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Formal Relationship 30

Revivorship and life lost to mortality

Carl P. Schmertmann1

Abstract

BACKGROUND
Some formal demographic models describe mortality improvement in terms of averted
deaths. In such models individuals who would have died in an earlier regime are instead
revived and returned to the population to face the same age-specific mortality risks as the
rest of the population. A closely related literature has examined inequality in terms of the
number of years of potential life that are lost to deaths.

OBJECTIVE
The paper combines several results from formal demography to illustrate the poten-
tial gains in life lived from a sequence of revivals, in which everyone is revived 0, 1,
2,. . . times.

CONTRIBUTION
Mathematical analysis yields two new results: A generalization of Vaupel and Canudas-
Romo’s e† index to second and higher-order revivals, and an analytical expression that
relates gains from revivals to the covariance of remaining life expectancy and cumulative
mortality.

1 Florida State University, Tallahassee, Florida, USA. Email: schmertmann@fsu.edu.
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1. Relationships

Some demographic models (Mitra 1979; Vaupel and Yashin 1987; Finkelstein 2013) de-
scribe mortality reduction in terms of averted deaths, imagining how death rates fall when
individuals are revived and restored to the population to get second, third, or higher-order
chances at survival. In related papers Vaupel and colleagues (Vaupel 1986; Vaupel and
Yashin 1987; Vaupel and Canudas Romo 2003) have analyzed the close connection be-
tween measures of disparity in life lived and the potential years of life that are lost to
deaths. Here I combine these two threads of the literature by examining the expected
gains to life from repeated revivals.

Standard models describe death as a failure-time process that removes members
from a population at random ages D, where

P (D ≥ x) = `x =

{
e−Hx if x ≤ ω
0 if x > ω

and ω represents the highest age x to which anyone can survive (if there is a finite x with
that property), or ω =∞ (if there is not).

In this formulation `x is the probability of survival to age x, µx is the age-specific
force of mortality, Hx =

∫ x
0
µz dz is cumulative mortality from birth to exact age x, the

density of events at exact age x is δx = `xµx, and everyone experiences the event in
question (death) exactly once.2

Generalizing, it is possible to think of the standard length of life as measuring the
time to a first event in a nonhomogeneous Poisson process with rates µx. In such a process
Hx is the expected number of events experienced by age x, and the probability that an
individual experiences exactly R events between birth and age x is e−HxHR

x

R! = `x · (H
R
x

R! )
for R = 0, 1, 2, . . . . In this alternative interpretation, individuals could remain in the
population to experience second, third, and higher-order deaths.

Four relationships

In a demographic regime where each individual is granted exactlyR ∈ {0, 1, 2, . . .}R ∈ {0, 1, 2, . . .}R ∈ {0, 1, 2, . . .}
revivals, life ends at the (R+ 1)(R+ 1)(R+ 1)th death, and the following relationships hold:

1. The probability of survival to exact age x is `(R)
x = `x

(∑R
k=0

Hk
x

k!

)
.

2 Time and age are continuous, but I use subscripts – e.g., µx rather than µ(x) – for brevity. I use the traditional
notation Hx for cumulative mortality; this symbol is distinct from the entropy measure H that often appears in
the literature on revivorship.
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2. The density of (final) deaths at exact age x is δ(R)
x =

HR
x

R! δx.

3. The gain in life expectancy from an additional (R+ 1)th revival would be G(R) =
Cov(x,Hx)

R+1 , where covariance is calculated over the density δ(R)
x .

4. Gains in life expectancy from consecutive revivals are related byG(R+1) = G(R)+
Cov(ex,Hx)

R+1 , where covariance is calculated over the density δ(R)
x .

Relationships 1 and 2 are easily derived from basic principles of nonhomogeneous Pois-
son processes. Relationships 3 and 4 are, to my knowledge, new. Relationship 3 general-
izes the e† concept (Vaupel and Canudas Romo 2003) to higher-order revivals: e† = G(0)

is a special case.

2. Proofs

2.1 Multiple deaths and revivals

In a nonhomogeneous Poisson process with mortality rates µx andR guaranteed revivals,
an individual survives to age x if they have experienced R or fewer events prior to age x:

`(R)
x = Pr[ (0,1,. . . ,R) events prior to age x ]

=
e−HxH0

x

0! + · · ·+ e−HxHR
x

R!

= `x ·

(
R∑
k=0

Hk
x

k!

