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Estimating multiregional survivorship probabilities for sparse data:
An application to immigrant populations in Australia, 1981–2011

Bernard Baffour1

James Raymer2

Abstract

BACKGROUND
Over 28% of the Australian population is born overseas. Understanding where
immigrants have settled, and the relative attractiveness of these places in relation to
others, is important for understanding the contributions of immigration to society and
subnational population growth. However, subsequent demographic analyses of
immigration to Australia is complicated because (1) the population is highly urbanised
with over 80% living along the coast on an area roughly 3% of the country’s land mass
and (2) the diversity of immigration streams results in many immigrant populations
with small population numbers.

OBJECTIVE
The objective of this research is to develop methods for overcoming irregularities in
sparse data on age-specific mortality and internal migration to estimate small area
multiregional life tables. These life tables are useful for studying the duration of time
spent, expressed in years lived, by populations living in specific geographic areas.

METHODS
Multiregional life tables are calculated for different immigrant groups from 1981 to
2011 in Australia. To overcome sparse data, indirect estimation techniques are used to
smooth, impose and infer age-specific probabilities of mortality and internal migration.

RESULTS
We find that the country or region of birthplace is an important factor in determining
both settlement and subsequent internal migration.
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CONCLUSIONS
Overcoming sparse data on mortality and internal migration allow for the study of the
relative attractiveness of places over time for different immigrant populations in
Australia. This information provides useful evidence for assessing the effectiveness of
policies designed to encourage regional and rural settlement.

1. Introduction

Immigration underpins many aspects of population and societal change in Australia.
According to the most recent census, over 28% of the population was born overseas
(Australian Bureau of Statistics 2017). It is necessary to understand the long-term
consequences of this immigration in order to determine the contributions to population
change, and also to assess the Australian Government’s Department of Home Affairs
(2018) policies, aimed at distributing persons to specific areas that are considered in
need of immigrant labour. These include, for example, skill regional visas, pathways to
permanent residence, and the regional sponsored migration scheme. They are designed
to address skill shortages and encourage settlement outside state capital cities.

Australia  is  one  of  the  least  densely  populated  countries  in  the  world  and one  of
the most urbanised. This urban population is located predominantly along the south-
eastern coastline from Adelaide to Brisbane. Approximately four-fifths of the
population live in this narrow coastal strip of land on an area that covers roughly 3% of
the country’s land mass. When considering how to subdivide the country into
geographic areas this produces methodological challenges, especially when the
population sizes of local authorities vary from 1,000 to 125,000 residents with an
average number of around 12,000 residents (Wilson 2016).

In comparison to persons born in Australia, immigrants have been more likely to
settle in major urban areas (i.e., a metropolis or a major city with at least 100,000
residents). In 2011, 64% of Australian-born people lived in a major urban area, whereas
it  was  85% for  those  born  overseas.  The  extent  to  which  immigrants  settled  in  urban
areas, however, differed by their country of birth. For example, 97% of the Chinese-
born population and 93% of the Indian-born population lived in urban areas but, by
contrast, for the populations born in New Zealand and the United Kingdom it was 78%
and 74%, respectively.

In this paper we are interested in exploring the consequences of immigration of
different birthplace origin for regional population distribution in Australia. In particular,
we would like to understand the long-term holding power (retention) of destinations
within  the  country  for  different  immigrant  groups,  and  to  see  how  these  patterns  are
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changing over time. This information is needed for understanding, for example,
population redistribution, social cohesion, and the effectiveness of policies designed to
attract immigrant populations to specific areas. One way to study retention is through
the calculation and analysis of multiregional life tables (Rogers 1975, 1995; Willekens
and Rogers 1978). The inputs required for these tables include age- and sex-specific
probabilities of mortality and interregional migration. The outputs allow the study of
duration expressed in expected number of life years spent in each region of the country.
Although not explored in this paper, it would also be useful to compare the underlying
factors that cause certain areas to exhibit high retention in relation to those that exhibit
low retention.

In constructing multiregional life tables for immigrant populations in Australia, we
encounter two methodological problems. First, there is sparse data, where some
populations, especially in regional and remote areas, are too small to provide reliable
probabilities of age-specific mortality or internal migration. This problem increases the
further one goes back in time, especially for the more recently arrived immigrant
populations, e.g., those born in China or India. Second, due to privacy and
confidentiality concerns, the disaggregated data by age, sex, area, and country of birth
have had random perturbations added to them by the Australian Bureau of Statistics
(ABS) before release. Perturbation is a technique which has been developed to
randomly adjust count values. When the technique is applied, all counts and totals are
adjusted to prevent any identifiable information being disclosed (Chipperfield and
O’Keefe 2014). These perturbations do not decrease the tabular information but the
resulting adjustments can decrease the analytical utility of the data (Shlomo and Skinner
2010). The methodological approach proposed combines empirical regularities from the
observed data with other auxiliary information to deal with the sparse and perturbed
data.

The  focus  of  this  paper  is  primarily  on  the  development  of  a  framework  and
methodology that allows the study of the relative attractiveness or retention capability
of regions in the presence of sparse or inadequate data. This research is required to
further our understanding of the immigration process and the demographic implications
on the host populations. In particular, there are policy implications related to Australia’s
regional migration schemes in which immigrants are required to remain in designated
areas with lower population growth for a fixed number of years (Hugo 2008). This
paper demonstrates which regions and immigrants groups lose and gain populations
after settlement.
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2. Data and methodology

2.1 Population data

The population data collected for this research is derived from the quinquennial (five
yearly) Australian censuses between 1981 and 2011, representing six inter-censual
periods. The data contains information from 19 birthplace-specific populations
comprised of 18 overseas-born population groups and the Australian-born. The
birthplace categories of the overseas-born population represent a mixture of countries
and world regions. In 2011 the total size of the overseas-born population was 5.8
million persons and of the Australian-born population 16.5 million persons. Each of the
18 immigrant birthplaces accounts for a relatively large proportion of the total overseas-
born population in Australia, ranging from 1% for the Indonesian-born population to
21% for the United Kingdom-born population. For illustration and space reasons, this
research focuses on the four largest immigrant populations, born in the United
Kingdom, New Zealand, China, and India, which comprise 21%, 9%, 6%, and 6% of
the overseas-born population, respectively.

