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Abstract

BACKGROUND
Indicators of relative variation of lifespans are markers of inequality at the population
level and of uncertainty at the time of death at the individual level. In particular, the
lifetable entropyH represents the elasticity of life expectancy to a change in mortality.
However, it is unknown how this measure changes over time and whether a threshold age
exists, as it does for other lifespan variation indicators.

RESULTS
The time derivative of H can be decomposed into changes in life disparity e† and life
expectancy at birth eo. Likewise, changes over time inH are a weighted average of age-
specific rates of mortality improvements. These weights reflect the sensitivity ofH and
show how mortality improvements can increase (or decrease) the relative inequality of
lifespans. Further, we prove that in the assumption that mortality is reduced at all ages,
H, as well as e†, has a threshold age below which saving lives reduces entropy, whereas
improvements above that age increase entropy.

CONTRIBUTION
We give a formal expression for changes ofH over time and provide a formal proof of
the existence of a unique threshold age that separates reductions and increases in lifespan
variation as a result age-specific mortality improvements.
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1. Relationship

The lifetable entropy is a dimensionless indicator of the relative variation in the length
of life compared to life expectancy at birth (Leser 1955; Keyfitz 1968, 1977; Demetrius
1974, 1978). It is usually defined as

H(t) = −
∫∞
0
`(a, t) ln `(a, t) da∫∞

0
`(a, t) da

=

∫ ∞
0

c(a, t)H(a, t) da =
e†(t)

eo(t)
,

where e†(t) = −
∫∞
0
`(a, t) ln `(a, t) da is the life disparity or number of life-years

lost as a result of death (Vaupel and Canudas-Romo 2003), eo(t) =
∫∞
0
`(a, t) da is

the life expectancy at birth at time t, `(a, t) is the lifetable survival function, c(a, t) =
`(a, t) /

∫∞
0
`(x, t) dx is the population structure, and H(a, t) =

∫ a
0
µ(x, t) dx is the cu-

mulative hazard to age a, where µ(x, t) is the force of mortality (hazard rate or risk of
death) at age x at time t. Note thatH(t) can be interpreted as an average value of H(a, t)
in the population at time t.

Goldman and Lord (1986) and Vaupel (1986) proved that

e†(t) =

∫ ∞
0

d(a, t) e(a, t) da,

where d(a, t) represents the distribution of deaths, and e(a, t) =
∫∞
a
`(x, t) dx / `(a, t) is

the remaining life expectancy at age a at time t. This formulation provides an alternative
expression for the lifetable entropy as

H(t) =

∫∞
0
d(a, t) e(a, t) da∫∞
0
`(a, t) da

.

Let Ḣ denote the partial derivative ofH with respect to time.5 We define ρ(x) =
−µ̇(x) / µ(x) as the age-specific rates of mortality improvements. Then, the relative
derivative ofH can be expressed as a weighted average of ρ(x),

(1) Ḣ /H =

∫ ∞
0

ρ(x)w(x)W (x) dx,

with weights

w(x) = µ(x) `(x) e(x) and W (x) =
1

e†
(
H(x) +H(x)− 1

)
− 1

eo
.

5 In the following, a dot over a function will denote its partial derivative with respect to time t, but variable t
will be omitted for simplicity.
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FunctionH(x) is the lifetable entropy conditioned on surviving to age x, defined as

H(x) =
e†(x)

e(x)
=

∫∞
x
d(a) e(a) da∫∞
x
`(a) da

.

where e†(x) =
∫∞
x
d(a) e(a) da / `(x) refers to life disparity above age x, and e(x) is

the remaining life expectancy at age x.
Note that the lifetable entropyH is a measure of relative lifespan variation. Thus,

higher values represent more variation, whereas lower values denote less variation of
lifespans. If mortality improvements over time occur at all ages, there exists a unique
threshold age aH that separates positive from negative contributions to the lifetable en-
tropyH resulting from those mortality improvements. This threshold age aH is reached
when

(2) H
(
aH
)
+H

(
aH
)
= 1 +H.