)
,

(1)

Equation (1) is Relationship 1.
With R guaranteed revivals, the (R + 1)st event removes an individual from the

population. The density of (final) deaths at age x is thus

(2) δ(R)
x =

e−Hx HR
x

R!︸ ︷︷ ︸
prob of exactly R events by age x

× µx︸ ︷︷ ︸
event intensity at age x

=
HR
x

R!
δx,

where δx = δ
(0)
x = `xµx is the customary density of life table deaths. Equation (2)

is Relationship 2; it also follows from fundamental principles of Poisson processes and
from the relationships between life table functions Hx, `x,µx, and δx.
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In Equation (2), R is a fixed number of revivals offered to each individual,3 and δ(R)
x

is the resulting density of (final) deaths. Final death densities with R = 0, 1, 2, 3 revivals
would be

δ(0)x = δx first deaths

δ(1)x = Hx δx second deaths

δ(2)x =
H2
x

2!
δx third deaths

δ(3)x =
H3
x

3!
δx fourth deaths

respectively. All of these densities integrate to one over [0,ω]. Because

(3) δ(R+1)
x =

Hx

R+ 1
δ(R)
x ,

adding an (R + 1)th revival will lower the density of deaths at ages x for which Hx <
R+ 1 and raise the density at ages for which Hx > R+ 1.

2.2 Life expectancy levels and gains withRRR revivals

Define E(R)[ · ] as the expectation of any age-related quantity over δ(R)
x , the density of

deaths in a regime with R revivals. Similarly define Cov(R)[ · , · ] as the covariance of
any two age-related quantities using density δ(R)

x .
Now use these operators to analyze life expectancy changes under repeated revivals.

Life expectancy at birth is the expected age at death, so with R revivals, e0 is

(4) e
(R)
0 =

∫ ω

0

x δ(R)
x dx = E(R)[x ].

In a regime with R guaranteed revivals, the gain in life expectancy from an additional
R+ 1-th revival for each individual would be

(5) G(R) = e
(R+1)
0 − e(R)

0 = E(R+1)[x ]− E(R)[x ].

3 Some demographic models (Vaupel and Yashin 1987) treat the number of revivals as random, some (Mitra
1979) treat it as fixed, and some (Finkelstein 2013) deal with both cases.
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As noted by Vaupel and Canudas Romo (2003), gains in life expectancy from a
revival may also be expressed in terms of the average remaining life for survivors at the
time of deaths, so that

(6) G(R) =

∫ ω

0

ex δ
(R)
x dx = E(R)[ ex ],

where ex represents the conventional (i.e., R = 0) expectation of remaining life at exact
age x.

2.3 Life gained from one revival: e†e†e†

The average amount of life lost to first deaths, which could be recovered if each individual
were revived exactly one time (Vaupel and Yashin 1987; Vaupel and Canudas Romo
2003), is

(7)

e† =

∫ ω

0

ex δx dx

= E(0)[ ex ]

= E(1)[x ]− E(0)[x ]

= G(0).

Life expectancy at birth is a weighted average of ages, and e† = G(0) measures the change
in average age when the density changes from δ

(0)
x → δ

(1)
x – i.e., from δx → Hxδx.

Thus we can analyze G(0) using Vaupel and Zhang’s (2012) result about how changes in
weights affect means. Applying their main result to Equation (7) implies that

(8) e† = G(0) =
Cov(0)[x , Hx ]

E(0)[Hx ]
.

We can further simplify by using the relationship E(0)[Hx ] = 1, as derived in Appendix
Equation (16). Thus

(9) e† = G(0) = Cov(0)[x , Hx ].

http://www.demographic-research.org 501
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Hx is non-decreasing in x, so this covariance cannot be negative – i.e., offering first
revivals could not decrease life expectancy. Potential gains in life expectancy are greater
when there is higher inequality in ages at death, because covariance increases when the
variance of ages at death, E(0)[ (x− e(0)0 )2 ], is high.

2.4 Generalizing e†e†e†: Gains from higher-order revivals

It is straightforward to generalize e† to second, third, and higher-order revivals by com-
bining Equations. (3) and (5) and then applying Vaupel and Zhang’s (2012) result about
changing averages. A change from a regime with R revivals to one with R + 1 revivals
will change life expectancy at birth by G(R) = E(R+1)[x ] − E(R)[x ] years, with the
weights changing from δ

(R)
x → Hx

R+1δ
(R)
x . Thus

(10)

G(R) =
Cov(R)[x , Hx

R+1 ]

E(R)[ Hx

R+1 ]

=
Cov(R)[x , Hx ]

E(R)[Hx ]

=
Cov(R)[x , Hx ]

R+ 1
,

where the last step in Equation (10) uses appendix result (19).
Equation (10) is Relationship 3. WhenR = 0, it yields the special case e† = G(0) =

Cov(0)[x , Hx ]. In all cases, the gain from an additional (R+1)th revival is higher when
there is more inequality/higher variance in the ages of (R+ 1)th deaths.

2.5 Changing gains as the number of revivals increases

It is interesting to investigate whether there are decreasing returns to successive revivals –
i.e., whether the life gained from yet another revival gets smaller as the number of revivals
increases. In mathematical terms, this is a question about the sign of G(R+1) − G(R) as
R gets larger.

Because G(R+1) − G(R) = E(R+1)[ ex ] − E(R)[ ex ], we can again apply Vaupel

502 http://www.demographic-research.org
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and Zhang’s (2012) result about weighted averages. This yields

(11)

G(R+1) −G(R) =
Cov(R)[ ex ,

Hx

R+1 ]

E(R)[ Hx

R+1 ]

=
Cov(R)[ ex , Hx ]

E(R)[Hx ]

=
Cov(R)[ ex , Hx ]

R+ 1
.