The birthplace-specific data was commissioned from the Australian Bureau of
Statistics, which provided information based on the Statistical Division geography from
Australian Standard Geographical Classification. The geographic boundaries of this
data are not consistent over time (Australian Bureau of Statistics 2011). For any given
year, there are around 60 Statistical Divisions. For example, there were 58 Statistical
Divisions in 1981 and 62 in 2011. To produce a consistent geography over time, we
used simple rules that either assumed the boundary changes were insubstantial (i.e., if
the boundary change resulted in only a small amount of population change) or merged
multiple geographic areas into single (larger) ones (see Guan (2018) for details on the
construction of the 47 harmonised geographic areas). These rules produced a
meaningful geography for studying subsequent migration of immigrant populations
across 47 areas and over six time periods. The only geographic area that required
additional input was Darwin in the Northern Territory. Here, the population size was
altered to correspond to the geographic area change.

Because of the sparseness in the regional and more remote areas for nearly all
immigrant groups, we focus our analysis and illustration of the estimation strategy on
the large capital cities and their surrounding areas and group the remainder into
‘Regional  Australia’  and ‘Remote  Australia’.  Figure  1  shows the  map of  the  11  areas
that are used in this paper. They are Sydney, New South Wales (NSW) Coast,
Melbourne, Country Victoria, Brisbane, Adelaide, Perth, Hobart, Australian Capital
Territory, Regional Australia, and Remote Australia. Regional Australia comprises 19
of the 47 original geographies and Remote Australia is made up of the remainder 13 of
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the 47 geographical areas. Even at this geographic level, there are considerable sparse
data issues that have to be addressed.

Figure 1: Map of the eleven geographic areas for Australia

The 2011 population distributions across the 11 areas are presented in Table 1 for
persons born in Australia, the United Kingdom, New Zealand, China, and India. For the
Australian-born population in 2011, roughly one-in-five (21.5%) lived in Regional
Australia or Remote Australia (influenced to a small degree by the Indigenous
Australian population), whereas the percentages were much smaller for the Chinese-
born and Indian-born populations (2.3% and 4.9%, respectively). For those born in New
Zealand and the United Kingdom the percentages were closer to the Australian-born
population at 15.4% and 13.4%, respectively. Moreover, the fraction of the Australian-
born, New Zealand-born, and United Kingdom-born populations residing in Sydney
was around one-in-six persons; it was one-half for those born in China and one-third for
those born India. The geographic distribution of the Indigenous population,
representing about 3% of the total Australian-born population, is markedly different.
Indigenous people comprise 1% of the population in major cities, 9% in regional areas,
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15%  in  remote  areas,  and  49%  in  very  remote  areas  (Australian  Bureau  of  Statistics
2013).

Table 1: Regional population counts (with column proportions) in Australia
for selected countries of birth (Australia, New Zealand, United
Kingdom, China, and India) in the 2011 Census

Australia New Zealand United Kingdom China India
1 Sydney 2,632,552 84,955 182,226 148,557 87,875

0.176 0.177 0.166 0.466 0.299
2 NSW Coast 1,285,860 19,890 68,166 5,364 4,217

0.086 0.041 0.062 0.017 0.014
3 Melbourne 2,481,388 66,311 162,866 90,833 106,429

0.166 0.138 0.148 0.285 0.360
4 Country Victoria 984,348 11,860 44,813 2,698 4,302

0.066 0.025 0.041 0.009 0.015
5 Brisbane 2,030,040 157,736 167,397 24,764 25,616

0.135 0.328 0.152 0.077 0.087
6 Adelaide 924,334 10,611 109,583 15,435 17,687

0.062 0.022 0.100 0.049 0.060
7 Perth 975,320 50,156 187,200 15,550 27,794

0.065 0.104 0.171 0.049 0.095
8 Hobart 203,593 2,314 12,191 1,440 886

0.014 0.005 0.011 0.005 0.003
9 Canberra 254,621 4,370 16,082 6,573 5,883

0.017 0.009 0.015 0.021 0.020
10 Regional Australia 2,531,484 51,341 114,695 5,851 10,813

0.169 0.107 0.105 0.018 0.037
11 Remote Australia 685,969 21,595 32,384 1,422 3,514

0.046 0.045 0.029 0.005 0.012

2.2 Mortality rates

The construction of multiregional life tables requires probabilities of age-specific
mortality, disaggregated by sex and geographic area, and corresponding transition
probabilities of interregional migration. For subnational analyses of mortality in
Australia, our understanding of the mechanisms and patterns affecting the spatial
variations of age-sex specific mortality is limited by missing, unobserved, or small
death counts. Where this occurs, the calculated age-specific probabilities of dying may
be unreasonably high or low or, in some instances, non-existent. To understand the
relative  risks  of  dying  across  areas  and  birthplace  groups  in  Australia  or  to  conduct
demographic sources of growth analyses (e.g., with population projections), these
limitations must first be addressed.
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Consider the age-specific mortality rates for persons living in Australia and born in
the  United  Kingdom,  China,  India,  and  Australia  presented  in  Figure  2  for  the  two
periods 1981–1986 and 2006–2011. The lines in the figures generally reflect the typical
mortality curve for a developed country, i.e., a rapidly decreasing rate of mortality in
the early years of life, followed by a sharp increase in mortality during the teenage
years, then a plateau for young adults, subsequently followed by a steady increase from
around 30 years of age. While this pattern is apparent for the Australian-born
population, the observed mortality rates of the immigrant groups are subject to more
fluctuations and, in some instances, zero values, e.g., Chinese-born population during
the 1981–1986 period at very young ages. The reason why this population may have
zero deaths is likely due to its young population age structure with few children present,
or missing death counts.