2. Proof

Fernández and Beltrán-Sánchez (2015) showed that the relative derivative ofH can be
expressed as

(3) Ḣ /H =
ė†

e†
− ėo
eo

.

This formula indicates that relative changes inH over time are given by the differ-
ence between relative changes in e† (dispersion component) and relative changes in eo
(translation component). We will first provide expressions for ėo and ė† to prove that (1)
and (3) are equivalent. Next, we will prove the existence of a threshold age forH and its
uniqueness.

2.1 Relative changes over time inH

Vaupel and Canudas-Romo (2003) showed that changes over time in life expectancy at
birth are a weighted average of the total rates of mortality improvements, given by

(4) ėo =

∫ ∞
0

ρ(x)w(x) dx,

where ρ(x) = −µ̇(x) / µ(x) are the age-specific rates of mortality improvements, and
w(x) = µ(x) `(x) e(x) = d(x) e(x) is a measure of the importance of death at age x.
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Since d(x) = µ(x) `(x) and `(x) e(x) =
∫∞
x
`(a) da, the partial derivative with

respect to time of e† =
∫∞
0
d(x) e(x) dx can be expressed as

ė† =

∫ ∞
0

µ̇(x) `(x) e(x) dx+

∫ ∞
0

µ(x)

∫ ∞
x

˙̀(a) da dx

= −
∫ ∞
0

ρ(x)w(x) dx+

∫ ∞
0

˙̀(a)

∫ a

0

µ(x) dx da

= −
∫ ∞
0

ρ(x)w(x) dx−
∫ ∞
0

∫ a

0

µ̇(x) dx `(a)H(a) da,

where H(a) is the cumulative hazard to age a. By reversing the order of integration and
doing some additional manipulations, we get

ė† = −
∫ ∞
0

ρ(x)w(x) dx−
∫ ∞
0

µ̇(x)

∫ ∞
x

`(a)H(a) da dx

= −
∫ ∞
0

ρ(x)w(x) dx+

∫ ∞
0

ρ(x)w(x)

∫∞
x

`(a)H(a) da

`(x) e(x)
dx

=

∫ ∞
0

ρ(x)w(x)

(∫∞
x

`(a)
(
H(a)−H(x) +H(x)

)
da

`(x) e(x)
− 1

)
dx

=

∫ ∞
0

ρ(x)w(x)

(
H(x)

∫∞
x

`(a) da

`(x) e(x)
+

∫∞
x

`(a)
(
H(a)−H(x)

)
da

`(x) e(x)
− 1

)
dx

=

∫ ∞
0

ρ(x)w(x)

(
H(x) +

∫∞
x

`(a)
(
H(a)−H(x)

)
da

`(x) e(x)
− 1

)
dx.

(5)

In Proposition 1 in the Appendix, we prove that

(6) e†(x) =
1

`(x)

∫ ∞
x

d(a) e(a) da =
1

`(x)

∫ ∞
x

`(a)
(
H(a)−H(x)

)
da.

Replacing (6) in (5) yields

ė† =

∫ ∞
0

ρ(x)w(x)

(
H(x) +

e†(x)

e(x)
− 1

)
dx

=

∫ ∞
0

ρ(x)w(x)
(
H(x) +H(x)− 1

)
dx.

(7)
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Finally, replacing the expressions of ėo and ė† from (4) and (7) in (3), we get

Ḣ /H =
1

e†

∫ ∞
0

ρ(x)w(x)
(
H(x) +H(x)− 1

)
dx− 1

eo

∫ ∞
0

ρ(x)w(x) dx

=

∫ ∞
0

ρ(x)w(x)

(
1

e†
(
H(x) +H(x)− 1

)
− 1

eo

)
dx

=

∫ ∞
0

ρ(x)w(x)W (x) dx,

which proves (1) and shows that relative changes over time in the lifetable entropyH are
the average of the rates of mortality improvements weighted by the product w(x)W (x).
�

2.2 The threshold age forH

Using (1), changes over time in the lifetable entropyH are given by

(8) Ḣ =H

∫ ∞
0

ρ(x)w(x)W (x) dx.

