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Abstract

BACKGROUND
Different ways to forecast mortality have been suggested, with many forecasting mod-
els based on the extrapolation of age-specific death rates. Recent studies, however,
have looked into forecasting models based on other mortality indicators, such as life
expectancy or life table deaths.

OBJECTIVE
Here we ask, what are the implications of choosing one indicator over another to forecast
mortality?

METHODS
We compare five extrapolative models based on different life table statistics: death rates,
death probabilities, survival probabilities, life table deaths, and life expectancy at birth.
We show the consequences of using a specific indicator for the forecast results by looking
into time changes in the indicators produced by the models.

RESULTS
The results show that forecasting based on death rates and probabilities of death leads
to more pessimistic forecasts than using survival probabilities, life table deaths, and life
expectancy when applying existing models based on linear extrapolation of (transformed)
indicators.

1 Interdisciplinary Center on Population Dynamics, Syddansk Universitet, Odense, Denmark. Email: mpberg-
eron@sdu.dk.
2 Interdisciplinary Center on Population Dynamics, Syddansk Universitet, Odense, Denmark.

http://www.demographic-research.org 1235

mailto:mail@uni.edu
mailto:mail@uni.edu
http://www.demographic-research.org


Bergeron-Boucher et al.: The impact of the choice of life table statistics when forecasting mortality

CONTRIBUTIONS
The paper raises awareness that the use of a specific life table statistic as input for mor-
tality forecasting has a significant impact on the forecast results.

1. Introduction

Life expectancy forecasts underpin social, economic, and medical decisions as well as
individuals’ choices, for example, about savings and retirement. Accurate mortality fore-
casts are crucial, but no consensus exists about what and how to forecast. Forecast indi-
cators, methods, and results are diverse (Booth and Tickle 2008). However, many mor-
tality forecasting models are based on extrapolative measures of specific indicators, often
changing (log-)linearly over time (Stoeldraijer et al. 2013; Booth and Tickle 2008; Booth
et al. 2006; Oeppen and Vaupel 2002).

A simple model is linear extrapolation of the trends in life expectancy (Booth and
Tickle 2008). White (2002) has shown that changes in life expectancy at birth have been
linear in high-income countries, especially for the average life expectancy of a group of
countries. Oeppen and Vaupel (2002) showed that the highest life expectancy reached by
any country each year has increased linearly since 1840. Torri and Vaupel (2012) used
this linearity in the best practice to forecast countries’ life expectancies by using the gap
between the national performance and the best-performing level. This method was further
developed and extended to sex-specific forecasts by Pascariu, Canudas-Romo, and Vaupel
(2018). Raftery et al. (2013); Raftery, Lalic, and Gerland (2014) also used life expectancy
as an indicator to forecast mortality, based on a probabilistic approach.

Among other extrapolative approaches, particularly important is the forecast of the
logarithm of age-specific death rates. Lee and Carter (1992) popularized this approach by
decomposing a matrix of log death rates by age and time into a mortality age pattern and a
time index, using Singular Value Decomposition (SVD). The time index is forecast using
time-series models with a linear deterministic trend. The Lee–Carter model has been
used extensively to forecast mortality and different variants and extensions of the model
have been developed (Li, Lee, and Gerland 2013; Russolillo, Giordano, and Haberman
2011; Hyndman and Ullah 2007; Renshaw and Haberman 2006; Li and Lee 2005; Booth,
Maindonald, and Smith 2002; Lee and Miller 2001; Lee 2000; Carter and Lee 1992). The
Lee–Carter model has the advantage of being simple and explaining a large proportion
of the variance in the death rates (Booth and Tickle 2008). However, the model tends to
under-predict life expectancy due to the assumption that rates of mortality improvement
stay constant over time, while they have actually been increasing, especially at older ages
(Li, Lee, and Gerland 2013; Booth and Tickle 2008; Kannisto et al. 1994). Bell (1997)
showed that the principal components approach of Lee and Carter (1992) does not greatly
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improve the forecast compared with applying a random-walk with drift procedure to each
age separately (Booth and Tickle 2008; Ediev 2008). Direct extrapolation of age-specific
death rates has been a common procedure to forecast mortality (Ediev 2008; Wilmoth
2005; Pollard 1987).

Instead of using death rates, some authors have preferred basing forecasts on age-
specific probabilities of death (King and Soneji 2011; Cairns et al. 2009; Debón, Montes,
and Puig 2008; Cairns, Blake, and Dowd 2006). King and Soneji (2011) argue that proba-
bilities of death should be preferred to forecast mortality, as the exposure time required to
estimate person-years – used as denominator to calculate death rates – is often unknown
in the forecasts. The authors applied a Lee–Carter model to the log probabilities of death
and integrated a lagged smoking factor. When forecasting with the qx,t, the logit transfor-
mation is, however, often preferred due to the constraint that the indicator varies between
0 and 1. Cairns, Blake, and Dowd (2006), among others, forecast the logit(qx,t) using a
two time factors model. Their model has also been extensively used and extensions have
been developed (Li, O’Hare, and Zhang 2015; Sweeting 2011; Cairns et al. 2009).

Oeppen (2008) suggested using Compositional Data Analysis (CoDA) to forecast
life table deaths (dx), an approach further developed by Bergeron-Boucher et al. (2017,
2018). Compositional data are data representing parts of a whole and always sum to a
constant. For example, life table deaths represent the age distribution of the total number
of deaths and always sum to the life table radix. As the data are restricted to vary between
two limits and have to sum to a constant, standard statistical analysis should not be applied
to model and forecast dx. For example, forecasting dx in a log-linear way will, more often
than not, forecast a death distribution that does not sum to the life table radix. CoDA is
a methodology designed to analyze data with such a sum constraint. The sum constraint
does not allow dx to vary independently by age over time, which is manifested in the
covariance structure of the components (Aitchison 1986; Bergeron-Boucher et al. 2017).
Aitchison (1986) developed a series of tools to treat compositional data, including ways
of representing the data in a different space, via a log-ratio transformation, in which the
data are not restricted to vary between two limits. Oeppen (2008) applied a principal
components analysis, similar to the Lee–Carter model, within a CoDA methodology to
model and forecast life table deaths. Basellini and Camarda (2019) also used the age-at-
death distribution to forecast mortality based on a transformation function.

Brass (1971) introduced a relational system between the survivorship probabili-
ties (lx) of two life tables, based on a logit transformation of these probabilities. The
Brass logit transformation of survival probabilities from birth has also been used to fore-
cast mortality (Scherbov and Ediev 2016; Keyfitz 1991).