Figure 2: Male age-specific mortality rates (logged) for the populations born in
Australia, United Kingdom, New Zealand, China, and India: 1981–
1986 and 2006–2011

When disaggregated subnationally into the 11 areas, the observed mortality rates
are subject to even more fluctuations, as demonstrated in Figure 3 for the Indian-born,
Chinese-born, and United Kingdom-born populations during the 1981–1986 period.
The Chinese-born and Indian-born populations, similar to other immigrant populations,
exhibit irregular patterns of mortality across all age groups, with missing data, and this
is more apparent in the regions with smaller populations. For the United Kingdom-born
population the sparseness and missing data are more pronounced at younger ages.
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Figure 3: Age-specific mortality rates (logged) for males born in Australia, the
United Kingdom, China, and India by geographic area, 1981–1986

Note: □ Sydney, o Melbourne, ∆ Brisbane, + Adelaide, x Perth, ◊ Australian Capital Territory, ∇ New South Wales Coast, ∎ Country
Victoria, * Greater Hobart, % Regional Australia,  # Remote Australia.

2.3 Conditional survivorship proportions of interregional migration

The conditional survivorship proportion of migration represents the number of persons
in a particular age group who migrated out of a region during a time interval, divided by
the total number of persons in that age group who lived in the region at the beginning of
the time interval. As data on ‘where were you living five years ago?’ is collected at the
end of the time interval,  the persons must have survived in order to be counted in the
census. Conditional survivorship proportions provide the inputs to calculate
multiregional life tables under the ‘Option 2’ method in Rogers (1995).

Age-specific propensities of migration exhibit persistent patterns over time and
across space (Rogers and Castro 1981). Migration levels tend to be high for young
adults in their late twenties and early thirties. The proportion of infants and young
children who migrate (who are presumably travelling with their parents) mirrors this.
For adolescents and young adults the probability is generally much lower. People
experience declining migration propensities after their young adult years, though there
may be slight increases around retirement age and towards the last years of life. Like
with the regional mortality rates discussed in the previous subsection, sparse data may
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produce irregular conditional survivorship proportions when disaggregated by origin,
destination, sex, and age group.

2.4 Multiregional life tables

Multiregional demography (Rogers 1975, 1995; Willekens and Rogers 1978) offers
unique insights into components of change by considering subpopulations that are
interconnected by origin–destination migration flows. A particularly useful way of
understanding demographic change of subpopulations is to examine them through a
multiregional life table. A useful statistic provided by a multiregional life table is the
average expectation of life beyond age in each region. This is calculated by applying ݔ
age-specific probabilities of survival to hypothetical cohorts of babies, and then
observing at each age and current region of residence their average expected length of
remaining life years to be spent in each of the regions in the population system (Rogers
1973; Willekens and Rogers 1978).

In Table 2 we present the multiregional life expectancies for Australian-born males
at age zero based on the 2006–2011 period data for age-specific mortality and
conditional survivorship proportions of interregional migration. Here we see substantial
differences in life expectancy depending on the area where they were residing at age
zero. For instance, a baby boy born in Sydney is expected to live to an average age of
78.1 years, of which around 60% will be spent residing in the same region. However, if
he were to be born in Canberra his expected life expectancy would increase to 78.3
years, but only around 40% of his years would be spent residing in the same area. For
Remote Australia, life expectancy drops to 76.4 years with only 30% of years being
spent in the same (large) area.

If interactions between regions are not taken into account, biases may result when
calculating life expectancy. The differences between the multiregional and uniregional
life expectancies presented in Table 2 arise for two reasons. First, different regions do
exhibit small mortality differences. Second, individuals in the associated multiregional
life tables experience mortality (and other life course events) on the basis of the regime
prevailing in a region other than their region of birth: in the region in which they
happened to be residing at each age–time point.
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Table 2: Multi-regional life tables: expectations of life at birth, by region of
residence: Males born in Australia (2006–2011)
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Sydney 49.2 7.3 3.2 1.2 5.6 1.1 1.5 0.4 1.1 6.5 1.3 78.1 78.4
NSW Coast 9.5 38.6 3.2 1.5 8.8 1.2 1.7 0.4 1.2 9.6 2.0 77.7 77.5
Melbourne 2.3 1.4 53.4 8.6 3.5 1.2 1.5 0.4 0.6 4.5 1.2 78.5 79.0
Country Vic. 1.9 1.9 16.6 39.6 4.3 1.5 1.9 0.4 0.6 7.4 1.9 77.8 77.6
Brisbane 3.7 4.0 4.0 1.9 45.2 1.5 1.9 0.6 0.8 11.5 2.7 77.8 78.3
Adelaide 2.4 1.8 3.9 1.7 4.4 49.7 2.0 0.5 0.8 8.1 3.2 78.1 78.6
Perth 2.6 2.0 4.4 1.8 4.2 1.7 43.6 0.5 0.7 11.2 5.1 77.8 78.3
Hobart 3.1 2.3 6.4 2.4 5.8 1.6 2.4 41.8 1.0 7.7 2.9 77.3 76.8
Canberra 7.0 5.0 6.1 2.2 8.5 2.3 2.4 0.5 28.9 13.4 1.9 78.3 79.8
Regional Aus. 4.6 4.9 4.8 3.1 9.8 3.2 4.4 0.7 1.5 36.6 3.8 77.4 76.9
Remote Aus. 2.8 3.2 3.8 2.4 8.1 4.8 7.5 1.1 0.8 15.6 26.3 76.4 73.9