Whenever Ḣ > 0, lifespan inequality increases over time, whereas Ḣ < 0 im-
plies that variation of lifespans decreases over time. Because `(x) is a positive function
bounded between 0 and 1, we have thatH > 0. Moreover, assuming age-specific death
rates µ(x) improve over time at all ages, then µ̇(x) < 0 and ρ(x) > 0 at any age x.
Therefore, (8) implies that

1. Those ages x in which w(x)W (x) > 0 will contribute positively to the lifetable
entropyH and increase lifespan variation;

2. Those ages x in which w(x)W (x) < 0 will contribute negatively to the lifetable
entropyH and favor lifespan equality;

3. Those ages x in which w(x)W (x) = 0 will have no effect on the variation over
time ofH.

Our goal is to prove that if mortality improvements occur for all ages and ρ(x) > 0,
there exists a unique threshold age aH such that w

(
aH
)
W
(
aH
)
= 0. That thresh-

old age will separate positive from negative contributions toH resulting from mortality
improvements.
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The product w(x)W (x) can be re-expressed as

w(x)W (x) = µ(x) `(x) e(x)

(
1

e†
(
H(x) +H(x)− 1

)
− 1

eo

)
=
µ(x) `(x) e(x)

e†
(
H(x) +H(x)−H − 1

)
.

Since µ(x), `(x), e(x) and e† are all positive functions, the threshold age ofH occurs
whenever

(9) g(x) := H(x) +H(x)−H − 1 = 0.

When x is close to 0, g(x) takes negative values since

g(0) = H(0) +H(0)−H − 1 = 0 +H −H − 1 = −1 < 0.

Likewise, g(x) takes positive values when x becomes arbitrarily large. Note thatH does
not depend on age, and therefore

lim
x→∞

g(x) = lim
x→∞

(
H(x) +H(x)

)
−H − 1 =∞

because limx→∞H(x) = ∞. By definition, H(x) ≥ 0 for all x, so regardless of the
behavior ofH(x), when x is arbitrarily large, the limit of g(x) tends to infinity. Hence,
given that g(0) = −1 and limx→∞ g(x) =∞, in a continuous framework the intermedi-
ate value theorem guarantees the existence of at least one age aH at which g(aH) = 0.

Moreover, as shown in Proposition 2 in the Appendix, g(x) is a strictly increasing
function, and therefore a one-to-one function assuming continuity. As a result, there
is a unique threshold age aH that separates positive from negative contributions to the
lifetable entropyH, and that threshold age is reached when

w(x)W (x) = 0⇐⇒ g(x) = 0⇐⇒ H(x) +H(x) = 1 +H,

which proves (2). �

3. Related results

Demographers have developed a battery of indicators to measure how lifespans vary in
populations (van Raalte and Caswell 2013; Colchero et al. 2016). The most common in-
dexes are the variance (Edwards and Tuljapurkar 2005; Tuljapurkar and Edwards 2011),
standard deviation (Alvarez, Aburto, and Canudas-Romo 2019; van Raalte, Sasson, and
Martikainen 2018) and coefficient of variation (Aburto et al. 2018) of the age at death
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distribution, the Gini coefficient (Shkolnikov, Andreev, and Begun 2003; Gigliarano,
Basellini, and Bonetti 2017; Archer et al. 2018), the Theil index (Smits and Monden
2009), and the years of life lost (Vaupel, Zhang, and van Raalte 2011; Aburto and van
Raalte 2018), among others. However, only a few studies have analytically derived
formulas for the threshold age below and above which mortality improvements respec-
tively decrease and increase lifespan variation. Zhang and Vaupel (2009) showed that the
threshold age (a†) for life disparity (e†) occurs whenH(x)+H(x) = 1. Similarly, Gille-
spie, Trotter, and Tuljapurkar (2014) determined a threshold age for the variance of the
age at death distribution. Van Raalte and Caswell (2013) also showed that it is possible
to determine the threshold age by performing an empirical sensitivity analysis of lifespan
variation indicators.