Although based on different indicators, many of these methods transform the indi-
cator and then linearly extrapolate the age-specific trends (Bergeron-Boucher et al. 2017;
King and Soneji 2011; Ediev 2008; Bell 1997; Lee and Carter 1992). Transforming data
to a different scale has been a common procedure in demography and statistics to express
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the variables in a more linear form. For example, Lee and Carter (1992) log-transformed
the death rates matrix before applying an SVD, a procedure that often reveals a dominant
linear time trend. After transformation, most of the variance related to the time dimension
of the SVD, in many of the indicators, can be explained with a time-series model with a
linear deterministic trend (Bergeron-Boucher et al. 2017; Cairns, Blake, and Dowd 2006;
White 2002; Lee and Carter 1992). These observed linear trends are convenient in mor-
tality forecasts as they imply that the pace of change has been steady over a relatively long
period of time, which leads one to believe that the pattern might continue in the close or
not-so-close future.

These models focus on the extrapolation of past trends using different life table
statistics. While those indicators are linked in the life table, their modeling and fore-
casting might lead to different results. We ask, what are the implications of using each
life table indicator for the forecast results? To the authors’ knowledge, no studies have
looked at the effect of using different indicators to forecast mortality. Bergeron-Boucher
et al. (2017, 2018) mentioned that the use of life table deaths could explain, at least partly,
why their model produces more optimistic forecasts than a similar model based on death
rates, but they only compare models based on the use of death rates and life table deaths.
Previous studies have, however, evaluated the impact of different mortality forecasting
models, often based on the same indicator (Scherbov and Ediev 2016; Stoeldraijer et al.
2013; Cairns et al. 2009; Booth et al. 2006). The aim of this article is to evaluate the
implications of using a specific life table statistic for mortality forecasts.

2. Indicators, methods, and data

2.1 The indicators

The forecasts of five models based on five life table statistics are compared. All five se-
lected indicators have been used to forecast mortality and appear in the forecast literature.
We here give a brief description of each of these indicators and their characteristics.

The first indicator is the age-specific death rate mx, that is, the occurrence of deaths
expressed per person-year at each age. They are the point of entry in a life table. The mx

can only be positive and can be added and subtracted. This additive property has been
shown to be an advantage for causes of death analysis (Preston, Heuveline, and Guillot
2001).

The second indicator is the age-specific probability of death (qx). The qx are closely
related to mx (Preston, Heuveline, and Guillot 2001; Wilmoth 1990) and tend to behave
similarly – in a discrete time setting and for a one-year age interval qx = mx

1+(1−ax)mx ,
where ax is the average number of years lived by individuals dying in the age interval. It
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represents the likelihood that deaths occur in a certain period of time, at each age. The qx
can vary only between 0 and 1 and do not share the additive property of mx.

The life table deaths (dx) are the third indicator and represent the age distribution of
deaths. The dx can only vary between 0 and the life table radix. They are constrained
to sum to the life table radix and, due to this sum constraint, cannot vary independently
from one another over time. For example, a decrease in d0 will have to lead to an increase
in at least one dx, x = 1, . . . ,ω. This property can refer to a lifesaving process (Vaupel
and Yashin 1987).

The life table survival to age x (lx) is the likelihood of surviving from birth to age x,
when the radix of the life table is 1, and represents the number of people alive at exact age
x relative to the radix. It can vary only between 0 and the life table radix (for example, 1
or 100,000). In the current paper, the radix is set to 1. This indicator is a decremental
index over age, so that the age-specific values cannot vary independently, unlike mx and
qx.

The last indicator is the life expectancy at birth (e0). It represents the average number
of years lived by a cohort of individuals. The period life expectancy is based on a hypo-
thetical cohort (Preston, Heuveline, and Guillot 2001). This indicator is also a cumulative
index, summarizing the mortality experience of a cohort from birth. This indicator does
not have an upper limit, in theory.

2.2 The models

The approaches we compare use the five life table indicators above mentioned, mea-
sured over time t: (1) mx,t, (2) qx,t, (3) lx,t, (4) dx,t, and (5) e0,t. In cases (1) to (4),
the indicators are transformed using a transformation adapted to their characteristics and
constraints, namely log(mx,t), logit(qx,t), logit(lx,t), and clr(dx,t). The transformation
logit(qx,t) = log

( qx,t
1−qx,t

)
. Similarly, the transformation logit(lx,t) = log

( 1−lx,t
lx,t

)
5.

The transformation clr(dx,t) is less well known in the demographic and forecast-
ing literature. It was developed by Aitchison (1986) for studies of compositional data
and can be applied to the age composition of deaths (Oeppen 2008; Bergeron-Boucher
et al. 2017). As dx,t are compositional data, the transformation used should respect the
sum constraint (Aitchison 1986; Oeppen 2008; Pawlowsky-Glahn and Buccianti 2011).

The transformation clr(dx,t) = log(
dx,t
gt

), where gt = X+1

√∏X+1
x=0 dx,t, represents the

geometric mean of each age composition, and X is the last age in each composition.
To simplify comparison between models, we apply a Lee–Carter (LC) type of model

to all the transformed variables. We selected an LC type of analysis – based on principal

5 The Brass logit transformation is generally expressed as 0.5 log
( 1−lx,t

lx,t

)
when using a relational model.

We do not use the relational model to forecast lx,t in this paper.
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component analysis – to forecast mortality because this kind of model can be applied
to all age-specific indicators and has previously been used to forecast mx,t, qx,t and dx,t
(e.g., King and Soneji 2011; Oeppen 2008; Cairns, Blake, and Dowd 2006; Lee and Carter
1992). The LC model is based on log(mx,t):

log(mx,t) = αx + sβxκt + εx,t, (1)

where αx is the age-specific average over time, βx and κt are the first singular vectors
of the age mode and time mode found with an SVD, and s is the leading singular value.
The same expression on the right-hand side of equation (1) can be applied if logit(qx,t),
logit(lx,t), or clr(dx,t)

6 is on the left-hand side. Hence it is possible to estimate four
alternative models, based on a different indicator, with similar procedures, and then to
compare forecast results: we call these models M, Q, L, and D, respectively. The general
expression of this model using transformation τ and indicator Ix,t is

τ(Ix,t) = αx + sβxκt + εx,t. (2)

We do not use the normalization procedures of the parameters suggested by Lee and
Carter (1992) because this procedure does not apply to all indicators (Bergeron-Boucher
et al. 2017). Not normalizing leads to some identifiability problems but will not affect
the forecast results, as shown in Appendix A-1. The parameter κt is fitted and forecast
using linear regression. Time-series models, such as the random walk with drift, are often
preferred to forecast κt. To simplify the analysis, we use a linear regression as it allows
us to better illustrate the fitted and forecast trends based on a linear change assumption
and to estimate the effect of using a specific transformation (see Appendix A-2). The
conclusions of the paper do not change if a linear regression or random walk with drift is
used for the forecast.