3. Indirect estimation of mortality and internal migration

3.1 Estimating age schedules of mortality

Recognising that age schedules of mortality, fertility, and migration follow remarkably
persistent patterns over time and across space, demographers have summarized and
codified these regularities through parameterised model schedules (Booth and Tickle
2008; Rogers and Raymer 1999). The most developed are models of age-specific
mortality, which can be represented by a variety of functions, such as the Gompertz or
Makeham mathematical models, Brass’ (1971) relational model, or Heligman and
Pollard’s (1980) parameterized model. Lee and Carter (1992) developed a widely used
forecasting method that makes use of the regularity typically found in age patterns and
trends over time, but it makes strong assumptions about the functional form of mortality
and is dependent on the availability of good historical time series data.

There are also approaches that can be employed to smooth observed mortality
schedules when the death to exposure ratios suffer from extreme levels of instability
and uncertainty due to small populations at risk. Specifically, relational models have the
desirable property of having relatively low variance and small bias and high levels of
reliability even in small samples (De Beer 2011, 2012). Coherent forecasts (Li and Lee
2005) extended the Lee–Carter model for forecasting age-specific mortality through
maintaining the structural relationship, i.e., higher male mortality across all ages, based
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on historical and theoretical considerations. However, these models require long
historical time series data to overcome the various model constraints and data
inadequacies (Hyndman, Booth, and Yasmeen 2013).

Bayesian models have also been developed which estimate the small-area
mortality rates and life expectancies through borrowing strength across ages, sexes,
times, and locations (Alexander, Zagheni, and Barbieri 2017). However, these models
can be complex and contain high levels of dimensionality and large numbers of
parameters to be estimated (Congdon 2009, 2014). Furthermore, in cases where the data
is of poor quality, relational methods rely on having an accurate ‘standard’ mortality
schedule for benchmarking and producing accurate estimates. In our application, where
the interest is in the differences between both small areas and immigrant groups, the
choice of a standard schedule is not clear. Furthermore, the birthplace-age-area specific
mortality rates can be subject to instability and, as such, relational model parameters
may not accurately describe and capture the age pattern of mortality experienced by the
immigrant populations in the local areas (De Beer 2012).

Statistical parametric and non-parametric models may be used for estimating
demographic components using regression and time series methods (see, e.g., Bijak and
Wiśniowski 2010; Gerland et al. 2014; Hyndman and Ullah 2007; Hyndman, Booth,
and Yasmeen 2013; Raftery et al. 2012; Renshaw 1991; Haberman and Renshaw 1996).
However, these approaches often require higher-order polynomial and complex
interaction terms, which may lead to issues around model fitting. Here, splines may be
employed to improve the model fit through smoothing (Currie, Durban, and Eilers
2004; Dodd et al. 2018); for example, by using P-splines (Currie and Durban 2002;
Eilers and Marx 1996). The optimal smoothing parameters are chosen subject to a
trade-off between model fit and model complexity, i.e., through using the Akaike
Information Criterion, AIC (Akaike 1973). Spline-based methods help the mortality
functions to be ‘well-behaved’ while relying on the generalised linear modelling
framework (Currie, Durban, and Eilers 2006a; Dodd et al. 2018). In addition, since
mortality displays regular patterns, these smoothing approaches are considered more
natural for representing mortality changes than imposing a fairly rigid model structure
(Carmada 2012; Currie, Durban, and Eilers 2004, 2006a, 2006b).

Of all the three model specifications discussed above, we find that none adequately
captures the differences in the mortality experience of the different immigrant
populations  due  to  the  sparseness  of  the  data.  Rather,  in  situations  where  the  data  is
sparse, we use information from the total overseas-born population to augment the
irregular or missing information and use splines to reconcile the differences. The main
rationale is that the majority of immigrants coming to Australia (excluding refugees) are
considered healthy in comparison to the Australian-born population. This is because in
Australia immigrants are required to pass a health examination before they can access
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permanent residence visa status and some temporary visa statuses. This policy is
designed to (1) ensure that immigrants are free from any diseases considered to be a
threat to Australian society, and (2) prevent significant healthcare costs to Australian
taxpayers. Thus, the overseas-born population is expected to have commonalities across
their age-specific mortality patterns. Moreover, this approach provides estimates of the
age schedules of mortality with sufficient variation to discern differences in total
immigrant mortality over time and across space.

