
DEMOGRAPHIC RESEARCH

VOLUME 41, ARTICLE 31, PAGES 913-948
PUBLISHED 9 OCTOBER 2019
https://www.demographic-research.org/Volumes/Vol41/31/
DOI: 10.4054/DemRes.2019.41.31

Research Article

A spatial dynamic panel approach to modelling
the space-time dynamics of interprovincial
migration flows in China

Yingxia Pu

Xinyi Zhao

Guangqing Chi

Jin Zhao

Fanhua Kong

© 2019 Yingxia Pu et al.

This open-access work is published under the terms of the Creative Commons
Attribution 3.0 Germany (CC BY 3.0 DE), which permits use, reproduction,
and distribution in any medium, provided the original author(s) and source
are given credit.
See https://creativecommons.org/licenses/by/3.0/de/legalcode.

https://creativecommons.org/licenses/by/3.0/de/legalcode


Contents

1 Introduction 914

2 Literature review 916

3 Methods 919
3.1 General dynamic panel data model 919
3.2 Spatial dynamic panel data model 921
3.3 Interpreting the space-time effects of migration processes 923

4 Results 925
4.1 Model parameter estimates 927
4.2 Analysis of space-time effects 930
4.2.1 Population size 933
4.2.2 GDP 934
4.2.3 Age structure 935
4.2.4 Real wages 936

5 Conclusions 937

6 Acknowledgements 938

References 939

Appendix 948



Demographic Research: Volume 41, Article 31
Research Article

http://www.demographic-research.org 913

A spatial dynamic panel approach to modelling the space-time
dynamics of interprovincial migration flows in China

Yingxia Pu1

Xinyi Zhao2

Guangqing Chi3

Jin Zhao4

Fanhua Kong5

Abstract

BACKGROUND
Migration plays an increasingly crucial role in regional growth and development.
However, most empirical studies fail to simultaneously capture the spatial and temporal
aspects of migration flows, and thus fail to reveal how space-time dynamics shape path-
dependent migration processes.

OBJECTIVE
This study attempts to incorporate space-time dimensions into a traditional gravity
model and to measure the impact of regional socioeconomic changes on migration
flows. Doing so allows us to better understand the space-time dynamics of complex
migration processes.

METHODS
We construct a spatial dynamic panel data model for dyadic migration flows and
decompose origin, destination, and spillover effects into their contemporaneous, short-,
and long-term components. We then apply this approach to panel data of interprovincial
migration flows in China from 1985 to 2015.
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RESULTS
The empirical results indicate that space-time interactions are crucial to the formation
and evolution of migration flows. Population size and age structure play an important
role in the Chinese interprovincial migration process, particularly dominated by
significant and positive spillover effects in the contemporaneous period. The
relationship between development and migration tends to take an inverted U-shaped
curve, a fact not revealed in nonspatial models.

CONCLUSIONS
This fine-grained decomposition of origin, destination, and spillover effects over
contemporaneous, short-, and long-term periods can help understand the spatial and
temporal mechanisms of migration and its driving factors.

CONTRIBUTION
We propose a spatial dynamic panel data model for migration flows and estimate space-
time effects of regional explanatory variables. This method could be applied to model
other flow data such as trade and transportation flows.

1. Introduction

In recent times, migration has played an increasingly prominent role in shaping regional
population growth, socioeconomic transition, and regional resilience (Bijak 2011;
White 2016; Biagi et al. 2018). Regional economic, social, and cultural factors affect
the relative propulsion and attractiveness of origins and destinations, as well as the
highly selective and asymmetric migration processes (Lee 1966; Williamson 1988;
Rogers 1990; Stillwell 2008; Shen 2016, 2017). Thus, measuring the impact of regional
origin- and destination-specific characteristics on migration flows can not only help to
identify important determinants and dynamic mechanisms of migration, but also to
understand the vulnerability and resilience of this complex network (Griffith and Chun
2015; Crown, Jaquet, and Faggian 2018).

More importantly, migration is a path-dependent process: Inter-personal relations,
through network and herd effects, facilitate current and subsequent migration. When
previous migrants provide information about shelter and work assistance or generally
reduce the difficulty and stress of relocation to a foreign environment, pioneer
migration leads to network externalities in migration (Petersen 1958; Lee 1966; Church
and King 1993; Baláž and Williams 2007). In the face of uncertainty or imperfect
information about destinations, potential migrants are more likely to follow others, thus
exhibiting stronger herd behaviours (Epstein 2008). It is these endogenous feedback
mechanisms operating on the network that give migration processes their own
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momentum (De Haas 2010a). However, modelling the dynamics of migratory
phenomena over space and time has not been investigated extensively (Mitze 2012,
2016; Mavroudi and Nagel 2016; Bernard 2017; Beenstock and Felsenstein 2019).

Most empirical migration studies have adopted the traditional gravity models to
examine the push and pull forces of origins and destinations, but such studies fail to
reveal the intrinsic mechanisms of migration systems (Griffith and Jones 1980; Chun
2008; LeSage and Pace 2008, 2009; Griffith 2009; Chun and Griffith 2011).
Fortunately, recent developments in spatial econometric interaction models have laid a
solid foundation for modelling origin-destination (OD) flows through various network
structures (Patuelli and Arbia 2016). This provides an opportunity to capture the spatial
dependence of migration flows and to investigate the spillover effects implicit in
migration processes (LeSage and Pace 2008, 2009; LeSage and Fischer 2016).
However, the network and other types of spatial effect are always interpreted as
outcomes of a long-run equilibrium: Time plays no explicit role in such cross-sectional
models (LeSage and Thomas-Agnan 2015).

In this paper, we present a spatial dynamic panel data model to study migration
flows that introduces an individual time lag (capturing temporal dependence), various
spatial lags (accounting for spatial dependence), and cross-product terms, thereby
integrating space-time dependence and traditional gravity models. This allows us to
explore the path-dependent migration process: how a change in a single region’s
characteristics will produce contemporaneous and future responses to that region’s
inflows and outflows as well as to those of other regions.

We then apply our proposed model with its derived space-time effects to analyse
the dynamic mechanisms behind interprovincial migration flows in China from 1985 to
2015. Since the start of the reform and opening-up policy in late 1978, internal
migration has been on the rise, contributing enormously to China’s ‘economic miracle’
and rapid urbanization (United Nations 2012; Liang and Song 2016). According to the
1990 census and the 2015 1% population sample survey, the number of interprovincial
migrations soared from 11.06 million between 1985 and 1990 to 53.28 million from
2010 to 2015, roughly a fivefold increase during the three decades (NBSC 1993, 2016).