Linearly extrapolating life expectancy at birth, another widely used method (see,
e.g., Oeppen and Vaupel 2002; White 2002; Pascariu, Canudas-Romo, and Vaupel 2018),
provides a fifth model, which we call model E.

2.3 Interpretation of the parameters

As stated by Booth and Tickle (2008), the interpretability of the parameters is an impor-
tant criterion in the choice of the underlying model. The interpretation of the time index
κt is very similar for all models. That is, it is an index of the general mortality changes

6 To respect the compositional properties of the life table deaths, two modifications are brought to equation
(2) based on dx,t (model D): The average αx is the age-specific geometric mean and is “subtracted” from the
matrix before transformation using the CoDA perturbation procedure, as defined by Bergeron-Boucher et al.
(2017).
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over time. However, the interpretation of the age pattern βx differs across models but
generally represents the age-specific sensitivity to κt.

With model M, the βx indicate the pace of mortality decrease at each age, on a log
scale (Lee and Carter 1992). With model D, the age pattern indicates how the density
of deaths is shifted from one age to another in relative terms (Bergeron-Boucher et al.
2017). With model Q, the age pattern can be seen as the pace of decrease in the log odds
of dying (versus surviving) between age x and x+ 1. With model L, it can be seen as the
pace of decrease in the log odds of dying (versus surviving) from birth until age x.

By using different indicators, the forecasts also have different interpretations. With
model M, the changes in mortality risk are forecast. With model Q, we rather forecast
the probabilities of dying between age x and x + 1. With model D, the forecasts can be
seen as a lifesaving process. That is, a decrease in the number of deaths at some ages
will lead to an increase in deaths at other ages (a similar idea to that expressed by Vaupel
and Yashin 1987). With model L, the improvements in the probabilities of surviving from
birth to age x are forecast. Finally, with model E, the average number of years lived by a
synthetic cohort is forecast directly.

2.4 Time changes

To evaluate the implication of forecasting with models based on different indicators and
transformations, we compare how their forecast results change over time. First, we com-
pare the changes in e0,t over time, denoted δ0,t, resulting from forecasting with the five
above-mentioned models (M, Q, L, D, and E) :

δ0,t = ê0,t+1 − ê0,t, (3)

where ê0,t is the fitted and forecast life expectancy at birth at time t. As models M,
Q, L, and D are based on age-specific improvement, their age-specific rate of mortality
improvement over time, denoted ρx,t, is also calculated. The statistic ρx,t allows one to
see where and how fast the death rates by age are changing over time. For example, an
increasing ρx,t is interpreted as an accelerating decline in mortality. As models M, Q,
L, and D are based on four different indicators, we transform the modeled and forecast
qx,t, lx,t and dx,t into mx,t using standard life table procedures (Preston, Heuveline, and
Guillot 2001). Rates of mortality improvement at each age (ρx,t) are hereafter compared
(Kannisto et al. 1994):

ρx,t = −
(m̂x,t+1

m̂x,t
− 1
)

. (4)
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2.5 Evaluating the models’ accuracy

To evaluate the forecast accuracy of each model, an out-of-sample analysis is performed.
We forecast observed life expectancy for a horizon (h) of 5 to 25 years. The maximum
length of 25 years is selected because longer forecasts will provide us with a too-short
fitting period for estimation of the models’ parameters. We use data from year 1960 to
year 2014−h as reference and forecast life expectancy at birth from year 2014− (h+ 1)
to 2014. For example, if h = 15, then the reference period is 1960–1999 and the life
expectancy is forecast for the period 2000–2014. The root mean square error (RMSE)
of the life expectancy at birth is then calculated for each horizon:

RMSEh =

√∑2014
t=2014−(h+1)(e

h
0,t − êh0,t)2

h
, (5)

where eh0,t and êh0,t are the observed and forecast life expectancy at birth with horizon h,
respectively. The RMSEh are then averaged over the horizon (RMSE) when compar-
ing the models’ accuracy.

Additionally, a model confidence set (MCS) procedure is applied to the RMSEh.
As some models can have similar accuracy, the MCS procedure tests if the difference in a
loss function, here the RMSEh, is significant based on t-statistics. The MCS procedure
tests the significance of the RMSEh differences between models and identifies the set of
models with the best forecast performance or, if possible, the model with the best fore-
cast performance. The MCS procedure constructs a set of preferred models, comprising
models with predictive abilities that are not significantly different from one another, for a
95% confidence level, considering the out-of-sample performance of the models (Hansen,
Lunde, and Nason 2011; Bernardi and Catania 2015). Such an approach has previously
been used by Shang and Haberman (2018) and Haldrup and Rosenskjold (2019) in mor-
tality forecasting. The MCS procedure is further detailed in Appendix A-3.

2.6 Data

The death counts and exposure data were extracted from the Human Mortality Database
(HMD 2019), and life tables were calculated from the non-smoothed data. The multi-
plicative replacement strategy to treat 0 counts (Martı́n-Fernández, Barceló-Vidal, and
Pawlowsky-Glahn 2003) was used to avoid 0 values at younger ages, as the selected
transformation cannot always be applied when 0s are present in the datasets (Bergeron-
Boucher et al. 2017). However, 0s are rare in the dataset. To avoid problems with 0 or
missing values at higher ages (above age 80), we replaced these values with a Kannisto
model fitted from age 80 to age 110, only if mx,t = 0, mx,t > 1 or mx,t is missing
(Thatcher, Kannisto, and Vaupel 1998).
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We compare the results for females and males in 18 countries/regions: Australia
(AUS), Austria (AUT), Denmark (DNK), Finland (FIN), France (FRA), East Germany
(DEU–E), West Germany (DEU–W), Ireland (IRL), Italy (ITA), Japan (JPN), the Nether-
lands (NLD), Norway (NOR), Portugal (PRT), Spain (ESP), Sweden (SWE), Switzerland
(CHE), United Kingdom (UK) and the United States (USA). These countries have similar
mortality trends that are generally considered linear (Hatzopoulos and Haberman 2013;
Bergeron-Boucher et al. 2017; White 2002; Lee and Carter 1992). We use the period
1960–2014 for our analysis, it being common to all selected countries within the HMD.