Our approach is specified as follows. First, consider the counts of deaths by age
group. For a given population in age group in region ݔ ݅, the total number of deaths
Di(x) follows a Poisson distribution: Di(x)~Poisson[Ei(x)*μi(x)], where the hazard (or
force of mortality) is μi(x) and the exposure (at-risk) population is 5/2[Ei1(x)+ Ei2(x)].
Ei1(x) and Ei2(x) denote the population sizes at the beginning and end of the five-year
interval, respectively. The age-specific death rates are thus mi(x) = Di(x) / {5/2[Ei1(x)+
Ei2(x)]}. In instances when the age-specific death rates, mi(x), cannot be computed (due
to  either  no  deaths  or  no  populations,  or  both,  we  initially  replace  the mi(x) with the
corresponding national rates for the specified immigrant population, and the total
overseas-born rates for cases when the national age-specific rates are unavailable.
Second, the computation of the spline smoothing was undertaken in R using the
MortalitySmooth package (Carmada 2012). The smoothing of the Poisson death rates
was undertaken using the ‘Mort1DSmooth’ function. While the Poisson distribution
provides a suitable model for analysing count data, the requirement that the mean and
variance should be equal is generally restrictive and impractical. This is because
demographic data is often over-dispersed and displays extra variation. As such, we
specify the option ‘overdispersion=TRUE’, which allows the spline-based smoothing to
accommodate overdispersion. After computing the mortality rates, they are transformed
into age-specific mortality probabilities, for use in the multiregional life table ,(ݔ)௜ݍ
calculations.

3.2 Log-linear smoothing of internal migration

Log-linear models are useful for describing and discerning patterns that underlie spatial
data presented in the form of contingency tables. Through considering the regularities
in the age, spatial, and temporal patterns of the migration flows, smoothed estimates of
interregional migration can be obtained by fitting unsaturated log-linear models
(Raymer and Rogers 2007; Rogers, Raymer, and Little 2010).

Following the general notation, we define ௜ܺ௝௔௦
ை஽஺ௌ 	as the counts given in the

bilateral migration contingency table, where O, D, A, S denote origin, destination, age,
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and sex, respectively. We specify the full (saturated) log-linear model for analysing
migration flow tables over space as:

log൫ ௜ܺ௝௔௦
ை஽஺ௌ൯ = ߣ ௜ைߣ	+ + ௝஽ߣ ௔஺ߣ	+ + ௦ௌߣ + ݂(݅, ݆, ܽ, (ݏ

																												+݃(݅, ݆, ܽ, (ݏ + ℎ(݅, ݆, ܽ, (ݏ + ݈(݅, ݆, ܽ, (ݏ

where ݂(݅, ݆, ܽ, ,݅)݃,(ݏ ݆, ܽ, ,݅)ℎ,(ݏ ݆, ܽ, ,(ݏ ݈(݅, ݆, ܽ, (ݏ represent sets of two-way interactions,
three-way interactions, and the four-way interaction between origin, destination, age,
and sex, respectively. This model can be contrasted with various unsaturated models
which assume, for example, that the internal migration flows are distributed according
to the marginal totals across origin, age, and sex, specified as:

log൫ ௜ܺ௝௔௦
ை஽஺ௌ൯ = ߣ ௜ைߣ	+ + ௝஽ߣ ௔஺ߣ	+ + .௦ௌߣ

The appropriateness of the reduced model is determined by fitting the predicted
flows to the observed flows and by using the likelihood ratio statistic or Chi-square
statistic to evaluate the goodness of fit. If the reduced form fits the observed data well,
then the model may be considered appropriate for estimating the flows.

3.3 Adaptation of multiregional transition probability

Key to the multiregional life table estimation is the conditional survivorship proportion
of interregional migration, denoted as pij(x), which is the probability that a person in
region i at exact age x will reside in region j at exact age x+5, with pii(x) denoting the
probability of staying. The life table functions of the hypothetical population are
computed by combining age-specific probabilities of dying and out-migrating to the
different component regions in the multiregional population system.

We first obtain the appropriate set of mortality probabilities, qi(x), which give the
probability of dying at each age for each of the eleven regions. We can then derive the
matrix of probabilities of out-migration as:

P(x)=ቌ
p11(x) ⋯ p1K(x)
⋮ ⋱ ⋮

pK1(x) ⋯ pKK(x)
ቍ , i = 1, …, K; j = 1, ..., K.

with pij(x) being the probability that an individual in region i at age x will survive and
move to region j five years later. The diagonal elements pii(x) denote the probability of
surviving and remaining in region i (and there are K regions in total). Ideally, the out-
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migration probability can be computed as pij(x)  = Nij(x)  / Ni+(x), where Nij(x)  is  the
number of people who start off in region i at age x and move to region j at x+5, and
Ni+(x) is the total number of people aged x in region i. Following Rogers (1975), we
make the assumption that an individual makes one move during that time period.
Similarly, pii(x) = Nii(x) / Ni+(x)= 1 – ∑ (ݔ)௜௝݌ − ௝ୀଵ(ݔ)௜ݍ , where Nii(x) is the number of
non-movers or persons remaining and is the probability of an individual in region (ݔ)௜ݍ
i dying between ages x and x +5. However, due to inaccuracies in the at-risk age-
specific populations and statistical perturbations for disclosure control, there are a
number of inconsistencies in the computations. We therefore apply an adjustment and
re-scaling procedure, where pij(x) = Nij(x) /  ∑i,jNij(x) (adjustment) and p*

ij(x) = [pij(x) /
∑i,jpij(x)][1–qi(x)] (rescaling). The adjustment corrects for the inconsistent populations
at risk, while the rescaling ensures that regional age-specific differences in mortality are
taken into account, and always sum to one.

4. Illustrative example

In this section we demonstrate the various steps to repair and smooth the sparse regional
mortality and migration data. For illustration, the methodology is implemented for the
Australian-born population and the immigrant populations born in the United Kingdom,
New Zealand, China, and India. To show how these populations have changed over
time, we focus on two periods: 1981–1986 and 2006–2011. The age patterns of
Chinese-born mortality and interregional migration exhibit irregularities and, in some
instances, observed zeros. Both situations complicate the construction of realistic
probabilities. At the regional level there are even more instances of ‘jagged’ mortality
schedules and zero values, especially at younger ages (e.g., there are no reported deaths
for  persons  under  25  years  of  age  for  some  regions  in  Australia).  Regional  mortality
rates for the Australian-born population, on the other hand, have much larger numbers
and exhibit the expected age patterns of mortality. Immigrants born in the United
Kingdom exhibit mortality patterns similar to the Australian-born, due to their longer
history of migration to Australia and larger population size. However, for smaller
capital city regions and regional and remote areas there are some irregularities present
in the age profiles as a result of their relatively small population sizes.