The determinants driving large-scale interprovincial migration in China have
received much attention (Cai and Wang 2003; Li 2004; Fan 2005; Shen 2016, 2017).
Institutional factors (i.e., the relaxation and reform of the household registration or
hukou system) had a large impact on the initial increase in migration in the 1980s, while
the subsequent increase since 1990 has been largely driven by China’s rapid and
unbalanced economic development (Shen 2015). In addition, the global phenomenon of
social networks plays an important role in people’s decision to undertake migration and
in the choice of specific destinations (Fan 2005).
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To conduct a detailed space-time analysis of interprovincial migration flows in
China, we choose four explanatory variables to characterize regional socioeconomic
conditions at the origin and destination locations - population size, gross domestic
product (GDP), age structure, and real wage level -, and use railway travel time
between different provinces to measure improved transportation infrastructure. We also
consider temporal, spatial, and space-time dependencies among migration flows to
characterize the potential existence of a path-dependent process. Moreover, we compare
the results from the spatial dynamic panel data model with those of a nonspatial model
to learn more about how space-time dynamics influence the evolution of a migration
system, and identify the most significant factors dominating interprovincial migration in
China from 1985 to 2015. The empirical results may have important implications for
understanding the evolution of regional migration systems and for pursuing sustainable
regional development planning.

This paper proceeds as follows. Section 2 reviews recent developments in
migration theories and migration modelling methods. Section 3 introduces our general
dynamic panel data model and spatial dynamic panel data model for migration flows
and derives the space-time effects for our spatial model. In section 4 we conduct an
empirical space-time analysis to uncover the mutual dynamics of China’s increasing
interprovincial migration flows from 1985 to 2015. Section 5 concludes the manuscript
and proposes directions for future research.

2. Literature review

Migration is a path-dependent process across space and over time (Petersen 1958). Not
only do pioneer migrants (or migration stocks) help break the ice and clear the way for
later migrants, but neighbouring migration flows also influence potential migrants’
decision-making. The forces behind this semi-automatic migration process can be
further ascribed to two types of effects (Bauer, Epstein, and Gang 2007; Epstein 2008:
568): network effects, or “I will go where my people are, since they will help me,” and
herd effects, or “I will go where I have observed others go, because those who went
before me cannot be wrong, even though I would have chosen to go elsewhere.”

The existence of positive network externalities explains migration clusters, when
previous migrants provide information and help for followers (Bauer, Epstein, and
Gang 2007; Epstein 2008). Over time, increase in migration stocks may aggravate
competition for jobs, leading to negative externalities. However, even if network effects
are not present, potential migrants may follow the herd and move to the places recent
migrants have been observed to choose, thus producing mass migration. Herd effects
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may be more pronounced when people believe that others will follow prior migrants.
That said, herd and network effects can interact with each other in migration processes.

A popular approach to testing the hypothesis that past migration may influence
present migration patterns is to introduce migration stock as an explanatory variable in
traditional gravity models (Greenwood 1969, 1970; Kau and Sirmans 1979; Fan 2005).
The positive coefficient of migration stock supports the idea that information from past
migrants (friends and relatives) stimulates current migration, and the failure to include
this variable could result in other variables being overestimated or obscured
(Greenwood 1969, 1970). Further research indicates that recent migrants exert a
dominant influence on future migrants, and migration stock may exert a negative
influence on current migration in the adjustment process towards equilibrium (Laber
1972; Kau and Sirmans 1979). While gravity models have been widely employed in
migration modelling since the 1940s (Zipf 1946; Sen and Smith 1995; Stillwell 2008),
they mainly focus on the push and pull forces of origins and destinations over a given
period. The dynamic relationship implied in migration processes needs to be modelled
explicitly.

With the growing availability of space-time migration flow data, panel data
analysis provides an opportunity to investigate the evolution mechanisms of observed
migration patterns (Odland and Shumway 1993; Rainer and Siedler 2009; Etzo 2011;
Bellos and Subasat 2012; Chort and de la Rupelle 2016; Mátyás 1997, 2017). The
temporal dependence structures among migration flows at different time periods can be
accommodated as a time-lagged dependent variable in dynamic panel gravity models.
For example, Davidescu et al. (2017) identify the main determinants of Romanians’
migration and confirm that previous migration has a positive impact on later flows.
Moreover, panel data analysis can improve the precision of model estimates with larger
sample sizes as well as with the expression of time effects (Elhorst 2010, 2012, 2014).
However, the feedback effects among migration flows are largely ignored because of
the independence assumption of interrelated spatial units implicit in panel data models.

The clustered patterns of migration flows can be measured in terms of spatial or
network autocorrelation in spatial statistics and spatial econometrics (Plane and
Rogerson 1986; Fotheringham 1991; Rogers et al. 2002; Cushing and Poot 2003;
Anselin, Le Gallo, and Jayet 2008; Zimmer 2008; Chun 2008; LeSage and Pace 2008,
2009; Chun and Griffith 2011; Griffith and Fischer 2013, 2017; Lamonica and Zagaglia
2013; Bavaud, Kordi, and Kaiser 2018). If the number of outflows generated by origins
(or inflows received by destinations) is enhanced by neighbouring origins (or
neighbouring destinations), positive spatial autocorrelation among migration flows
occurs (Griffith and Jones 1980; Black 1992). LeSage and Pace (2008) further define
three types of spatial dependence to distinguish different migratory phenomena: Any
migration flow is influenced by (1) flows from neighbouring origins to the same
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destination, or origin-based dependence; (2) flows from the same origin to neighbouring
destinations, or destination-based dependence; and (3) flows from neighbouring origins
to neighbouring destinations, or origin-to-destination-based dependence. The herd and
network effects provide a rationale for the observed spatial dependence among origins
and/or destinations (Bauer, Epstein, and Gang 2007; Epstein 2008).

Today, there are two approaches to accommodating spatial dependence structures
in migration modelling. The first is eigenvector spatial filtering, which filters
origin/destination dependence by abstracting eigenvectors from a spatial weight matrix
as additional covariates within Poisson-type regression models (Chun 2008; Griffith
and Chun 2015). The second is spatial econometric interaction modelling, which
explicitly expresses spatial dependence in spatial econometric interaction models
(LeSage and Pace 2008, 2009; LeSage and Fischer 2016). In this study we focus on the
second approach because of its ability to quantify spatial dependence and associated
spillover effects among migration flows.

The incorporation of space and time dimensions into migration studies is
promising. Mitze (2012) discusses several methods for spatially updating dynamic
panel models, including spatial lag and spatial Durbin model specifications, and
demonstrates the potential role of spatial autocorrelation in the analysis of German
internal migration flows since re-unification. Subsequently, Mitze (2016) applies a
spatial dynamic panel data model to link outflows with regional labour market signals
and highlights the importance of mutual dynamic features in German internal migration
between 1993 and 2009. Although the extension of spatial dynamic panel models to the
case of dyadic flow data is straightforward, the interpretation of effects estimates of
explanatory variables is not explicit, due to the existence of numerous responses
triggered by changes in regional characteristics in an interwoven network of migration.

To better understand the feedback mechanisms behind migration processes, we
should analyse and interpret models’ parameter estimates correctly and roundly.
Recently, scholars have expressed some caveats regarding employing parameter
estimates to reflect the responses of the dependent variable to changes in explanatory
variables over space and time (Debarsy, Ertur, and LeSage 2012; Elhorst 2012, 2014;
LeSage and Thomas-Agnan 2015; LeSage and Fischer 2016). As such, the coefficient
estimates for dynamic space-time panel models cannot be directly interpreted as partial
derivatives that relate the responses of the dependent variable completely to changes in
the explanatory variable (Debarsy, Ertur, and LeSage 2012). Instead, these models
adopt direct and indirect effects, which are the own- and cross-partial derivatives
associated with explanatory variables, as well as contemporaneous, short-, and long-
term effects. To interpret spatial econometric dyadic flow models, LeSage and Thomas-
Agnan (2015) derive origin, destination, intraregional, and spillover effects (or network
effects) arising from changes in regional characteristics. Considering the expression of
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space-time relationships in general panel data models and various types of effect
estimates from spatial econometric interaction models, we need to make more effort to
explore the mutual space-time effects of migration flows in the space-time dimension.