3. Results

3.1 Inherent time changes of models M, Q, L, D, and E

Table 1 shows the gains in life expectancy at birth produced by forecasting mortality with
models M, Q, L, D, and E between 2015 and 2025 and between 2025 and 2035. For
all countries and both sexes, the gains in life expectancy are forecast to be smaller with
models M and Q than with the remaining three models. Models M and Q further lead to
smaller gains in e0,t for the period 2025–2035 than for the period 2015–2025. Figure 1
helps explain these results by showing the yearly changes in life expectancy produced by
models M, Q, L, D, and E for three countries. A linear model of the log(mx,t) (M) leads
to smaller gains in life expectancy over time, suggesting a deceleration in life expectancy
increase over time. This deceleration is observed for all countries and both sexes (see
Appendix A-4). Very similar results are found for model Q.
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Figure 1: Change in female life expectancy at birth over time (δ0), fitted and
forecast with extrapolative models based on five (transformed)
indicators for Australia, France, and the United States, 1960–2040
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The other three models (L, D, and E) are generally more optimistic. Models L and
D allow mixed patterns of life expectancy changes. That is, sometimes the increase in
life expectancy accelerates (e.g., East Germany), sometimes it decelerates (e.g., Spain),
and sometimes it alternates between acceleration and deceleration (e.g., France). In the
long run, model E is often the most optimistic, due to its constant rate of increase. Life
expectancy forecasts based on lx,t, dx,t, mx,t, and qx,t will compress against the last age
included in the life table, for example, 110. The last age in the life table is thus playing the
role of a limit to life expectancy in these models. No such limit is included in model E.
In Figure 1, this compression is, however, negligible, as the forecast horizon is relatively
short (25 years).
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Table 1: Gains in life expectancy at birth for the periods 2015–2025 and
2025–2035 resulting from forecasting mortality with five models,
females and males, 18 countries

M Q D L E
2015–
2025

2025–
2035

2015–
2025

2025–
2035

2015–
2025

2025–
2035

2015–
2025

2025–
2035

2015–
2025

2025–
2035

Females

JPN 2.09 1.88 2.15 1.95 3.42 3.06 3.49 3.86 3.01 3.01
DEU–E 1.74 1.62 1.77 1.67 2.58 2.68 2.30 2.50 2.24 2.24
FIN 1.67 1.52 1.70 1.56 2.44 2.34 2.31 2.43 2.21 2.21
FRA 1.66 1.52 1.69 1.55 2.38 2.27 2.24 2.30 2.25 2.25
ITA 1.66 1.50 1.69 1.53 2.33 2.19 2.27 2.31 2.55 2.55
PRT 1.62 1.45 1.64 1.47 2.14 2.02 2.23 2.18 3.23 3.23
AUT 1.61 1.46 1.63 1.49 2.18 2.08 2.10 2.12 2.31 2.31
DEU–W 1.58 1.45 1.60 1.48 2.20 2.14 2.07 2.12 2.19 2.19
AUS 1.58 1.42 1.59 1.44 2.00 1.86 1.99 1.95 2.22 2.22
ESP 1.54 1.35 1.56 1.37 1.98 1.76 2.05 1.97 2.58 2.58
IRL 1.52 1.39 1.54 1.41 1.97 1.93 1.91 1.92 2.15 2.15
CHE 1.51 1.37 1.53 1.40 2.12 1.98 2.03 2.05 2.06 2.06
UK 1.39 1.30 1.40 1.32 1.79 1.78 1.67 1.69 1.75 1.75
SWE 1.27 1.18 1.29 1.20 1.68 1.63 1.60 1.60 1.63 1.63
USA 1.20 1.12 1.20 1.13 1.50 1.49 1.42 1.40 1.51 1.51
NOR 1.15 1.08 1.17 1.10 1.48 1.49 1.42 1.44 1.47 1.47
NLD 1.12 1.06 1.14 1.08 1.47 1.47 1.37 1.38 1.38 1.38
DNK 1.09 1.04 1.10 1.05 1.53 1.61 1.35 1.39 1.32 1.32

Males

AUS 1.96 1.75 1.99 1.78 2.62 2.39 2.59 2.55 2.73 2.73
JPN 1.96 1.82 2.00 1.87 3.08 3.04 2.82 3.07 2.61 2.61
FIN 1.96 1.81 1.98 1.84 2.74 2.72 2.52 2.61 2.51 2.51
AUT 1.89 1.74 1.91 1.77 2.59 2.56 2.43 2.49 2.60 2.60
FRA 1.85 1.73 1.87 1.75 2.66 2.64 2.40 2.46 2.35 2.35
UK 1.76 1.63 1.78 1.65 2.39 2.35 2.24 2.29 2.23 2.23
ITA 1.75 1.60 1.77 1.62 2.31 2.25 2.24 2.23 2.66 2.66
CHE 1.73 1.58 1.75 1.60 2.32 2.21 2.19 2.19 2.34 2.34
DEU–W 1.72 1.59 1.74 1.61 2.27 2.25 2.14 2.17 2.38 2.38
PRT 1.70 1.56 1.71 1.58 2.32 2.33 2.35 2.35 3.13 3.13
USA 1.62 1.51 1.64 1.52 2.10 2.04 1.99 1.97 2.07 2.07
ESP 1.59 1.47 1.60 1.49 2.15 2.13 2.06 2.06 2.34 2.34
IRL 1.56 1.44 1.57 1.45 1.91 1.90 1.90 1.90 2.09 2.09
DEU–E 1.55 1.48 1.56 1.50 2.11 2.30 1.90 2.01 1.90 1.90
SWE 1.37 1.27 1.38 1.28 1.66 1.62 1.62 1.59 1.79 1.79
NOR 1.28 1.18 1.29 1.19 1.45 1.40 1.48 1.44 1.70 1.70
NLD 1.24 1.14 1.25 1.15 1.35 1.30 1.39 1.35 1.64 1.64
DNK 1.16 1.09 1.16 1.10 1.30 1.32 1.28 1.27 1.42 1.42
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Figure 2 shows the fitted and forecast ρx,t with models M, Q, L, and D for Aus-
tralia, France, and the United States. The ρx,twhen modeling and forecasting with model
M is constant in time but differs across ages. The constant ρx,t is due to the use of the
log transformation and linear changes as shown in Table A-1 of Appendix A-2. With
this model, ρx,t is generally lower at older ages due to relatively moderate decreases in
mortality observed at older ages compared with younger ages. As people keep surviving
longer and thus dying at older ages, progress in life expectancy will become more depen-
dent on mortality improvement at these ages. As ρx,t stays at lower levels at advanced
ages than at younger ages with this model, the decrease of δ0,t over time observed in
Figure 1 is expected.

Figure 2: Fitted and forecast age-specific rate of mortality improvement (ρx)
with four models based on the linear modeling of four transformed
indicators for Australia, France, and the United States, females
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For models Q, L, and D, ρx,t is increasing over time, at all ages. When life ex-
pectancy increase becomes dependent on mortality improvement at higher ages, progress
in life expectancy would thus not necessarily be slowed down with these models but will
depend, nevertheless, on how fast ρx,t at older ages increases over time. We can thus ex-
pect that life expectancy forecasts based on these models would be more optimistic than
the forecasts based on a linear extrapolation of log(mx,t).