4.1 Step 1: National age schedules of mortality

The mortality rates for the Australian-born population and total overseas-born
population by sex are presented in Figure 4 for the 1981–1986 and 2006–2011 periods.
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The total overseas-born age schedules are used as a basis for overcoming zero values
and irregular patterns in the birthplace-specific immigrant mortality data, with males
and females treated separately. That is, when ‘zero’ mortality counts are present in the
data, the age-specific mortality rates of the total overseas-born population are imposed.
One thing to note is that the mortality schedules of the total overseas-born population
exhibit somewhat irregular patterns in comparison to the Australian-born population.
This occurrence is due to the smaller counts in the data and the concentration of young
and healthy adults in the immigration flows (Kennedy et al. 2014; Newbold and
Danforth 2003; Singh and Siahpush 2002).

Figure 4: Observed age-specific male mortality rates (logged) for the
Australian-born and overseas-born populations: 1981–1986 and
2006–2011

4.2 Step 2: Imposing and smoothing regional mortality schedules

The observed mortality across areas fluctuates widely, due to uncharacteristically large
(or small) death rates. For example, there was a large ‘spike’ in mortality for the 1981–
1986 male Chinese-born population in the New South Wales Coast region for the age
group 60–64 years. This was caused by two people out of a total population of twelve
dying. Another spike for this population occurred in the Canberra region for the age
group 75–79 years. This was due to three persons out of a population of seven dying. In
addition, there are a number of missing estimates caused by either having no observed
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deaths, or having no reported resident populations. There are also some instances where
every person in a certain age group dies. These are all undesirable features due to the
sparse data. To overcome these issues, we replace any zero values with the total
overseas-born male or female mortality rates and then smooth the data using splines.

Figure 5: Age-specific mortality rates (logged) for male populations born in
Australia, China, and the United Kingdom and located in Sydney,
Adelaide, and Remote Australia: 1981–1986 and 2006–2011

a) China
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Figure 5: (Continued)
b) United Kingdom

Note: o = reported; + = after smoothing.

To illustrate the second step procedure, consider the 1981–1986 age-specific
mortality patterns presented in Figure 5 for male immigrant populations born in China
and the United Kingdom living in Sydney, Adelaide, and Remote Australia. For the
Chinese-born  population,  it  can  be  seen  that  even  in  Sydney  there  is  zero  or  missing
observed mortality at childhood and adolescence. For the United Kingdom, on the other
hand, there are some deaths observed, but these are too few to fully capture the age
pattern of mortality over the life course. As shown, the smoothing helps to address the
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lack of reliable information on the age-specific mortality patterns across areas for the
different immigrant populations. Similar patterns are observed for the period 2006–
2011, except that the reported age patterns are closer to the smoothed patterns, which
can be attributed to higher levels of migration.

4.3 Step 3: Log-linear modelling of origin–destination migration flow tables

In the third step we address irregular patterns in the interregional migration data by
categorising it into three groups, based on data availability: (a) good quality data (b)
irregular data with discernible patterns, and (c) poor quality data with no discernible
patterns. For group (a) no smoothing is required and the observed data is analysed as is.
For (b), unsaturated log-linear models are used to smooth the age-specific flow data.
For (c) the age and migration patterns from other populations are imposed.

Understanding that there are two different processes influencing the distribution of
stayers and movers, we fit different log-linear models for movers and stayers (i.e., those
that remain in their area of residence during the five-year time period). This is standard
practice in the analysis of migration tables, where the stayers are represented as the
diagonal elements (Agresti 2002: 423–428). The final ‘best fitting’ model was based on
investigating which model captures the spatial structure of migration, while maximizing
the model fit through reducing the number of model parameters. As such, the final
model chosen for movers contained two-way interactions between origin and
destination and between age and sex. The final model for stayers was similar but had
two-way interactions between age and sex and between origin and sex. We investigated
adding more interactions for both the stayer and migrant models, but these were found
to be problematic because of the large number of zeros.

Since the United Kingdom-born immigrant population is considerably larger than
the other immigrant populations, we were able to fit a more complex model. For
movers, this model contained additional two-way interactions between origin and age,
destination and age, origin and sex, and destination and sex, whereas for stayers there
was an additional origin and age interaction. The quality of the Australian-born
migration data was considered good and, as such, there was no need to smooth the
internal migration flows.

Figure 6 presents illustrations of the smoothing resulting from the fitted log-linear
models, standardised to unit area, for three cases and two migration periods: ‘large’
flows represented by migration from Sydney to Melbourne, ‘medium’ flows
represented by migration from Sydney to Adelaide, and ‘small’ flows represented by
migration from Sydney to Remote Australia. Furthermore, the flows are compared
across four population groups consisting of those born in Australia, the United
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Kingdom, China, and India. In each plot the age profile of migration is presented before
and after log-linear smoothing, except for the Australian-born population where no
smoothing was applied. These plots provide an indication of the effect of randomness
on the age and spatial patterns of migration due to variation in the size of the immigrant
populations, which is especially noticeable in the smaller flows.