To address these challenges in modelling and interpreting migration processes, this
study accomplishes the following: (1) We present a spatial dynamic panel data model of
migration flows to uncover the space-time dynamics underlying path-dependent
migration processes. Temporal, spatial, and space-time dependencies among migration
flows can be accommodated in our proposed model. (2) We derive the expression of
origin, destination, and spillover effects of explanatory variables as well as their
corresponding decomposition of contemporaneous, short-, and long-term effects. These
effects can be used to quantify the magnitude of herds and network effects implicit in
migration processes, thus bridging the gap between migration theories and applied
methodologies. (3) We apply our model and its associated effect estimates to explain
the space-time dynamics in China’s interprovincial migration from 1985 to 2015, which
can be extended to similar OD flow studies as well as to other countries.

3. Methods

3.1 General dynamic panel data model

Traditional gravity or spatial interaction models focus on the impacts of origin- and
destination-specific characteristics and the distance-decay effect on observed flows
(Sen and Smith 1995; Mátyás 1997). Given this starting point, this study considers
temporal dependence between adjacent time periods. For simplicity, we assume that
migration flows in a given time period are dependent only on the immediate past period
values, regardless of subsequent periods, as shown in Figure 1.

Introducing a first-order time lag of the dependent variable into the traditional
gravity model allows us to determine a dynamic panel data model for migration flows
as shown in Equation (1) (Parent and LeSage 2010, 2012):

ܻ = ߶ܻି ଵ + ்×ேߡߙ + ܺߚ + ܺௗߚௗ + ܩߛ + ,ߟ
ߟ = ேߤ + ்×ேߝ ,  (1)

where ଵݕ) = ܻ
ᇱ , … , ்ݕ

ᇱ )ᇱ consists of ܶ time periods of migration flows and
௧ݕ ଵ௧ݕ) =  , … , ே௧)ᇱ is anݕ ܰ ´ 1 (ܰ = ݊ଶ) column vector of regional gross flows
constructed by stacking the columns of the ݊ × ݊ flow matrix for n regions at the thݐ
time period; ܻି ଵ = (ݕ

ᇱ , … , ଵି்ݕ
ᇱ )ᇱ represents the first-order time lag of ܻ in the same

manner; ߡே×் is an ܰܶ × 1 column vector of ones; ܺ = (ݔଵ
ᇱ, … , ்ݔ

ᇱ)ᇱ and
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ܺௗ ௗଵݔ) = 
ᇱ, … , ௗ்ݔ

ᇱ)ᇱ are the explanatory variables at origins and destinations covering
ܶ time periods where is formed by the Kronecker product (ௗ௧ݔ)௧ݔ ௧ݔ ⊗ ߡ) ߡ ⊗ ,(௧ݔ
௧ is anݔ ݊ × ݇ explanatory variable matrix for ݊ regions at the th time period, resultingݐ
in an ݊ଶ × ݇ block matrix as the origin (destination) variable for all the flows; and
) = ܩ ଵ݃

ᇱ, … , ்݃
ᇱ)ᇱ, where ݃௧ represents the distance between all origins and destinations

at the th time period, in the form of time-invariant Euclidean distances or time-variantݐ
migration costs. The error term vector is decomposed into random individual effects ߟ
ே and the disturbance vectorߤ ே×். Theߝ ܰ × 1 column vector ே captures individualߤ
heterogeneities among ܰ migration flows with ,~ܰ(0ߤ ఓߪ

ଶ), which change only with
the individuals and are constant over time. The ்×ேߝ  is assumed to be uncorrelated with
ே and is identically distributed with zero mean and varianceߤ ఌߪ

ଶܫே. ,ߙ ,ௗߚ ,ߚ and ,ߛ ߶
are the parameters to be estimated: ௗߚ  andߚ ,is the intercept ߙ  reflect the impacts
associated with the origin- and destination-specific characteristics, denotes the impact ߛ
of distance between different regions, and ߶ represents the magnitude of temporal
dependence.

Figure 1: The temporal dependence structure of migration flows

 

Note: The OD migration flow in the tth time period in a red solid line is influenced by the previous flow in time period t-1 in a red
dotted line, and will exert a potential impact on the future flow in time period t+1 in a red dashed line.

A dynamic panel data model results in a greater degree of freedom and hence
increases estimation efficiency (Elhorst 2012, 2014). Moreover, the model proposed
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here accounts for more complicated temporal dependence and individual effects than
the conventional gravity model can capture.

3.2 Spatial dynamic panel data model

As explained in Section 1, migration is a path-dependent process. Any migration flow is
influenced not only by origin- and destination-specific characteristics, but also by the
same flow during the previous period (temporal dependence), the neighbouring flows in
the current period (spatial dependence), and the neighbouring flows in the previous
period (space-time diffusion dependence) (Parent and LeSage 2010, 2012; Mitze 2016).
In short, unlike unidirectional temporal dependence (Figure 1), space-time dependence
is multidimensional and multidirectional in nature (Figure 2).

Figure 2: The space-time dependence structure of migration flows

Note: The OD migration flow in the tth time period in a red solid line is influenced not only by the previous flow in time period t-1 in a
red dotted line (capturing temporal dependence) and the current neighbouring flows (O1D, OD1 and O2D1) in purple, green, and
orange solid lines (representing origin-, destination-, and origin-to-destination-based spatial dependence, respectively), but also by
the previous neighbouring flows in purple, green, and orange dotted lines (representing origin-, destination-, and origin-to-destination-
based space-time dependence, respectively). Furthermore, the current flows will exert potential impacts on the flows in future time
period t+1 in dashed lines of different colours.

In addition to temporal dependence, our model incorporates origin-, destination-,
and origin-to-destination-based spatial dependence, as proposed by LeSage and Pace
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(2008, 2009). Assuming ܹ is the ݊ × ݊ spatial weight matrix with zeros on the
diagonal, these three types of spatial dependence are defined by the corresponding
network weight matrices ܹ, ௗܹ, and ௪ܹ: ܹ = ܹ ⊗ ே, ௗܹܫ = ேܫ ⊗ ܹ, and ௪ܹ =
ܹ ⊗ ܹ (Chun 2008; LeSage and Pace 2008, 2009; LeSage and Llano 2013; Griffith,
Fischer, and LeSage 2017).

Based on the spatial dependence of migration flows, we then define another three
types of space-time diffusion dependence. If a migration flow in a given time period is
influenced by flows from neighbouring origins to the same destination in the time
period immediately preceding it, this can be understood as origin-based space-time
dependence. Similarly, destination- and origin-to-destination-based space-time
dependence of migration flows can be accordingly defined.

