context in which the
ages of the population are unknown, and the survival schedule is estimated depending on
the growth rate r, as shown in (2*) and (10*).

If the number of births B(t) at first observation can be assessed, one could simply
consider

r =
B(t)−D(t)

N(t)
=

B(t)− D̃(0, t)

Ñ(0, t)
.

When that information is not available, r can be estimated if the entire population (or
a random sample) is observed at two time points t1 and t2 so that information is available
on N(t1) and N(t2). This may be the most convenient approach in many real-world
scenarios. If that is the case,

(12) r =
ln
[
N(t2)

]
− ln

[
N(t1)

]
t2 − t1

,

a formula that follows from the definition of a stable population (Keyfitz and Caswell
2005: 12). We use (12) to estimate the growth rate of the Swedish female population in
the 19th century, using the total populations counts of 1805 and 1895 from the HMD:

r =
ln
[
N(1895)

]
− ln

[
N(1805)

]
1895− 1805

=
ln
[
2,509,076

]
− ln

[
1,249,946

]
1895− 1805

≈ 0.00774.

5.2 Reconstruction of the survival curve

Given the estimate of the population growth, we can proceed as in the example of Sec-
tion 4.2, but with actual population counts from the HMD. First, we get the total pop-
ulation in 1805, N(1805) = Ñ0(1805) = 1,249,946. Next, we specify the number
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of individuals from that initial population who are still alive in 1810. In terms of the
available data, this corresponds to the number of Swedish females above age 5 in 1810,
N5+(1810) = Ñ5(1805) = 1,105,919. We follow the same procedure to obtain
N10+(1815) = Ñ10(1805) = 1,007,581, N15+(1820) = Ñ15(1805), and so on. All
these population counts were affected by migration flows. Nevertheless, in the stable
population model, we assume closure to migration, something necessary to apply our
method to estimate age-specific survival in a population with unknown ages.

Once the values Ñ0(1805), . . . , Ñ90(1805) are available, we can apply (9*) and
(10*) to estimate the survival schedule of the 1805 cohort of Swedish females. Figure 4
presents the results by comparing the estimated survivorship with the survival curve from
the corresponding cohort life table of the HMD.

Figure 4: Observed (HMD) and estimated survival schedule of the 1805
cohort of Swedish females using Equation (10*)
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Source: Human Mortality Database (2018).

The dark line in Figure 4 refers to the HMD life table. The dashed line is the result
of applying (10*) to the Ña(t) values. This curve is not monotonically decreasing, which
contradicts the definition of the survival function. This is due to the fact that no popu-
lation is strictly stable, and the Swedish population in the 19th century may have been
affected by migration flows or by epidemics that may have increased mortality. To ad-
dress this issue, the yellow line in Figure 4 shows the estimated survival curve smoothed
using the R function loess() (R Core Team 2018). This function, in combination with
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predict(), is one of the most common methods to smooth volatile data, and it is based
on implementing a nonparametric approach that fits multiple regressions in a local neigh-
borhood (see example of application in the R code of the supplementary materials). The
similarity between the dark and yellow curves illustrates the validity of our theoretical ap-
proach to estimate age-specific survival in populations with unknown ages, but in which
individuals are followed until death. Moreover, it also shows that the Swedish female
population in the 19th century was rather stable.

6. Discussion

In this article, we have extended the concept of symmetries between life lived and left
from stationary to stable populations. Equations (1*) and (9*) are a generalization to sta-
ble populations of previous results by Brouard (1989), Vaupel (2009), and Villavicencio
and Riffe (2016), who limited their analysis to stationary populations. The stable popu-
lation model represents a less restrictive setup with more potential areas of application.
Further, by using the survival curve in (2*), all the usual life table functions and statistics
can be calculated, including the stable age structure.

The relationship between life lived and left may be especially relevant for the study
of populations in which ages are unknown, but individuals are followed until death. In
Section 4 we discuss some of the challenges of applying theoretical relationships to em-
pirical data, especially due to the fact that in real-world scenarios time is not continu-
ous, and some adjustments are necessary to move from a continuous to a discrete-time
framework. In this regard, Equations (9*), (10*), and (11*) may be more interesting to
researchers dealing with actual data. Furthermore, it is remarkable that, contrary to what
usually happens, the discrete equations are simpler to derive than the continuous ones, as
illustrated in Figures 2 and 3. Their validity has been demonstrated in the applications of
Sections 4.2 and 5.

It is worth mentioning some potential areas of application to human data. Histor-
ical records, for instance, usually present problems of age misreporting and of under-
registration of births. If a census is carried out at some point in time and individuals
are followed until death, that information could be used to estimate the age structure at
the time of the census. Anthropologists could also employ a similar approach to study
populations with lack of age information. Biologists may find these methods useful to
estimate the survival and age structure of groups of individuals of unknown age in the
wild that are followed over time. Finally, the approach suggested in this article could also
be extended to multistate populations in which individuals transition from and to differ-
ent states. For example, in health studies one could use the time until recovery from an
illness as an input to estimate the distribution of the times of incidence until detection, if
the assumption of stability is acceptable.
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