The value of ρx,t for model Q does change over time. However, ρx,t for this model
stays relatively similar to the ρx,t of model M. Despite changing rates of mortality im-
provement, the life expectancy forecasts using model Q remain more pessimistic than for
models L and D.

Selecting a specific (transformed) indicator to forecast mortality thus affects the re-
sults. Using a similar linear extrapolative model on the different (transformed) indicators
leads to differences in life expectancy between 0.8 years (Danish males) and 6.1 years
(Portuguese females) at the end of a 25-year forecast horizon (by 2040).

3.2 Which indicator gives the most accurate forecasts?

Table 2 shows the RMSE and the set of preferred models (SP), based on the MCS
procedure, for life expectancy forecast by country and sex. The linear extrapolation of the
logit(qx,t) would have been, on average, the most accurate model for females. However,
model Q is only part of the SP for eight countries. Model M has the lowest RMSEh
statistics or no statistically different results from the best model (part of the SP) for 11
countries, model D for six countries, model L for five countries, and model E for four
countries.

For males, life expectancy at birth over the period 1990–2014 would have been best
predicted by the “optimistic” indicators, that is, lx,t, dx,t, and e0,t, for all countries, with
the exception of Japan. Model E would have been, on average, the most accurate model
among those compared. Male life expectancy increased faster over this period, resulting
from narrowing the gap with female life expectancy (Meslé 2004; Glei and Horiuchi
2007). Model E has the lowestRMSEh statistics or no statistically different results from
the best model for 15 countries, model D for four countries, model M for one country,
and models L and Q for zero countries.
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Table 2: Average root mean square error (RMSE ) over forecast horizon h of
the forecast life expectancy at birth for the period 1990 to 2014,
with the best RMSE value per country in bold and preferred set of
models (SP) for 18 countries, females and males

Females Males

Country M Q D L E SP Country M Q D L E SP

DEU–E 1.26 1.25 1.17 1.13 1.01 M, Q, D, L, E DEU–E 2.35 2.35 2.22 2.11 1.93 E
DNK 1.17 1.15 0.76 0.91 0.96 D DNK 2.16 2.16 2.08 2.03 1.88 E
IRL 1.08 1.07 0.87 0.86 0.61 E IRL 2.13 2.12 2.09 1.90 1.67 E
PRT 0.77 0.75 0.45 0.35 1.10 L NLD 1.75 1.75 1.74 1.68 1.47 E
JPN 0.67 0.72 1.88 1.59 1.57 M NOR 1.71 1.71 1.66 1.62 1.43 E
UK 0.65 0.64 0.38 0.47 0.40 D PRT 1.50 1.49 1.11 0.78 0.44 E
NOR 0.50 0.48 0.24 0.28 0.26 D ITA 1.28 1.27 0.96 0.92 0.52 E
NLD 0.50 0.49 0.56 0.51 0.49 M, Q, D, L, E ESP 1.25 1.23 0.81 0.78 0.52 E
AUT 0.47 0.46 0.36 0.33 0.33 M, Q, D, L, E UK 1.23 1.22 0.93 0.98 0.88 D, E
USA 0.43 0.44 0.66 0.57 0.60 M, Q CHE 1.20 1.19 0.79 0.89 0.78 D, E
ITA 0.31 0.30 0.52 0.41 0.76 Q AUT 1.11 1.11 0.85 0.83 0.62 E
AUS 0.27 0.26 0.38 0.30 0.40 M, Q, L SWE 1.08 1.08 0.93 0.95 0.81 E
ESP 0.24 0.23 0.33 0.34 0.87 Q FRA 1.03 1.02 0.53 0.66 0.65 D
FRA 0.23 0.23 0.69 0.52 0.59 M DEU–W 0.92 0.91 0.67 0.66 0.42 E
FIN 0.22 0.22 0.84 0.54 0.46 M, Q AUS 0.89 0.86 0.52 0.55 0.48 E
DEU–W 0.21 0.21 0.64 0.49 0.65 M FIN 0.87 0.86 0.42 0.56 0.47 D
CHE 0.21 0.22 0.82 0.59 0.58 M JPN 0.59 0.62 1.59 1.23 1.25 M
SWE 0.17 0.18 0.54 0.38 0.38 M USA 0.49 0.48 0.27 0.28 0.24 E
Mean 0.52 0.52 0.67 0.59 0.67 Mean 1.31 1.30 1.12 1.08 0.92

Evaluating which indicators would have been the most accurate in predicting life
expectancy is a complicated task as the results can change between countries, sexes, and
periods. A trade-off between population forecast accuracy might be necessary in cases
where more than one population is of interest, for example, losing accuracy for females
to gain some for males. On average, for both sexes and all countries, model E would
have been the most accurate model (RMSE = 0.79), followed by models L (RMSE =
0.83), D (RMSE = 0.90), Q (RMSE = 0.91), and M (RMSE = 0.91). When
looking into the number of times a model is part of the preferred set (SP), for both females
and males, model E still comes first (SP = 19), followed by models M (SP = 12), D
(SP = 10), Q (SP = 8), and L (SP = 5).

Table 3 shows the mean RMSE over country and horizon for different transformed
indicators forecast with models M, Q, D, and L. For males, model L would have predicted
more accurately all indicators over the period 1990–2014 and for most countries. For
females, model L would have been the most accurate model to predict mx,t and qx,t.
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Table 3: Average root mean square error (RMSE ) over forecast horizon and
country of the different transformed mortality indicators, with the
best RMSE value in bold, and number of times the model was part
of the preferred set of models (SP), females and males

Mean RMSE SP

M Q D L M Q D L

Females
log(mx ,t) 0.285 0.285 0.295 0.277 6 6 4 17
logit(qx ,t) 0.289 0.289 0.298 0.281 6 4 3 17
clr(dx ,t) 0.191 0.191 0.196 0.191 9 4 6 9
logit(lx ,t) 0.141 0.141 0.173 0.156 15 9 7 8
e0,t 0.519 0.518 0.672 0.587 11 8 7 6

Males
log(mx ,t) 0.294 0.294 0.290 0.276 6 4 6 17
logit(qx ,t) 0.303 0.303 0.299 0.285 5 3 6 17
clr(dx ,t) 0.195 0.195 0.191 0.186 4 3 6 17
logit(lx ,t) 0.226 0.224 0.215 0.199 1 0 3 17
e0,t 1.307 1.301 1.121 1.078 1 0 10 11

4. Discussion and conclusion

This study is an overview of the implications the choice of life table statistic has for fore-
casts. The results indicate that the LC type of models based on mx,t and qx,t systemat-
ically lead to more pessimistic forecasts than similar models based on dx,t, lx,t and e0,t.
The choice of indicators is thus an important step when selecting a forecasting model,
which can lead to important differences in the results.