We now extend the general dynamic panel data model with the above spatial
dependence and space-time diffusion dependence to derive a spatial dynamic panel data
model of migration flows (Equation 2):

ܻ = ்ܫ)ߩ ⊗ ܹ)ܻ + ்ܫ)ௗߩ ⊗ ௗܹ)ܻ + ்ܫ)௪ߩ ⊗ ௪ܹ)ܻ + ߶ܻି ଵ + ்ܫ)ߠ ⊗ ܹ)ܻି ଵ
+ ்ܫ)ௗߠ ⊗ ௗܹ)ܻି ଵ + ்ܫ)௪ߠ ⊗ ௪ܹ)ܻି ଵ + ்×ேߡߙ + ܺߚ + ܺௗߚௗ
+ ܩߛ + ,ߟ

ߟ = ேߤ + ்×ேߝ , (2)

where ்ܫ  is the ܶ-dimensional identity matrix; the Kronecker products ்ܫ ⊗ ܹ, ்ܫ ⊗
ௗܹ, and ்ܫ ⊗ ௪ܹ represent the space-time weight matrices for all migration flows over

ܶ time periods; ்ܫ) ⊗ ܹ)ܻ, (்ܫ ⊗ ௗܹ)ܻ, and ்ܫ) ⊗ ௪ܹ)ܻ, accordingly, represent
origin-, destination-, and origin-to-destination-based spatial lags of migration flows in
corresponding time periods; ்ܫ) ⊗ ܹ)ܻି ଵ, ்ܫ) ⊗ ௗܹ)ܻି ଵ, and ்ܫ) ⊗ ௪ܹ)ܻି ଵ
represent origin-, destination-, and origin-to-destination-based space-time lags of
migration flows. Like the scalar parameter ߶ of temporal dependence, (ߩ, ߩௗ, ߩ௪) and
measure the strength of the spatial dependence and space-time diffusion (௪ߠ ,ௗߠ ,ߠ)
dependence, respectively.

This study adopts the Bayesian Markov chain Monte Carlo (MCMC) sampling
method to estimate the associated parameters, thus avoiding multidimensional
numerical integration in maximum likelihood (ML) or quasi-maximum likelihood
(QML) methods (Chib and Carlin 1999; LeSage and Pace 2009; Elhorst 2010, 2012,
2014). Specifically, we use Bayesian updating schemes based on the joint posterior
distribution of the parameters of interest in the manner of sampling from their posterior
distributions (Bhargava and Sargan 1983; Parent and LeSage 2010, 2012; LeSage
2014). The joint posterior distribution is derived as follows:
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ߚ,ߙ൫ ,ௗߚ, ఌߪ,ߛ
ଶ,ߪఓ

ଶ,ߩ,ߩௗ ௗߠ,ߠ,߶,௪ߩ, ௪หܻ൯ߠ, ∝ ݂(ܻ|Υ, ேߤ ఌߪ,
ଶ,(ߠ,߶,ߩ൫ߤேหߪఓ

ଶ൯
ఓߪ൫

ଶ൯(Υ)ߪ)(ߠ)(߶)(ߩ)ఌ
ଶ), (3)

where Υ = ߚ,ߙ)
ᇱ,ߚௗ

ᇱ, ,(ߛ ߩ = ௗߩ,ߩ) ௪), andߩ, ߠ = ;(௪ߠ,ௗߠ,ߠ) ݂(ܻ| ⋅) represents
the likelihood function; and .represents the prior distribution of each parameter (⋅)

The samples drawn from the set of conditional posterior distributions by the
MCMC sampling method are used to estimate the associated parameters and their
significance. The specific MCMC sampling and updating scheme for the spatial
dynamic panel model are presented in the Appendix.

3.3 Interpreting the space-time effects of migration processes

For a spatial dynamic panel data model, a change in regional characteristics not only
has a direct influence on the outflows and inflows from and to this region, but also has
an indirect effect on the flows to and from other regions in the migration network over
space and time. Therefore, there is a need to quantify various responses in the network
from a local perspective (Golgher and Voss 2016). Following LeSage and Thomas-
Agnan (2015), we extend the scalar summary measures of origin, destination,
intraregional, and spillover effects to a space-time context and decompose them into
contemporaneous, short-, and long-term components to reveal the changing impacts
over time.

A change in a typical region at any time will potentially bring about transitory ݐ
impacts on the flows during the period ݐ + ܶ to different degrees. Specifically, total
effects (TE) are the impacts on all flows in the manner of ݊ଶ × ݊ partial derivatives
shown in Equation (4) (Debarsy, Ertur, and LeSage 2012; LeSage and Thomas-Agnan
2015):

ܧܶ =

⎝

⎜
ଵܧܶ⎛

ଶܧܶ
⋮

⎠ܧܶ

⎟
⎞
=

⎝

⎜⎜
⎛߲ ଵܻ(௧ା்)/߲ ଵܺ(௧)



߲ ଶܻ(௧ା்)/߲ܺଶ(௧)


⋮
߲ ܻ(௧ା்)/߲ܺ(௧)

 ⎠

⎟⎟
⎞
= ்ܦ

⎝

⎜
ߚଵܬ⎛

 + ௗߚଵ݀ܬ


ߚଶܬ
 + ௗߚଶ݀ܬ



⋮
ߚܬ

 + ௗߚ݀ܬ
⎠

⎟
⎞
,

்ܦ = ,ଵିܤ்(ܥଵିܤ)்(1−) (4)
=  ܤ మܫ − ߩ ܹ − ௗߩ ௗܹ − ௪ߩ ௪ܹ ,
=  ܥ మܫ߶)− + ߠ ܹ + ௗߠ ௗܹ + ௪ߠ ௪ܹ),

where B represents the space filter and C the space-time diffusion filter, allowing
producing the true elasticities of different factors after introducing space-time
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interactions.  is anܬ ݊ × ݊ matrix of zeros with the ݅th column equal to , andߡ  is݀ܬ
an ݊ × ݊ matrix of zeros with the ݅th row equal to ߡ

ᇱ  (݅ = 1,… ,݊). Thus, the rows of the
matrix ܧܶ  (߲ ܻ(௧ା்)/߲ ܺ(௧)

 ) record the impacts on inflows to region ݅, and its columns
record the impacts on outflows from region ݅. That is, each element corresponds to the
change of different flows concerning region ݅ in detail.

Accordingly, we can calculate the cumulative total effects (CTE) over all ܶ time
periods using Equation (5):

ܧܶܥ = ቌ
்ாభ
்ாమ

⋮
்ா

ቍ =

⎝

⎜
⎛డభ(~శ)/డభ()

ೝ

డమ(~శ)/డమ()
ೝ

⋮
డ(~శ)/డ()

ೝ
⎠

⎟
⎞
= ∑ ௦ܦ

்
௦ୀ ൮

భఉ
ೝାௗభఉ

ೝ

మఉ
ೝାௗమఉ

ೝ

⋮
ఉ

ೝାௗఉ
ೝ

൲. (5)

A special case is the contemporaneous effect (T = 0), which is caused only by
spatial interactions without temporal dependence. As time passes, ܶ tends to be infinite
and the cumulative long-term effects tend to be stable. In this circumstance, ்ܦ
approaches 0 and ∑ ௦ܦ = ܤ) + ଵ்ି(ܥ

௦ୀ .
Furthermore, the scalar summary measure of total effects (݁ݐ), expressed by the

average of the total impacts on all flows in the network, can be calculated as: ݁ݐ =
1/݊ଶ ⋅ మߡ ⋅ ܧܶܥ ⋅ .ߡ

Analogously, a scalar summary measure of origin effects (݁) can be based on
݁ = 1/݊ଶ ⋅ మߡ

ᇱ ⋅ ܧܱܥ ⋅ , whereߡ is the ܧܱܥ n2 ´ n matrix defined in Equation (6):

ܧܱܥ = ቌ
ைாభ
ைாమ

⋮
ைா

ቍ = ∑ ௦ܦ
்
௦ୀ ൮

ሚభఉ
ೝ

ሚమఉ
ೝ

⋮
ሚఉ

ೝ

൲, (6)

where  is theሚܬ n ´ n matrix that adjusts the element (i, i) in  to zero for the purposeܬ
of separating the intraregional effect. The adjusted matrix allows for only (n - 1)
changes in outflows from region i as an origin in the OD dyad.