Figure 6a: Selected migration flows from Sydney to Melbourne for persons born
in Australia, the United Kingdom, China, and India: 1981–1986 and
2006–2011

1981–1986 1981–1986
Australia United Kingdom

1981–1986 1981–1986
China India

2006–2011 2006–2011
Australia United Kingdom
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Figure 6a: (Continued)
2006–2011 2006–2011
China India

Note: Dashed line = reported; Solid line = after log-linear smoothing.

Figure 6b: Selected migration flows from Sydney to Adelaide for persons born
in Australia, the United Kingdom, China, and India: 1981–1986 and
2006–2011

1981–1986 1981–1986
Australia United Kingdom

1981–1986 1981–1986
China India
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Figure 6b: (Continued)
2006–2011 2006–2011
Australia United Kingdom

2006–2011 2006–2011
China India

Note: Dashed line = reported; Solid line = after log-linear smoothing.

Figure 6c: Selected migration flows from Sydney to Remote Australia for
persons born in Australia, the United Kingdom, China, and India:
1981–1986 and 2006–2011

1981–1986 1981–1986
Australia United Kingdom
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Figure 6c: (Continued)
1981–1986 1981–1986
China India

2006–2011 2006–2011
Australia United Kingdom

2006–2011 2006–2011
China India

Note: Dashed line = reported; Solid line = after log-linear smoothing.

In Figure 6a and Figure 6b the standardised age profiles of the ‘large’ Sydney to
Melbourne flows and ‘medium’ Sydney to Adelaide flows, respectively, are presented
for the four subpopulations described above and for the 1981–1986 and 2006–2011
periods. In both sets of plots, the randomness associated with sparse data is most
noticeable for the immigrant populations born in China and India during the 1981–1986
period. The differences between the smoothed and reported migration flows for the
United Kingdom-born population, on the other hand, are more likely due to the
relatively simple unsaturated log-linear model applied to smooth the data (see Section
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3.2). Figure 6c presents the age profiles of ‘small’ flows from Sydney to Remote
Australia, for the four sub-populations: Australian-born, United Kingdom-born, China-
born and India-born. All reported flows for both periods, except for the Australian-born
population, contain irregularities, likely due to the small cell size of the flows. Here, the
smoothing appears to work well, whilst also capturing the different shapes of
interregional migration.

4.4 Step 4: Multiregional life tables

The final stage involved calculating both the uniregional and multiregional life tables
for each of the Australian-born and overseas-born populations. We focus on the
multiregional life expectancies at age 25 years to capture the peak ages of recent
immigrants. Regional retention is determined by analysing the diagonals of the
multiregional life tables (i.e., stayers). Regional attractiveness is determined by
analysing the off-diagonal elements of the multiregional life table. The full set of
multiregional life tables calculated for all 19 birthplace groups by sex and all six time
periods are presented in the supplementary material.

5. Results

The previous sections have set out the methodological approach for understanding the
dynamics of interregional migration in Australia, by place of birth, over the period 1981
to 2011. We now illustrate the resulting multiregional life tables, accounting for sparsity
and inadequate mortality and migration data, for two time periods (1981–1986 and
2006–2011) and the top-five largest countries of birth (Australia, New Zealand, United
Kingdom, China, and India).

5.1 The changing pattern of migration structures

The estimated multistate survivorship curves for Australian-born and Chinese-born
males  living  in  Sydney,  Melbourne,  Adelaide,  and  Remote  Australia  at  age  zero  are
presented in Figure 7. These curves, based on the 2006–2011 mortality and
interregional migration data, show the relative survival ratios of individuals at different
ages, and how they vary depending on the different origin regions. For a multistate
survivorship curve the area under the curve is divided into subcomponents, each
representing the time spent in each region (state) at each age; in our example there are
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eleven states, and the survivorship curves reflect the time spent in each of these regions,
depending on the region of origin (i.e., Sydney, Melbourne, Adelaide, and Remote
Australia). The white area under each survivorship curve captures the proportion of the
cohort that remains in the same region (i.e., non-movers).

The results in Figure 7 show that the Australian-born and Chinese-born
populations experience very different survivorships. For the Australian-born population
that live in Sydney, Melbourne, and Adelaide, there is considerable retention across age
groups in contrast to those that live in Remote Australia. These patterns are different for
the Chinese-born population. For this population, the survivorship curves for those who
live in Sydney and Melbourne exhibit a less steep decline in mortality with time and
provide evidence of higher retention in those cities when compared with those in
Adelaide and Remote Australia. Also, reflecting the fact that children are unlikely to
immigrate to Remote Australia, the multiregional survivorship curve is one at the early
ages. Further, Sydney and Melbourne are especially attractive as destinations for the
Chinese-born internal migrants.

Figure 7: Male multiregional survivorship proportions for selected regions in
Australia, 2006–2011: Australian-born  and China-born persons

Australia: Sydney
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Figure 7: (Continued)
China: Sydney

Australia: Melbourne

China: Melbourne
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Figure 7: (Continued)
Australia: Adelaide

China: Adelaide
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Figure 7: (Continued)
Australia: Remote Australia

China: Remote Australia

5.2 Multiregional retention expectancies

We now provide an indication of how attractive different regions are to immigrant
populations.  For  this  we  focus  on  the  number  of  remaining  years  of  life  that  an
individual can be expected to live in given region, at a particular age, provided that they
remain  in  Australia.  For  ease  of  comparison  and  interpretation,  we  convert  these
multiregional life expectancies into percentages of remaining life.