The conclusions of the paper are generalizable to other populations, to other fitting
periods, and for longer forecast horizons. Models M and Q will lead to more pessimistic
forecasts than models D, L, and E for any population with decreasing mortality. The
differences between models are, however, increasing with the forecast horizons. These
conclusions arise as the pessimism of the forecasts of models M and Q seems to be rooted
in the indicator and/or transformation used in these models, as further discussed in Section
4.1.

However, the conclusions of the paper might not be generalizable if the models are
modified. Our models compare only simple linear extrapolation of the past trends for
five (transformed) indicators, using a similar method. In practice, the models can, and
sometime should, be modified to obtain better forecasts. For example, no modification
has been made to model L to ensure that the forecast lx,t decline monotonically with age.
However, this crossover generally does not happen in our forecasts. More sophisticated
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models adapted to the acceleration or deceleration of rates of improvement over time
exist and can better adapt to nonconstant rates of improvement (Bohk-Ewald and Rau
2017; Haberman and Renshaw 2012). Also, nonlinear extrapolation or adding covariates
could potentially increase forecast accuracy (Raftery et al. 2013; Janssen, van Wissen,
and Kunst 2013). Models considering the catch-up of laggards and coherence between
populations have also shown potential (Li and Lee 2005; Hyndman, Booth, and Yasmeen
2013; Bergeron-Boucher et al. 2017; Pascariu, Canudas-Romo, and Vaupel 2018). Mod-
ifications to the models could, and probably will, have an impact on the forecast results.

4.1 Why do the models produce different forecasts?

Given the similar methodology of models M, Q, D, L, and E, the difference between
forecasts can be due to the use of a different indicator and the use of a different transfor-
mation.

The effect of using one transformation rather than another is summarized in Ap-
pendix A-2. The basic findings are that (1) the log transformation leads to a constant
ρx,t over time; (2) the logit transformation allows for increasing ρx,t over time that will
converge toward an upper limit; (3) the ‘Brass’ logit transformation produces a changing
ρx,t with a limit of 0; and (4) the clr transformation allows for changing ρx,t over time,
with no limit. The choice of transformation will thus have an impact on the forecast re-
sults. For example, using a logit transformation of mx,t will not lead to a constant rate
of improvement by age over time, as the log transformation does. However, a specific
transformation cannot be applied to all indicators, as the transformation used should be
adapted to the indicator’s characteristics. It is important to emphasise that only log-based
transformations are compared in this paper. Other transformations are available, such
as normal scores transformation, including the Wang transformation (e.g., de Jong and
Marshall 2007). It is to be expected that the use of a normal scores transformation will
provide different forecast results.

Quantifying the effect of choosing one indicator over another for the forecast results
can be difficult. The relations between indicators in the life table are based on changes
over ages (Preston, Heuveline, and Guillot 2001). However, when forecasting, the interest
is also in changes over time. To estimate exactly how life table relations affect time
changes, we need to know the relation over age between indicators (see Appendix A-
5). For example, in the Lee and Carter (1992) model, we would need to know how the
parameters αx and βx are changing over age (see equation (2)). These age patterns are
not linear and their modeling can be difficult as, for example, βx does not have a clearly
established shape and model. Owing to these constraints, investigating and quantifying
the impact of using one indicator over the other on the forecast results can be problematic.

Nevertheless, it can be shown that life table relations modify time trends. Appendix
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A-5 shows that life table relations modify the rates of mortality changes of indicators
in the same set of life tables. For example, if log(mx,t) are forecast linearly over time,
log(lx,t) in the same life tables are not linear. The same modeling on different indicators,
for example, log-linear, would thus lead to different forecasts. Owing to the relations
within the life table, modeling and forecasting an indicator in a certain way leads to
different modeling of the other life table indicators and ultimately affects the trends in
life expectancy.

4.2 Which indicator should be used for forecasting?

It has been established that basing a forecast on one indicator rather than another will
have an impact on the results. However, the results do not provide us with a clear and
universal guideline as to which indicator should be used to produce the most accurate
forecast. The choice of indicator can depend on the purpose of the forecast, the research
question, and the population of interest. Additionally, the results of the out-of-sample
analysis in Section 3.2 are dependent on the fitting period, and the results might change
if other data periods or longer forecast horizons were used for the analyis (see Appendix
A-6).

Using life expectancy at birth as the forecasting indicator provides linear and steady
forecasts. Model E is also more parsimonious in terms of parameters and tends to predict
male life expectancy better than other models. However, this indicator does not provide
any information about age distributions of mortality and provides less accurate forecasts
for females when compared with the other models.

Models based on mx,t and qx,t are the most common, and the results show that
models M and Q tend to produce more accurate forecasts for females than other mod-
els, especially for recent periods (Table 2). However, these models tend to overpredict
mortality, especially for males or long forecast horizons (Appendix A-6).

Model L would have predicted the age and time patterns of mortality more accurately
than the other age-specific models, in the recent past (Table 3). Model L has, however, a
current shortcoming: This model does not ensure that the lx,t decline monotonically with
age.

Finally, model D tends to have an average accuracy. Table 4 provides a summary of
the conclusions found in the paper.
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Table 4: Summary table

M Q D L E

Age-specific information Yes Yes Yes Yes No
ρx ,t Constant Moderate Increase Increase -
δ0,t Decrease Decrease Mixed Mixed Constant

Interpretation

Progress in
reducing age-
specific death
rates

Progress in
reducing age-
specific death
probabilities

Lifesaving
process

Improvement in
survivorship

Increase in
the expectation
of life

4.3 Future directions

To forecast mortality, authors have used life expectancy (Pascariu, Canudas-Romo, and
Vaupel 2018; Raftery, Lalic, and Gerland 2014; Raftery et al. 2013; Torri and Vaupel
2012; White 2002), life table deaths (Bergeron-Boucher et al. 2018, 2017; Oeppen 2008),
and survival probabilities (Scherbov and Ediev 2016; Keyfitz 1991; de Jong and Marshall
2007). However, only a few models using these indicators are available, compared with
models based on death rates and probabilities. Future studies should try to provide mod-
els using life expectancy, life table deaths, and survival probabilities adapted to different
contexts and populations, for example, forecasts for cohorts and by cause of death. Oep-
pen (2008) and Kjærgaard et al. (2019) showed that the use of life table deaths provides
interesting possibilities to forecast mortality by cause of death, due to the covariance
structure between the components of compositional data. Survival probabilities are less
prone to random fluctuations due to the cumulative nature of the indicator (from birth to
age x), suggesting that their use could provide more robust forecasts.