A scalar summary measure of destination effects (݀݁) can be based on ݀݁ =
1/݊ଶ ⋅ మߡ

ᇱ ⋅ ܧܦܥ ⋅ , whereߡ is the ܧܦܥ n2 ´ n matrix defined in Equation (7):

ܧܦܥ = ቌ
ாభ
ாమ

⋮
ா

ቍ = ∑ ௦ܦ
்
௦ୀ ൮

ሚௗభఉ
ೝ

ሚௗమఉ
ೝ

⋮
ሚௗఉ

ೝ

൲, (7)
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where ሚ݀ is theܬ n ´ n matrix that adjusts the element (i, i) in  to zero without the݀ܬ
intraregional effect. This matrix allows for only (n - 1) changes in inflows to region i as
a destination.

A scalar summary measure for the intraregional effects (݅݁) can be based on
݅݁ = 1/݊ଶ ⋅ మߡ

ᇱ ⋅ ܧܫܥ ⋅ , whereߡ is the ܧܫܥ n2 ´ n matrix defined in Equation (8):

ܧܫܥ = ቌ
ூாభ
ூாమ

⋮
ூா

ቍ = ∑ ௦ܦ
்
௦ୀ ൮

భ(ఉ
ೝାఉ

ೝ)
మ(ఉ

ೝାఉ
ೝ)

⋮
(ఉ

ೝାఉ
ೝ)

൲, (8)

where  is an݅ܬ n ´ n matrix of zeros with a ‘1’ in element (i, i).
The scalar summary measure for the cumulated spillover effects (݁ݏ) can be

calculated as ݁ݏ ≡ ݁ݐ − ݁ − ݀݁ − ݅݁. More generally, spatial effects can be expressed
using ݁ݏ = 1/݊ଶ ⋅ మߡ

ᇱ ⋅ ܧܵܥ ⋅ , whereߡ is an ܧܵܥ n2 ´ n matrix, by setting all the
elements of the ݅th row and the ݅th column of each ܧܶ  in .to 0 ܧܶ

In the nonspatial dynamic panel model, ௗߩ,ߩ) ௪) andߩ, are set to 0 (௪ߠ,ௗߠ,ߠ)
and the spillover effects dissolve into nothingness.

4. Results

To illustrate our model of space-time dynamics within a migration network, we applied
a panel data set of 5,580 gross migration flows between 31 mainland provinces in China
(excluding intra-provincial migration flows) over six time periods between 1985 and
2015 (each time period equals five years). Migration flow data were collected from
three population censuses (NBSC 1993, 2002, 2012) and three 1% population sample
surveys (NBSC 1997, 2007, 2016). For consistency, migration flows to and from
Chongqing during 1985–1990 and 1990–1995 were imputed based on its corresponding
proportion of the population of Sichuan, since Chongqing was upgraded to a centrally
administered municipality from a city of Sichuan province in 1997. Similarly, the
missing migration flows to and from the Tibet Autonomous Region during 1985–1990
were also imputed from those of the adjacent time periods, since those data were not
available in the 1990 census.

Besides the seven endogenous space and/or time lagged variables of migration
flows previously discussed, to characterize regional socioeconomic status in
determining how each variable influences interprovincial migration, we also chose
regional population size, gross domestic product (GDP), age structure, real wages at the
origin and destination, and a distance variable represented by time cost (Liu 2014; Shen
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2016, 2017). Population size, as a typical gravity variable, has been demonstrated as
effective in driving continued migration flows in China since the late 1970s (Fan 2005).
The signs of population size at the origin and destination are expected to be positive,
indicating push-pull forces between origins and destinations. GDP at the origin and
destination is used to test the impact of regional economic disparity on stimulating
migration flows. The expected signs of GDP at the origin and destination are negative
and positive, respectively, suggesting people will move from a relatively poor region to
a developed one. Age structure, measured by the proportion of working-age population
(ages 15-64), reflects the predominance of labour migration. According to the 2015 1%
population survey, labour population accounted for more than 85% of migrants during
the 2010-2015 period (NBSC 2016). The signs of age structure at the origin and
destination are expected to be positive and negative, respectively, indicating migrants
are moving from labour-supplying regions to labour-demanding ones. Real wages as a
measure of regional economic opportunity are the main motivation for mobility. We
expect that the signs of real wages at the origin and destination are opposite, meaning
that people will move to a region with higher income from a region with lower income.
Compared with the constant railway distance, travel time can reflect improvement in
transportation infrastructure. A negative decay effect of time distance is expected.

We use a log transformation of both dependent variable and explanatory variables
to interpret the space-time effects as elasticities. To avoid the endogeneity problem, we
lagged the dependent variable and explanatory variables by five years (LeSage and Pace
2008; Patuelli and Arbia 2016). Thus, the lagged migration flows at the initial period
(1985-1990) were taken from the 1987 1% population sample survey (NBSC 1988),
while data on regional population size, GDP, the proportion of labour force population,
and real wages were collected from the China Statistical Yearbook on the first year of
their corresponding periods (NBSC 1986, 1991, 1996, 2001, 2006, 2011). The
minimum travel time by railway was collected from the China Railway Timetable at the
same base year as the other exogenous explanatory variables (TBMR 1985, 1990, 1995,
2000, 2005, 2010). To check for the problem of potential multicollinearity, we calculate
the variance inflation factor (VIF) for all variables (under 2.50), indicating no serious
multicollinearity in our model. Table 1 describes these explanatory variables in detail.

We construct the spatial weight matrix ܹ based on the first-order contiguity,
reflecting whether a common boundary exists between two provinces, denoted by 0
or 1. Since Hainan province is an island that once belonged to Guangdong province, we
designate Guangdong as its neighbour. The spatial weight matrix W is then row-
normalized to produce three different network weight matrices ܹ, ௗܹ, and ௪ܹ . In
practice, we remove the diagonal elements from ܹ, ௗܹ, and ௪ܹ to derive the ܰᇱ × ܰᇱ

matrices ෩ܹ, ෩ܹௗ, and ෩ܹ௪ (ܰᇱ = ݊ × (݊ − 1)) without considering intraregional flows.
Different specifications of the spatial weight matrix have little impact on the subsequent
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estimates and inferences, consistent with LeSage and Pace (2014), and hence we focus
on the results from the first-order contiguity matrix.