Since most people migrate in their late teens and twenties, we again present the
retention life expectancies at exact age 25 years. Figure 8 shows the results for the male
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Australian-born population, compared to males born in the United Kingdom, New
Zealand, China, and India. Similar patterns were found for females. We are also
interested in ascertaining whether there are regional differences, and for this purpose we
look at Sydney, Melbourne, Adelaide, and Remote Australia, to represent a broad
spectrum of regional variability. The retention rates, highlighted in the figures, are the
expected percentages of remaining life that will be spent in the particular (reference)
region, assuming that they do not emigrate out of Australia. These retention rates
provide a useful measure of regional attractiveness and facilitate comparison across the
different groups.

The results show that different immigrant groups have varying attractiveness for
different  regions.  Males  born  in  China  and  India  are  clearly  attracted  to  Sydney  and
Melbourne, and this has increased over time. Even when they start off living in other
locations, they display strong likelihoods of moving to these two cities. However, this
strong preference for Sydney and Melbourne is not true for male immigrants born in the
United Kingdom or New Zealand, or for those born in Australia. For Remote Australia
the retention rates are much lower, and in particular there is a very low likelihood of
immigrants from India arriving in remote Australia and staying there. Males born in
Australia are roughly seven times more likely to remain in remote Australia than
Indian-born migrants.

Figure 8a: Multiregional life expectancies (percentages) for males aged 25 years
old born in Australia, United Kingdom, New Zealand, China, and
India, 1981–1986 and 2006–2011: Sydney and Melbourne

1981–1986
Sydney
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Figure 8a: (Continued)
2006–2011
Sydney

1981–1986
Melbourne
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Figure 8a: (Continued)
2006–2011
Melbourne

Note: The corresponding multiregional life expectancy for each country of birth is provided in parenthesis.

Figure 8b: Multiregional life expectancies (percentages) for males aged 25 years
old born in Australia, United Kingdom, New Zealand, China, and
India, 1981–1986 and 2006–2011: Adelaide and Remote Australia

1981–1986
Adelaide
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Figure 8b: (Continued)
2006–2011
Adelaide

1981–1986
Remote Australia
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Figure 8b: (Continued)
2006–2011
Remote Australia

Note: The corresponding multiregional life expectancy for each country of birth is provided in parenthesis.

6. Conclusion and discussion

In Australia, immigration is a major political and developmental issue, and there are
specific policies designed to encourage immigrants to settle in regional and more
remote areas for population growth and economic development (Hugo 2008). The aim
of these policies is to address skill shortages, attract overseas businesses, and spread the
population more evenly across the country (Department of Home Affairs 2018). To
understand their effectiveness we need information that moves beyond the analysis of
just immigration flows towards measures that capture the durations of time expected to
be spent in particular places. Combining mortality data and internal migration data of
immigrant populations in a multiregional life table provides the analyst with such
measures.

In this paper we have shown how the patterns of immigrant mortality and internal
migration differ depending on the country of birth. This information is relevant because
Australia has experienced a substantial transition from receiving predominantly
Europeans prior to 1975 to receiving immigrants from all over the world, particularly
from China and India (Wilson and Raymer 2017). However, to be able to study the
long-term spatial and demographic consequences of these patterns one must first
overcome data limitations due to the relatively small sizes of the immigrant populations
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and their uneven population distribution. Moreover, many of the recent immigrant
groups  are  too  small  in  population  size  and  young  in  age  composition  to  have
experienced mortality. This creates a problem when trying to understand the probability
of dying and calculation of life tables in relation to other immigrant groups.

We developed smoothing methods for age-specific mortality rates that combined
observed death rates for particular immigrant groups with data from all overseas
immigrants. We also used log-linear models to improve the sparse interregional
migration flow data. By fitting unsaturated models to them, we were able to borrow
strength from marginal distributions contained in the data, and use these to calculate
more plausible conditional survivorship proportions of interregional migration. We
envision the framework and methodology presented in this paper being useful and
extendable to other contexts that involve the study of demographic change among any
set of small subpopulations that include other types of age-specific transitions, such as
between education levels, health statuses, and employment statuses.

One aspect we did not include in our methodology is the inclusion of uncertainty
in the estimates. While a considerable amount of research is available on integrating
uncertainty in age-specific mortality estimates, integrating uncertainty in a
multiregional context is considerably more difficult. This is especially true in the
presence of poor or sparse data (see Gill 1992: 273). To include uncertainty in the
model framework, one would have to account for the sparseness, build in the complex
correlation structures (region, age, sex, time), and account for the differing levels of
uncertainty between the different types of data on internal migration and mortality.
Wiśniowski and Raymer (2016) have developed a prototype Bayesian multiregional
population-forecasting model for regions in England that could provide a basis for such
work.

Lastly, we demonstrated the usefulness of multiregional life tables for analysing
the demographic consequences of immigration and found striking differences between
the populations born in Australia, the United Kingdom, China, and India. Without
addressing the sparse nature of the data, these measures would be unattainable and our
understanding of the long-term consequences of migration would be limited. Future
research will focus on exploring these results in more detail and over time, as well as
for other immigrant groups.

The calculation of multiregional life tables is useful for other research. They form
the basis for multiregional population projections and demographic analyses.
Information from these tables can be combined with data on immigration and
emigration to study the sources of regional population change and to make predictions
about future population distributions and ethnic compositions. Furthermore, they may
be linked to the Australian-born population through immigrant births. Considering
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subnational populations as a system, as opposed to a set of ‘independent’ regions,
greatly enhances the study of demographic change and interaction.

In conclusion, this research provides a methodological framework for overcoming
issues associated with using sparse data to conduct detailed demographic analyses. We
focused on improving immigrant mortality and international migration data and the
calculation of multiregional life tables. We hope this research will inspire similar
research in other high-immigration countries. We believe that as diverse streams of
migration continue, migration will become increasingly important for understanding
demographic change.
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