Using death rates to forecast mortality has been the tradition so far, but other indica-
tors can also be used. Each indicator can be derived from the others using life table rela-
tions (except for e0,t) and provides insights about mortality in a population at a specific
point in time. Future developments in the field of mortality forecasting should consider
the use of different indicators, but forecasters should bear in mind the implications of
using a specific indicator for the forecast results.
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Appendix

1. Identifiability and normalization

As pointed out by Lee and Carter (1992), an SVD does not provide a unique solution.
A simple example is that κtβxs = (−κt)(−βx)s. To obtain a unique solution for their
parameter estimates, Lee and Carter (1992) suggest normalizing κt and βx such that∑
κ∗t = 0 and

∑
β∗x = 1, where ∗ represents the parameter after normalization. The

suggested normalization procedures by Lee and Carter (1992) are:

κ∗t = κt
∑

βxs, (6)

β∗x =
βx∑
βx

. (7)

This normalizing procedure will not affect the estimate of log(mx,t) − αx, as κtβxs =

κt
∑
βxs

βx∑
βx

. The parameters of the model (e.g., random walk with drift or linear
regression) used to fit and forecast κt are generally equivalent to those of a similar model
fitted to κ∗t . For example, if a random walk with drift is used, the drift (d) is calculated
as:

d =
κT − κ0
T − 1

(8a)

d∗ =
κ∗T − κ∗0
T − 1

=

∑
βxs(κT − κ0)

T − 1
= d

∑
βxs. (8b)

This equivalence means that the continuous rates of mortality improvements
(ρx,t = − log(mx,t+1) + log(mx,t)) are equivalent when using κt or κ∗t :

− log(mx,(t+1)) + log(mx,(t)) = −[αx + (κt + d)βxs] + [αx + κtβxs] = −dβxs
− log(mx,(t+1)) + log(mx,(t)) = −[αx + (κ∗t + d∗)β∗x] + [αx + κ∗tβ

∗
x]

= −d∗β∗x = −[d
∑

βxs]
βx∑
βx

= −dβxs.

A similar proof can be made with a linear regression: if the parameters of the regression
on κt are C0 and C1, those of a linear regression on κ∗t will be equal to C0

∑
βxs and

C1

∑
βxs.
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2. The transformation effect

Each of the mentioned transformations is adapted to the characteristic of a specific mor-
tality indicator and cannot be applied to all indicators. For example, using a clr trans-
formation of the mx,t would lead to implausible results, as the mx,t do not sum to a
constant nor represent parts of a whole. The log transformation of the dx,t also leads to
implausible results. The indicator is thus linked to a specific transformation. Even if each
transformation is linked to a specific indicator, it is still possible to estimate how each
transformation can affect the forecast results. To do so, we estimate the relative rates of
mortality change r, with

rτt = − ḟ
τ
t

fτt
, (9)

where f is a formula taking a linear form after transformation τ and the dot over the
variable represents its derivative with respect to time t. The value of rt indicates, similarly
to ρx,t, where and how fast each function is changing over time.

In Table A-1, C0 andC1 are the coefficients of the linear regression. When modeling
and forecasting any indicator linearly after transformation, the following conclusions are
drawn:

• The log transformation involves a constant r;
• The logit transformation involves a changing r, varying from 0 to −C1;
• The ‘Brass’ logit transformation involves a changing r, varying from C1 to 0;
• The clr transformation involves an increasing r over time, with no limit.

Hence, the transformations allow different progress in mortality, varying from constant
changes to increase with no limit. It is important to note that for an equal C1, the logit
transformation will be more pessimistic than the log transformation, as rt for the logit
transformation will converge toward C1 without crossing this limit.
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Table A-1: Rates of mortality improvements rt implied by four
transformations τ and their limits when C1 is negative (most
common scenario for human populations)

Transformation Equation rτt limt→∞ rτt

log log(ft) = C0 + C1t rlogt = −C1 −C1

logit logit(ft) = ln
( ft

1− ft
)
= C0 + C1t rlogitt =

−C1

1 + eC0+C1t
−C1

‘Brass’ logit logit(ft) = ln
( 1− ft

ft

)
= C0 + C1t rlogitt =

C1e
C0+C1t

1 + eC0+C1t
0

clr a clr(ft) = ln
( ft
gt

)
= C0 + C1t r

clr(I)
t = −C1 +

Ṡt

St
∞ b

Note: a fclr = C[eC0+C1t] =
eC0+C1t∑
t e
C0+C1t

=
eC0+C1t

St
b The clr transformation can only be used for dx,t, among the life table statistics. The general equation for

St when forecasting dx,t is St ≈ expD0+D1t+D2t
2

. This equation provides a coefficient of determination above

99% for all countries and both sexes. Given this equation, rclrt ≈ −C1 + D1 + 2D2t. As the coefficient D2 is

generally positive, the limit of rclrt will be∞.

3. Model confidence set (MCS)

The objective of the MCS procedure is to find the set of models or the model (M∗) that
produces the most accurate forecast among the set of all considered models (M0). Using
the notation presented by Hansen, Lunde, and Nason (2011), that is identifying

M∗ =
{
i ∈M0 : µij ≤ 0 for all j ∈M0

}
,

where µij = E(cij,h) and cij,h = RMSEi,h − RMSEj,h for all i, j = 1, . . . ,m; i and
j are used to denote different models; and h = 1, . . . ,H denotes the forecast horizon.
The MCS procedure can be formulated using any loss function. In the current paper, we
selected the RMSEh function.

The intuition behind the MCS procedure is: If the forecast accuracy differs between
the models, the worst performing model is eliminated. The procedure is repeated until
the hypothesis of equal predictive ability (H0,M : µij = 0,∀ i, j) is accepted for all
remaining models in M , where M is a subset M0. It is necessary to define M as the
models are considered in a sequential process such that models are eliminated from M0.
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The relevant hypothesis to eliminate the worst performing models can be expressed
as:

H0,M : µij = 0 for all i, j = 1, 2, . . . ,m

and the alternative hypothesis

HA,M : µij 6= 0 for all i, j = 1, 2, . . . ,m.

We first define cij =
∑H
h=1 cij,h
n and ci =

∑
j∈M cij

m . Hence, the test statistics are
defined as

tij =
c̄ij√
̂var(c̄ij)

and ti =
c̄i√

v̂ar(c̄i)

,

where ̂var(c̄ij) and v̂ar(c̄i) are estimates of the variances of the defined averages. To test
the null hypothesis H0,M , Hansen, Lunde, and Nason (2011) consider the models with
the greatest relative loss by eliminating the worst performing model, that is the model
with the largest test statistics. To do so, the following test statistics are defined and are
used to define two elimination rules. The two test statistics are

TR,M = max
i,j∈M

|tij | and Tmax,M = max
i∈M

ti.