In this article, we contribute to the lifespan variation literature by deriving the thresh-
old age aH for the lifetable entropyH. This age separates negative from positive contri-
butions of age-specific mortality improvements. We analytically proved its existence and
– in the assumption that mortality improves over time for all ages – also its uniqueness.
In Section 4 we empirically show that it differs from the threshold age of e†.

4. Applications

The code and data to reproduce the results and graphs presented in this section are pub-
licly available through the repository in the link https://bit.ly/2wqzOFp.

4.1 Numerical findings

Figure 1 depicts the threshold ages of the two related measures: life disparity e† and
lifetable entropyH. Calculations were performed using data from the Human Mortality
Database (2018) for females in the United States and Italy in 2005. The blue line repre-
sents g(x) from Equation (9). The threshold age aH occurs when g(x) crosses zero. The
red and grey lines display the same functions that Zhang and Vaupel (2009) used to find
the threshold age for e† rescaled to fit in the graph. The intersection of these two lines
denotes the threshold age a†. Finally, the dashed black line depicts the life expectancy at
birth. Vaupel, Zhang, and van Raalte (2011) noted that a† tends to fall just below eo. The
threshold age for the lifetable entropy aH is greater than a† and is very close above life
expectancy for these countries. Note the similarity between the formulas for a†, given by
H(a†) +H(a†) = 1, and aH , given by H(aH) +H(aH) = 1 +H.
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Figure 1: Threshold ages for life disparity (a†) and for the lifetable entropy
(aH), United States and Italy in 2005
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and aH = 83.28. Functions to determine the threshold age for e† were rescaled by a factor of 1/10 for comparability.
Source: Human Mortality Database (2018).

Panels a) and b) in Figure 2 illustrate the evolution over time of the threshold ages
for e† andH in French and Swedish females, respectively. We chose these countries be-
cause they portray large series of reliable data available at the Human Mortality Database
(2018).

Figure 2: Threshold ages for life disparity (a†) and for the lifetable entropy
(aH) compared to life expectancy at birth. French and Swedish
females, 1800–2016
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Values for a† are close to life expectancy throughout the period. However, around
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1950 there is a crossover between a† and eo such that a† remained close to life expectancy,
but below it most of the time. This result shows that values of a† below eo is a modern
feature of aging populations with high life expectancy. From the beginning of the period
of observation to the 1950s, the threshold age for the lifetable entropy was above life
expectancy for both countries. During some periods aH was roughly constant whereas eo
trended upward. After the 1950s, aH converged toward life expectancy.

4.2 The threshold age of the lifetable entropy within the Gompertz mortality model

We further analyze the relationship between aH and eo, assuming that the force of mor-
tality follows a Gompertz distribution with hazard µ(x) = α eβx, where x ≥ 0 denotes
the age and α,β > 0 are parameters. In Proposition 3 in the Appendix, we prove that
in the Gompertz model, the threshold age aH of the lifetable entropyH is approximately
proportional to eo by a factor δ, which only depends on parameters α and β, and the
Euler–Mascheroni constant γ ≈ 0.57722. A value of δ close to 1 indicates that mortality
is roughly following a Gompertz model.

Figure 3 shows the evolution over time of factor δ for French and Swedish females.
The observation that this value converges toward 1 could be explanatory for the conver-
gence of the threshold age and life expectancy at birth in modern mortality profiles. It
also indicates that modern mortality schedules are roughly Gompertzian. Therefore, it
can be speculated that differences between these two measures in earlier years are a con-
sequence of a big proportion of deaths occurring in ages where the force of mortality
does not follow a Gompertz, such as in infancy. This pattern is consistent with historical
trends which suggest that, from hunter-gathers to modern populations, death rates have
decreased at all ages, but mostly at younger ones (Burger, Baudisch, and Vaupel 2012).
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Figure 3: Factor value δ for threshold age under Gompertz distribution for
French and Swedish women
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4.3 Decomposition of the relative derivative ofH