Table 1: Description of explanatory variables

Variable Description (unit)
Popu The size of total population in each province (ten thousands)

GDP Gross domestic product at 1980 constant price in each province (billion yuan)

Age The proportion of labour population aged 15-64

Wage The ratio of average urban wage level to consumer price index (CPI) in each
province (yuan)

Dis Minimum railway travel time between each pair of provincial capitals (seconds)

Source: NBSC (1986, 1991, 1996, 2001, 2006, 2011); TBMR (1985, 1990, 1995, 2000, 2005, 2010).

4.1 Model parameter estimates

To further investigate the space-time dynamics in a migration system, we applied both
nonspatial and spatial dynamic panel data models to our case study. The Bayesian
MCMC sampling methods were implemented in the MATLAB based on the spatial
econometrics toolbox (jplv7) (LeSage 2010). We estimated the nonspatial dynamic
panel data model based on 500 draws, with the first 400 omitted for burn-in.
Considering more parameters were involved in the spatial dynamic panel model, we
then sampled 150,000 draws with the first 140,000 excluded for burn-in to ensure
estimation accuracy. To check whether the MCMC samples converge, we initialized
three chains at values that were over-dispersed relative to these parameter estimates.
Table 2 reports the parameter estimates of the nonspatial and spatial dynamic panel data
models.
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Table 2: Parameter estimates for nonspatial and spatial dynamic panel
models
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In general, the spatial dynamic panel data model is superior to the nonspatial one
in characterizing the Chinese interprovincial migration process during 1985-2015, as
seen by its smaller BIC (Bayesian Information Criterion) value. Furthermore, Chinese
interprovincial migration is a path-dependent process, as demonstrated by the fact that
temporal, spatial, and space-time diffusion dependencies are significantly different from
zero. The significant and positive temporal dependence (߶) indicates that past migrants
tend to produce future sustained outflows and inflows. In China, migration flows are
usually dependent on social linkages, such as relying on family members, friends, or
fellow-townspeople for job opportunities (Liu 2014). Even if an entire family moves,
their migration process is often unsynchronized. It is the positive network externalities
that make subsequent migrants follow the path blazed by the pioneers, giving rise to
strong temporal dependence during migration processes (Epstein 2008). Surprisingly,
temporal dependence has been strengthened by including space-time interactions in the
spatial dynamic panel data model, rather than the contrary, reflecting network
externalities’ possible interaction with herd effects.

The significant and positive spatial dependence parameters (ro, rd, and rw) can
corroborate the existence of herd effects during the development of migration flows
(Epstein 2008). The origin-, destination-, and origin-to-destination-based spatial
dependencies represent three different but complementary migration paths. Specifically,
the origin-based path implies that migration flows from the origin to the destination
may promote outflows from surrounding origins to the same destination. Similarly,
migration flows from the origin (or neighbouring origins) to neighbouring destinations
are also enhanced, as implied by the destination-based (or origin-to-destination-based)
path. Comparatively, the origin-based path dominates the other two; the largest spatial
dependence (ro = 0.4592) is further supported by the fact that origins with strong
outflows are mainly located in China’s central and western regions. Like the time decay
effect, the strength of origin-, destination-, and origin-to-destination-based spatial
dependences of less than 1 further corroborates the distance-decay effects over space.

Mutual space-time interactions have negative diffusion effects on migration flows,
as reported by the significant and negative parameters (ߠ, ௗ, andߠ ,-௪). The originߠ
destination-, and origin-to-destination-based space-time paths are exerting opposite
roles compared with those three migration paths across space. In other words, if the
number of migration flows from an origin to a destination at one point in time
increases, the flows departing from the neighbouring origins to the same destination
during the next time period will decrease. Similarly, the migration flows from one
origin (or neighbouring origin regions) to neighbouring destinations in the next period
will also decrease. Among these space-time paths the flows along the origin-based
space-time path will decrease sharply due to the coexistence of herd and network
effects, evidenced by the smallest space-time parameter (qo = -0.2374). This
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phenomenon fully reflects the self-adjustment and adaptability of a complex migration
system, which involves much more complicated processes than the nonspatial model
suggests.

Distance, as measured by minimum railway travel time, has significant and
negative effects, as expected. Notably, the distance-decay effect in the spatial dynamic
panel data model is significantly reduced compared with that in the nonspatial model,
since spatial dependence can play a role similar to that of distance (LeSage and
Thomas-Agnan 2015). Although the rapid progress of transportation technology has
greatly facilitated migration activity, longer distances and higher time costs still restrict
people’s aspirations to migrate, as does the relative scarcity of information about distant
regions (Huff and Jenks 2015).

The coefficient estimates of explanatory variables in the spatial dynamic panel
data model should not be directly interpreted as partial derivative impacts of regional
factors on migration flows. To better understand the space-time dynamics in
determining interprovincial migration processes in China, we perform a comprehensive
quantitative analysis by calculating various space-time effects of explanatory variables
and drawing valid inferences about their statistical significance.

4.2 Analysis of space-time effects

Tables 3 and 4 show various effect estimates of regional population size, GDP, age
structure, and real wages in the nonspatial and spatial dynamic panel data models,
respectively. The rows labelled ‘0’ represent the immediate responses of migration
flows to changes in regional characteristics in terms of contemporaneous effects. The
following rows labelled between ‘1’ and ‘5’ capture the disaggregated period-by-period
impacts on the follow-on migration flows at different time periods. The last rows
labelled ‘…’ reflect the cumulative long-term effects. The columns labelled ‘Mean’
record the means of the transitory period-by-period effects and the columns labelled
‘Cumulative’ the accumulated effects from the initial period to the current period.

Influenced by the temporal dependence and distance-decaying effects, various
period-by-period effects are gradually reduced to zero over time, while the
corresponding cumulative effects tend to approach their long-term effects in the future.
This phenomenon conforms to the evolution of a migration system in reality. The
introduction of space-time interactions in the spatial dynamic panel data model brings
about profound changes in all kinds of effects. Overall, the role of regional factors is
significantly extended and deepened in the spatial model, reflecting that space-time
interactions not only promote closer connections between different interprovincial
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migration flows but also stimulate a more lasting and sustained influence on the whole
system.

Table 3: Effect estimates for nonspatial dynamic panel model
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Table 4: Space-time effect estimates for spatial dynamic panel model
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4.2.1 Population size

Population size is often chosen as the basic explanatory variable to characterize regional
mass in traditional gravity models (Zipf 1946; Stillwell 2008). Migration flows between
origins and destinations are positively proportional to their population sizes if other
variables are held constant. Tables 3 and 4 show that, as hypothesized, the origin and
destination effects of population size are significantly positive, exerting strong push and
pull forces on interprovincial migration in China from 1985 to 2015. In addition, the
cumulative origin and destination effects of population size continue to increase over
time, indicating that changes in regional population have profound impacts on
migration flows. The origin effects of population size are larger than the corresponding
destination effects, reflecting the fact that the pressure from large populations is much
stronger than their agglomeration effects during the migration process. In a typical
region, a 1% increase in population size produces 0.42% more outflow during the same
period. As time passes, transitory responses remain significantly positive, eventually
leading to 0.97% additional outflow over the long term. On the other hand, a 1%
increase in population size in a typical region produces 0.21% more inflow during the
same period and 0.39% additional inflow in the long run, less than half of its long-term
origin effect.