Note that TR,M depends on the difference between two models whereas Tmax,M
depends on the average over the ith model. From these, the following eliminations rules
are defined: emax,M = arg maxi∈M Tmax,M and eR,M = arg maxi∈M supj∈M TR,M .
By combining these two rules, the model that contributes most to a false test of equal
forecast error is eliminated. From this principle a sequence of tests is performed until
equal forecast accuracy is observed for all models in M. The defined test statistics are non-
standard and, thus, bootstrapping methods are used to estimate them. For more details on
the algorithm and bootstrapping method, see Hansen, Lunde, and Nason (2011); Bernardi
and Catania (2015).
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4. Changes in life expectancy at birth

Figure A-1: Change in life expectancy at birth over time (δ0) fitted and forecast
with extrapolative models based on five (transformed) indicators,
18 countries, females
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Figure A-2: Change in life expectancy at birth over time (δ0) fitted and forecast
with extrapolative models based on five (transformed) indicators,
18 countries, males
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5. The indicator effect, an approximation

To understand how life table relations modify time trends, ρx,t for different indicators are
analyzed after mortality is fitted and forecast with a baseline model (e.g., model M). This
analysis can help explain how each indicator behaves under the same scenario, that is, in
the same set of life tables. Unlike in the main text, ρx,t is calculated for all indicators
Ix,t:

ρx,t = −
( Îx,t+1

Îx,t
− 1
)

. (10)

Figure A-3 shows ρx,t for mx,t, qx,t, lx,t and dx,t when mortality is fitted and fore-
cast with models M, Q, D, and L. Model M produces constant ρx,t of mx,t. However,
this model produces a deceleration of survival improvements and changes in dx,t that
converge toward a limit (see below). Similar results are found with model Q.

The ρx,t for models L and D have different patterns than those for models M and
Q. Model L produces accelerating decline of mx,t and qx,t, a deceleration of survival
improvement (less pronounced than that of model M), and changes in dx,t that also seem
to converge toward a limit. Model D produces accelerating decline of mx,t and qx,t, a
deceleration of survival improvement, and accelerating changes in dx,t with no apparent
limit.

Life table relations then do transform the time trends of indicators in the same set of
life tables. Due to these relations, the same modeling on different indicators will not lead
to the same forecast. For example, if lx,t would be forecast in a log-linear way, its ρx,t
would be constant over time, leading to a more optimistic forecast than similar modeling
on mx,t, which produces a deceleration of survival improvements over time.
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Figure A-3: Rate of mortality changes for different indicators in a life table
after mortality has been modeled with models M, Q, L, and D,
Australian females, 1960–2040
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To better understand how life table relations modify time trends, we can estimate life
table functions in a continuous setting based on a specific model. We give an example
for Model M. If we assume that the mortality age pattern follows a Gompertz model
(Gompertz 1825) and assume that the force of mortality in a continuous setting, µx,t,
is changing exponentially over time, we can estimate the equations for each indicator
of model M. Mortality at each age is assumed to change at the same rate v over time,
suggesting a postponement of mortality. We thus have:
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µx,t = αeβxevt. (11)

The life table identities of equation (11) are then found – that is, µx,t is transformed
into the others using standard life table relations – and the respective relative rate of mor-
tality change rt for each indicator is calculated. Table A-2 shows the life table identities
and their rt.

Table A-2: Life table formulas resulting from assuming that µx,t is changing
exponentially over time, respective rate of mortality improvement
r, and limit of r over time

Identities in the life table indicators

Assumption Converted to lx,t Converted to dx,t

µx,t = αeβxevt lx,t = exp[
−α
β

(eβx − 1)evt] dx,t = αexp[
−α
β

(eβx − 1)evt + βx+ vt]

rµt = −v rlt =
α

β
(eβx − 1)evtv rdt =

α

β
(eβx − 1)evtv − v

limt→∞ rlt = 0 limt→∞ rdt = −v a

Note: a If v < 0 in the original scenario, representing a decrease over time of µx,t.

If µx,t is forecast assuming an exponential change, the corresponding lx,t does not
change exponentially (Table A-2). The lx,t for this scenario decelerates over time. If v is
negative in equation (11), the limit of rlt is 0. As v is often negative in equation (11) for
human populations, representing a decrease of µx,t over time, then rlt of model M will
converge toward 0, representing a deceleration in survival improvements over time.

Transforming µx,t into dx,t produces an acceleration in dx,t over time that will con-
verge toward −v (Table A-2). However, when comparing ρx,t of model M with that of
model D, the latter will be more optimistic, as ρx,t of dx,t has no limit (see Table A-1)
with this model.

In this analysis, only life table relations (Preston, Heuveline, and Guillot 2001) are
used to transform one indicator into another. It is shown here that the relation over age
between life table indicators transforms the time trends. The findings of Section 3 are
then, at least partly, due the relations between indicators in the life table.

6. Forecast accuracy based on longer time periods

An out-of-sample analysis similar to that described in Section 2.5 is performed, based
on data from 1900. Forecast horizons h of 5 to 50 years are used. As not all countries
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have data available since 1900, the analysis is limited to Denmark (DNK), France (FRA),
Finland (FIN), Italy (ITA), the Netherlands (NLD), Norway (NOR), Sweden (SWE), and
Switzerland (CHE). The results (Table A-3) differ from those in Section 3.2, especially
for females. This illustrates the complexity of finding the most accurate forecast model
for all populations and time periods.

Table A-3: Average root mean square error (RMSE ) over forecast horizon h of
the forecast life expectancy at birth for the period 1965 to 2014,
with the best RMSE value per country in bold and preferred set of
models (SP) for eight countries, females and males

Females Males

Country M Q D L E SP Country M Q D L E SP

FIN 1.58 1.56 1.14 0.65 3.69 L FIN 2.59 2.58 2.32 1.35 1.56 L, E

ITA 1.40 1.37 0.70 0.37 4.07 L ITA 2.48 2.46 2.04 1.11 2.39 L

FRA 1.02 0.99 0.51 0.48 3.23 D, L NOR 1.97 1.96 1.85 1.38 1.48 L, E

DNK 0.88 0.87 0.83 0.95 2.57 M, Q, D,
L FRA 1.89 1.87 1.14 0.47 2.33 L

NOR 0.83 0.82 0.60 0.35 2.81 L SWE 1.79 1.78 1.60 1.14 1.42 L, E

SWE 0.79 0.78 0.49 0.31 2.79 L CHE 1.73 1.70 1.03 0.83 1.34 D, L, E

CHE 0.66 0.63 0.63 0.76 3.01 M, Q, D,
L NLD 1.68 1.67 1.45 1.16 2.05 M, Q, D,

L, E

NLD 0.56 0.55 0.76 1.04 3.69 M, Q, D DNK 1.65 1.65 1.48 1.36 1.90 M, Q, D,
L, E

Mean 0.96 0.95 0.71 0.61 3.23 Mean 1.97 1.96 1.61 1.10 1.81
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