The relative derivative ofH defined in Equation (1) can be decomposed between compo-
nents before and after the threshold age aH as follows:

Ḣ /H =

∫ ∞
0

ρ(x)w(x)W (x) dx

=

∫ aH

0

ρ(x)w(x)W (x) dx+

∫ ∞
aH

ρ(x)w(x)W (x) dx

=

{
ė†[x|x < aH ]

e†
− ėo[x|x < aH ]

eo

}
︸ ︷︷ ︸

Early life component

+

{
ė†[x|x > aH ]

e†
− ėo[x|x > aH ]

eo

}
︸ ︷︷ ︸

Late life component

(10)

If mortality reductions occur at every age, the early life component in Equation (10)
is always negative (contributing to reduce entropy) while the late life component is pos-
itive (contributing to increase entropy). Thus, it is clear that a negative relationship be-
tween life expectancy and entropy over time occurs if the early life component outpaces
the late life component. This decomposition is based on the additive properties of the
derivatives of life expectancy and e†, as previously shown by Vaupel and Canudas-Romo
(2003) and Fernández and Beltrán-Sánchez (2015).
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5. Conclusion

Several authors have been interested in decomposing changes over time in life expectancy
(Arriaga 1984; Vaupel 1986; Pollard 1988; Vaupel and Canudas-Romo 2003; Beltrán-
Sánchez, Preston, and Canudas-Romo 2008; Beltrán-Sánchez and Soneji 2011). Most
recently, scholars have also investigated how life disparity fluctuations over time can be
decomposed (Zhang and Vaupel 2009; Wagner 2010; Shkolnikov et al. 2011; Aburto and
van Raalte 2018; Aburto and Beltrán-Sánchez 2019). Here, we bring both perspectives
together and shed light on the dynamics behind changes in the lifetable entropy.

Leser (1955) first derived the lifetable entropy as the elasticity of life expectancy.
Keyfitz (1977) proposedH as a lifetable function “that measures the change in life ex-
pectancy at birth consequent on a proportional change in age-specific rates” (Keyfitz
1977: 413). Since then, several authors have been interested in this measure and its
use (Demetrius 1978, 1979; Mitra 1978; Goldman and Lord 1986; Vaupel 1986; Hakkert
1987; Hill 1993; Fernández and Beltrán-Sánchez 2015). Even though the lifetable en-
tropy and e† are both measures of lifespan variation, their demographic interpretation
differs. The former is defined as the elasticity of life expectancy due to changes in death
rates (Keyfitz 1968) whereas the latter one refers to the average years lost due to death
(Vaupel, Zhang, and van Raalte 2011). The life table entropy measures relative variability,
while e† measures absolute lifespan variation. Therefore, the lifetable entropy is appro-
priate to compare different shapes of age-at-death distributions across different species
and over time (Baudisch 2011; Wrycza, Missov, and Baudisch 2015), while e† has been
used to obtain insights about lifespan variation in different countries and in subpopula-
tion groups, for instance by occupational class or income (van Raalte, Martikainen, and
Myrskylä 2014; Brønnum-Hansen 2017). Both measures are meaningful and comple-
mentary, but the calculation of their threshold ages should be performed accordingly to
correctly interpret changes of age patterns of mortality.

In this article, we uncovered the mathematical regularities behind the changes over
time in the lifetable entropy. In particular, this study contributes to the existing literature
by showing that (1) the lifetable entropy can be decomposed as a weighted average of
rates of mortality improvements, and (2) there exists a unique threshold age that sepa-
rates positive from negative contributions to lifetable entropy as a result of reductions in
mortality over time.
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Appendix

Proposition 1

Let e†(x) =
∫∞
x
d(a) e(a) da / `(x) be a measure of lifespan disparity above age x,

where d(a) accounts for the distribution of deaths, e(a) the remaining life expectancy at
age a, and `(x) is the probability of surviving from birth to age x. Then,

(A1) e†(x) =
1

`(x)

∫ ∞
x

`(a)
(
H(a)−H(x)

)
da,

where H(x) is the cumulative hazard to age x.