More importantly, changes in regional population size also impact the inflows and
outflows to and from other regions through the migration network over time. It is these
complex spillover effects that demonstrate the close link between migration flows. The
spatial dynamic panel data model allows us to measure these invisible effects; the
magnitude of such effects is beyond our expectations. Specifically, the cumulative
spillover effects at different time periods are greater than 1.0, indicating a more rapid
increase of migration flows arising from the same population growth across the
network. On average, if a given population size in a typical region increases by 1%, the
migration flows between other provinces will increase by 1.75% over the same period,
well beyond the increase of outflows and inflows from and to the given region. This
kind of spillover effect occurring at the same time (herd effect) may cause large flows
even before networks are created, providing a complementary explanation for the
formation of migration flows (Epstein 2008). As time passes, negative feedback effects
in the following periods gradually weaken the cumulative network effects and
eventually lead to a long-term effect of 1.2637, over two-thirds of its contemporaneous
effect. These negative network externalities are also consistent with the reality that the
number of immigrants may gradually reduce as the increase in new arrivals results in
more competition for jobs. Declining network effects may help prevent the migration
system from becoming out of control.

Total effects, represented by the sum of origin, destination, and spillover effects,
reflect broader societal responses to changes in regional population size. The estimates
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in Table 4 show that population size has the second largest impact on Chinese
interprovincial migration flows. On average, a 1% increase in regional population in a
typical region increases migration flows by 2.38% during the same period and by
2.63% over the long term. Although the spillover effects of population may decrease
over time, they are still greater than its origin and destination effects. In other words, we
cannot ignore the role of spillover effects in addition to traditional push and pull forces
on the formation and development of migration flows.

4.2.2 GDP

Unbalanced regional economic development in China has led to continuing internal
migration flows since the late 1970s (Cai and Wang 2003; Zhu 2003; Fan 2005).
Tables 3 and 4 show that regional GDP plays a significant role in causing people to
move between different areas, consistent with the neoclassical migration theory
(Sjaastad 1962). The negative origin effects’ inhibiting role is strong during the initial
period. On average, a 1% increase in regional GDP produces 0.23% less outflow in the
same period (T = 0). As time passes the period-by-period effects decrease but remain
significant. Over the long run the origin effect of GDP reaches -0.5826, an absolute
value much larger than that of GDP during the contemporaneous period. In other words,
regional economic development tends to reduce migration outflows over time.

As expected, the development of a regional economy attracts more immigrants, as
evidenced by the significant and positive destination effects of GDP. On average, a 1%
increase in GDP in a typical region attracts 0.14% more inflows during the same period
and 0.08% more inflows during the following period (T = 1). Although the period-by-
period effects appear to decay over time, the cumulative effect still reaches 0.3141 over
the long term, twice that of the contemporaneous effect. If we do not consider the
space-time interactions among migration flows (Table 3), most of the destination effects
of GDP tend to be overestimated, thus ignoring the self-adjustment of migration
processes.

Regional GDP’s spillover effects are not as significant as its origin and destination
effects. In other words, the role of regional GDP in generating and attracting migration
flows is mainly limited to the local inflows and outflows associated with the changing
regions, exerting less externalities on the other surroundings. However, the positive
period-by-period responses of GDP may accumulate to a larger long-term effect.
Eventually, a 1% increase in regional GDP in a typical region produces 0.13% more
flows to other provinces throughout the migration system, which is very close to its
contemporaneous destination effect.
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Overall, the total effects of regional GDP can help explain the inverted U-shape
relationship between development and migration. After sustained and rapid growth of
interprovincial migration, China has experienced a declining trend since 2010 (NBSC
1993, 1997, 2002, 2007, 2012, 2016). Furthermore, the period-by-period effects of
regional GDP for the contemporaneous time period out to one time horizon (T = 1) are
not significantly different from zero, indicating that development may not necessarily
decrease migration flows. In reality, regional economic development, at least in the
initial time periods, may enhance migration because development enables and inspires
people to move (Zelinsky 1971, De Haas 2007, 2010b). However, the transitory period-
by-period effects of regional GDP are significant from the two time horizons (T = 2) on,
reflecting that development does have a lagged decaying effect on migration.

4.2.3 Age structure

The labour force population is the most influential driver of migration flows. According
to population censuses and national survey data (NBSC 1993, 1997, 2002, 2007, 2012,
2016), migrant workers dominate in the total migration population. From Table 4 we
see that the origin effects of the proportion of working age population are the largest of
all the explanatory variables, consistent with the nonspatial model estimates. The
impact of a 1% increase in working age population at origin would result in a 1.86%
increase in outflows during the same period and eventually a 4.53% outflow increase,
more than four times the origin effects of population size. The enhancement of origin
effects in the spatial model is the result of feedback effects arising from changes in
network flows associated with regions neighbouring each OD dyad. The small
magnitude of destination effects suggests that an increase in the proportion of local
labour population does not significantly attract more foreigners to move in, indicating
that its agglomeration effects are rather limited.

The spillover effects arising from the increase in the proportion of the labour-force
population are considerable, making a great difference to the evolution of a migration
system. Specifically, a 1% increase in the proportion of labour force in a typical region
leads to a 4.54% contemporaneous increase in other flows throughout the network,
surpassing its cumulative origin effect in the long run. In practice this increase would be
mainly concentrated in areas neighbouring the region where the proportion of labour
force has increased. More strikingly, such period-by-period spillover effects tend to be
more significant over time. It can be reasonably speculated that a change in the regional
labour force market will have a lasting impact on other regions because of the
significant space-time interactions. In the long run, the spillover effect for a 1%
increase in the proportion of labour force in a typical region will produce 3.01% more
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flows to other provinces throughout the migration network, making it a remarkable
driving force.

Overall, interprovincial migration flows in China are extremely sensitive to the age
structure of the population. Specifically, if the proportion of working age population in
a typical region increases (or decreases) by 1%, there will be an increase (or decrease)
of migration flows by 6.50% during the same period and by 7.55% over the long-term.
That is, a slight change in the age structure of a regional population will have a great
influence on current and future flows, especially in the contemporaneous period. This
suggests that herd effects may dominate in migration processes, in line with the
employment-oriented long-distance migration trends (Thomas, Gillespie, and Lomax
2019).

4.2.4 Real wages

A large number of migration studies indicate that people migrate to seek better job
opportunities and to increase their quality of life (Chi and Voss 2005; Yue et al. 2010;
Chen and Wang 2018). Without the consideration of space-time interactions, real wages
do play a dominant role in the Chinese interprovincial migration process, as evidenced
by various effect estimates shown in Table 3. However, this is not the case in the spatial
model. We can see from Table 4 that the effect estimates of real wages are no longer
significant, reflecting that real wages are not as important as expected in migration
processes. These empirical results confirm that migrants are willing to give up higher
wages initially, but prefer to move to more prosperous regions over time (Epstein
2008).