Proof. Note that

1

`(x)

∫ ∞
x

`(a)
(
H(a)−H(x)

)
da =

1

`(x)

∫ ∞
x

`(a)

∫ a

x

µ(y) dy da,

where function µ(y) is the force of mortality or hazard rate. By reversing the order of
integration, and using that e(y) =

∫∞
y
`(a) da / `(y) and d(y) = µ(y) `(y), we get

1

`(x)

∫ ∞
x

`(a)

∫ a

x

µ(y) dy da =
1

`(x)

∫ ∞
x

µ(y)

∫ ∞
y

`(a) da dy

=
1

`(x)

∫ ∞
x

µ(y) `(y) e(y) dy

=
1

`(x)

∫ ∞
x

d(y) e(y) dy

= e†(x),

which proves (A1). �

Proposition 2

Let `(x) be the probability of surviving from birth to age x. LetH be the lifetable entropy
andH(x) = e†(x) / e(x) the lifetable entropy conditioned on reaching age x. Let H(x)
be the cumulative hazard to age x. Then, g(x) := H(x) +H(x) − 1 −H is a strictly
increasing function.

Proof. In order to demonstrate that g(x) is a strictly increasing function it is sufficient to
show that its first derivative is always positive. We must prove that

(A2)
∂

∂x
g(x) =

∂

∂x

(
H(x) +H(x)− 1−H

)
=

∂

∂x
H(x) +

∂

∂x
H(x) > 0
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for all ages x.
By the fundamental theorem of calculus,

(A3)
∂

∂x
H(x) =

∂

∂x

∫ x

0

µ(a) da = µ(x),

whereas
∂

∂x
H(x) =

∂

∂x

(
e†(x)

e(x)

)
=

1

e(x)2

(
e(x)

∂

∂x
e†(x)− e†(x) ∂

∂x
e(x)

)
.

First, note that

∂

∂x
e†(x) =

∂

∂x

(
1

`(x)

∫ ∞
x

d(a) e(a) da

)
=

1

`(x)2

(
`(x)

∂

∂x

(∫ ∞
x

d(a) e(a) da

)
−
∫ ∞
x

d(a) e(a) da
∂

∂x
`(x)

)
=

1

`(x)2

(
`(x)

(
− d(x) e(x)

)
−
∫ ∞
x

d(a) e(a) da
(
− µ(x) `(x)

))
= −µ(x) `(x) e(x)

`(x)
+ µ(x)

∫∞
x
d(a) e(a) da

`(x)

= µ(x)
(
e†(x)− e(x)

)
.

(A4)

On the other hand,

∂

∂x
e(x) =

∂

∂x

(
1

`(x)

∫ ∞
x

`(a) da

)
=

1

`(x)2

(
`(x)

∂

∂x

(∫ ∞
x

`(a) da

)
−
∫ ∞
x

`(a) da
∂

∂x
`(x)

)
=

1

`(x)2

(
`(x)

(
− `(x)

)
−
∫ ∞
x

`(a) da
(
− µ(x) `(x)

))
= e(x)µ(x)− 1.

(A5)

Therefore, using (A4) and (A5), we get

∂

∂x
H(x) =

1

e(x)2

(
e(x)µ(x)

(
e†(x)− e(x)

)
− e†(x)

(
e(x)µ(x)− 1

))
=

1

e(x)2
(
e†(x) e(x)µ(x)− e(x)2 µ(x)− e†(x) e(x)µ(x) + e†(x)

)
=
e†(x)

e(x)2
− µ(x).