In practice, real wages express both the income and consumption of urban
residents. On the one hand, developed regions with higher wage levels also have higher
consumption standards and more survival pressure, reducing these regions’
attractiveness to some potential migrants and affecting their migration decisions. On the
other hand, remote and border regions with higher wage levels supported by national
policies, such as the Tibet Autonomous Region, are not major destinations in China,
going against the general expectation that regions with higher wages attract more
migrants (Liu and Shen 2014). Overall, an increase in real wages reduces local
residents’ motivation to migrate and encourages more people to move in. A balance
between wage income and living costs is essential for potential migrants’ decision-
making. If the quality of life in an area meets their expectations, most residents tend to
stay where they live, reflecting the traditional Chinese attitude towards life: ‘happiness
lies in contentment’ (Zhi zu chang le).
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5. Conclusions

Migration is arguably playing an increasingly important role in regional growth and
development than ever before. To understand the space-time dynamics of complex
migration processes, this study constructs a spatial dynamic panel data model by
incorporating temporal, spatial, and space-time diffusion dependencies into traditional
gravity models. Moreover, we decompose origin, destination, and spillover effects into
their contemporaneous, short-, and long-term components, thereby providing the tools
to quantify the transitory and cumulative responses of migration flows to changes in
regional characteristics. We then apply this model to interprovincial migration flows
between 31 mainland provinces in China from 1985 to 2015, choosing population size,
GDP, age structure, real wages at origin and destination, and railway travel time
between provincial capitals as explanatory variables. To evaluate the importance of
space-time interactions, we use a general (nonspatial) dynamic panel data model as a
benchmark specification. Finally, we employ Bayesian MCMC procedures to estimate
various effects and draw valid inferences regarding the mechanisms of Chinese
interprovincial migration processes.

Our empirical results show that the spatial dynamic panel data model is more
suitable for characterizing the path-dependent migration process. Past migrants tend to
produce sustained outflows and inflows, as evidenced by more strong temporal
dependence. Moreover, the origin-, destination-, and origin-to-destination-based paths
complement one another during the generation and development of migration flows, as
confirmed by the significant and positive spatial dependence. Comparatively, the
origin-based path dominates the other two. However, the origin-, destination-, and
origin-to-destination-based space-time paths provide different channels with which to
adjust migration flows, as reflected by significant and negative space-time diffusion
interactions. The origin-based space-time path is likely to be the most effective way to
adjust the migration system toward an equilibrium state. Migration flows are
perpetuated by the inertia of positive temporal and spatial dependence as well as by
negative space-time diffusion dependence.

The disaggregation of origin, destination, and spillover effects over time further
allows us to investigate the complex space-time dynamics underlying path-dependent
migration processes. First, the development of migration flows in China is very
sensitive to the age structure of regional populations, as a reflection of the workforce
composition. A slight change in the proportion of the workforce will not only have a
strong impact on outflows through transitory and cumulative origin effects, but will also
influence other flows through diffusion effects, especially contemporaneous herd
effects. Second, regional population size also plays a prominent role in migration
processes. Specifically, the significant and positive spillover effects are much larger
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than the sum of origin and destination effects, indicating that herd and network
externality effects dominate in the migration system. Third, the inverted U-shape
relationship between development and migration can be partly explained by the total
effects of regional GDP. Finally, the role of real wages in driving migration flows is
rather weak, suggesting that migrants are willing to give up higher wages initially but
prefer prosperous regions in the long run.

The gravity model remains popular within the field of migration studies (O’Kelly
2004). Adding space-time components to this model will not only help promote
theoretical, methodological, and empirical aspects of migration modelling, but also
advance its application in other spatial interaction modelling areas such as
transportation and international and interregional trade. More importantly, temporal,
spatial, and space-time dependencies represent inertia in a system: Monitoring and
observing their presence will help us understand the vulnerability and resilience of a
regional system (Griffith and Chun 2015). In a rapidly changing society it is of critical
importance to be able to predict what will happen to a regional migration system under
shock, and how to respond. The space-time framework can be applied to forecast future
migration flows as well as to explain past and present processes (Baltagi, Fingleton, and
Pirotte 2019).

The spatial dynamic panel approach proposed in this study is a powerful means to
understand how migration flows respond to regional socioeconomic changes and how
space and time influence migration processes. However, the various coefficient and
effect estimates are computationally expensive because more parameters are involved in
the spatial model: Practical parallel strategies need to be tested. In addition, we only
considered global spillover effects with a dependent variable lagged in both space and
time: Possible local spillover effects can be investigated in a spatial dynamic Durbin
panel model. Furthermore, we ignored model uncertainty in the selection of explanatory
variables: The Bayesian model averaging method can be further explored with more
regional social, economic, and environmental factors. Overall, to track the complex
evolution of a regional migration system in future research, other types of spatial-
temporal models for dyadic flow data should be specified, interpreted, and calibrated.
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Appendix

The intercept term and the parameter ߙ ߚ = ߚ)
ᇱ,ߚௗ

ᇱ, as well as the precision ,(ߛ
parameters ఌߪ

ିଶ and ఓߪ
ିଶ, are under the assumption of a nonhierarchical prior of the

independent Normal-Gamma variety. This implies that the posterior distributions of ߙ
and ߚ can be reducible to Normal distribution while the posterior distributions of ఌߪ

ିଶ

and ఓߪ
ିଶ can be reducible to Gamma distribution. Thus,

ఈܯ,ߙ)ܰ~ߙ
ିଵ), ఉܯ,ߚ൫ܰ~ߚ

ିଵ൯,
ఌߪ

ିଶ~ܩ ቀ௩బ
ଶ
, ௌబ

ଶ
ቁ, ߤߪ

ିଶ~ܩ ቀ௩భ
ଶ
, ௌభ

ଶ
ቁ. (9)

There is a great deal of prior uncertainty regarding and ߙ and hence we adopt ,ߚ
uninformative priors for them to resolve the interference of prior information and
increase the reliability of the estimation results (LeSage and Pace 2009). Specifically,
we set ߙ = 0, ߚ = 0, ఈܯ

ିଵ = 10ଵଶ, and ఉܯ
ିଵ = 10ଵଶܫଶାଵ; similarly, ,ݒ ܵ, ଵ, andݒ

ଵܵ are all set to 0.001.
In this case where the conditional distributions are known, Gibbs sampling is used

to directly draw a large number of samples of ఌߪ ,ߚ ,ߙ
ିଶ, and ఓߪ

ିଶ from their posterior
distributions under the Bayesian updating schemes.

To determine the space-time parameters ߩ = ௗߩ,ߩ) ,(௪ߩ, ߶, and ߠ = ,(௪ߠ,ௗߠ,ߠ)
whose posterior distributions are not reducible to standard distributions, this study
adopts a more generally applicable step labelled the Metropolis-Hastings (M-H)
sampler, which relies on a random-walk proposal with normally distributed increments
as the proposal density (Parent and LeSage 2010, 2012; Debarsy, Ertur, and LeSage
2012). Uniform priors for ,ߩ ߶, are adopted over the interval ߠ (−1, 1). During the
sampling and updating process the acceptance probabilities of these parameters
evaluated at the old and new candidate draws are required to move between 0.40 and
0.60, resulting in an effective acceptance rate close to 0.50 after a burn-in period.

By using Bayesian MCMC procedures, the generated sequential samples allow us
to proceed with inferences regarding all the parameters.
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