(A6)
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Finally, replacing (A3) and (A6) in (A2) yields

∂

∂x
g(x) = µ(x) +

e†(x)

e(x)2
− µ(x) = e†(x)

e(x)2
> 0,

which holds true for all ages since by definition e†(x) > 0 for all x ≥ 0. Hence, g(x) is
a strictly increasing function. �

Proposition 3

Assume the force of mortality follows a Gompertz distribution with hazard µ(x) = α eβx,
where x ≥ 0 denotes the age and α,β > 0 are parameters. Suppose mortality im-
provements over time occur at all ages, therefore there is a unique threshold age aH that
separates positive from negative contributions to the lifetable entropy H. Then, aH is
approximately proportional to the life expectancy at birth eo.

Proof. The cumulative hazard of the Gompertz model is given by

H(x) =
α

β

(
eβx − 1

)
,

where x ≥ 0 denotes the age and α,β > 0 are parameters. Following Wrycza (2014),
the lifetable entropy can be expressed in terms of the Gompertz parameters as

H =
1

β

(
1

eo
− α

)
,

where eo is the life expectancy at birth. Plugging these two expressions into function
g(x) from Equation (9) yields

(A7) g(x) =
1

β

(
α eβx − 1

eo

)
+H(x)− 1.

From Equation (A1) in Proposition 1, the lifetable entropy conditioned on surviving
to age x can be expressed as

H(x) =
e†(x)

e(x)
=

∫∞
x

`(a)
(
H(a)−H(x)

)
da∫∞

x
`(a) da

.

Using the above expressions in terms of the Gompertz parameters, it holds that the
lifetable entropy conditioned on surviving to age x is

H(x) =

∫∞
x
`(a) αβ

(
eβa − eβx

)
da∫∞

x
`(a) da

=

∫∞
x
`(a)α eβa da

β
∫∞
x
`(a) da

− α

β
eβx

=

∫∞
x
`(a)µ(a) da

β e(x) `(x)
− α

β
eβx =

1

β

(
1

e(x)
− α eβx

)
.

(A8)
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The last step in (A8) uses the product `(a)µ(a) as the age-at-death distribution, which
then implies that

∫∞
x
`(a)µ(a) da = `(x). Thus, g(x) in (A7) reduces to

(A9) g(x) =
1

β

(
1

e(x)
− 1

eo

)
− 1,

where e(x) is the remaining life expectancy at age x. Equation (A9) implies that the
threshold age aH of the lifetable entropyH under the Gompertz model occurs whenever

e(x) =
eo

β eo + 1
.

Following Missov and Lenart (2013), the remaining life expectancy at age x in the
Gompertz case can be approximated by

(A10) e(x) ≈ 1

β
eα/β

(
− γ − ln(α/β)− β x

)
,

where γ ≈ 0.57722 is the Euler–Mascheroni constant. Hence, the threshold age occurs
whenever

e(x) ≈ 1

β
eα/β

(
− γ − ln(α/β)− β x

)
=

eo
β eo + 1

⇐⇒ x = −e−α/β eo
β eo + 1

− 1

β

(
γ + ln(α/β)

)
.

Note that (A10) implies that eo ≈ eα/β
(
− γ − ln(α/β)

)
/ β. Using this approxi-

mation,

aH ≈ − e−α/β eo
eα/β (−γ − ln (α/β)) + 1

+
eo

eα/β

=
eo

eα/β

(
1

eα/β (γ + ln (α/β))− 1
+ 1

)
= eo

(
γ + ln(α/β)

eα/β (γ + ln (α/β))− 1

)
= eo · δ,

(A11)

which proves that the threshold age aH of the lifetable entropyH for the Gompertz model
is (approximately) proportional to eo by a factor δ that only depends on parameters α, β,
and γ. �

http://www.demographic-research.org 101

http://www.demographic-research.org


Aburto et al.: The threshold age of the lifetable entropy

102 http://www.demographic-research.org

http://www.demographic-research.org

	Relationship
	Proof
	Relative changes over time in height 0.5pt H
	The threshold age for height 0.5pt H

	Related results
	Applications
	Numerical findings
	The threshold age of the lifetable entropy within the Gompertz mortality model
	Decomposition of the relative derivative of height 0.5pt H

	Conclusion
	References
	Appendix