This is Relationship 4.
From Equation (11) it is immediately possible to understand the pattern of gains

from successive revivals in two specific cases. First, if ex declines monotonically with
age – as it would with monotonically increasing mortality rates – then Cov(ex,Hx) is
negative for any weighting function, and gains from successive revivals are decreasing:
G(R+1) < G(R). Second, if ex is constant over x – as it would be with identical mortality
at all ages µx = µ∗ – then the covariance term in Equation (11) is zero for any weighting
function, and life gained is identical for each successive revival: G(R+1) = G(R).

With high numbers of revivals R, the death distribution δ(R)
x will be concentrated

at very high ages, and the ex and Hx values that matter most in Equation (11) will be
those for very high ages x. In practice this means that either of the specific situations
discussed in the last paragraph may be approximately true. If mortality rates approach
some asymptotic value µx → µ∗ at very high ages, then ex → 1

µ∗ and gains from
further high-order revivalsG(R),G(R+1), . . . will tend to become identical. In contrast, if
mortality continues to increase with x, then ex → 0, covariances in Equation (11) become
negative, and gains will be smaller for each successive revival. It is also theoretically
possible for G(R) to increase with R if there are sharp increases in ex after reaching high
ages, but for human populations that is extremely unlikely.

2.6 Is there a limit to life expectancy gains under repeated revivals?

Because

(12) G(R) = E(R)[ ex ] =

∫ ω

0

ex δ
(R)
x dx =

∫ ω

0

ex
HR
x

R!
δx dx,
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the cumulative gain from R guaranteed revivals would be

(13)
R−1∑
r=0

G(r) =

∫ ω

0

ex

[
1 +Hx +

H2
x

2!
+ · · ·+ HR−1

x

(R− 1)!

]
δx dx.

As the number of revivals grows, the term in square brackets approaches a limit of eHx =
1
`x

, so the cumulative gain approaches

(14)
lim
R→∞

(
R−1∑
r=0

G(r)

)
=

∫ ω

0

ex
[
eHx

]
δx dx

=

∫ ω

0

ex µx dx =

∫ ω

0

(1 + e′x) dx = ω − e0.

Thus, if there is a finite age ω beyond which survival is impossible, then there is an
upper limit on the total gains in life expectancy available through repeated revivals, and
the series (G(0) +G(1) +G(2) + · · · ) converges to ω − e0. If there is no such age, then
(G(0)+G(1)+G(2)+· · · ) does not converge and there is no upper limit to the cumulative
gains from repeated revivals. Note that the non-convergence result for ω =∞ applies to
any pattern of mortality for which there are non-zero probabilities of survival to all ages,
no matter how small those probabilities are.4

3. Empirical example

Consider an example based on mortality rates of Danish females in 1970 from the Human
Mortality Database (HMD 2014). Figure 1 illustrates a (log) mortality schedule based on
the HMD rates, graduated to intervals of 0.1 years and extrapolated to ages above 100. At
the highest ages, I assume that either (1) log mortality rates approach an asymptotic limit
of zero at high ages, as in a Kannisto model (Thatcher, Kannisto, and Vaupel 1998), or (2)
log mortality rates increase linearly at ages 100-plus, as in a Gompertz model.5 Without
revivals, e(0)0 = 76.3 in both models.

4 A more intuitive way to understand the converence/non-convergence results is to note that from Equation (1),
limR→∞ [`

(R)
x ] = 1 for any x < ω. Thus

∫ ω
0 `

(R)
x dx→ ω, which is finite if and only if ω <∞.

5Mortality rates at ages 0–100 in this example are derived from Denmark 1970 data, but because of smoothing
and discretization, they are not identical.
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Figure 1: Two mortality schedules derived from Denmark 1970 female data,
smoothed to intervals of 0.1 years. At ages 100-plus mortality is
extrapolated under two alternative assumptions: A continued
linear increase in log rates (Gompertz) or an asymptotic limit
(Kannisto)

Figure 2 displays the distributions of ages at death δ
(R)
x with different numbers

of revivals – R ∈ {0, 1, 5, 10, 20, 30} – under the Kannisto and Gompertz patterns of
oldest-age mortality. With the Kannisto pattern (nearly constant mortality risks after age
100), revivals lead to ever-higher life expectancies, but also to increasing inequality in
the lengths of individual lives for higher-order revivals. With the Gompertz pattern, suc-
cessive revivals must climb an ever-steeper hill as lives are lengthened; as a result, gains
G(R) become smaller, but uncertainty about length of life decreases.

Figure 3 reports a more complete set of results, for all R values between 0 and
30. Table 1 contains the same results in numerical form. The left panel of Figure 3
displays levels of life expectancy e(R)

0 as a function of the number of revivals R for R
values 0,1,. . . ,30. The right panel displays the gains from one additional revival G(R).
As suggested by the densities in Figure 2, life expectancies rise more rapidly and more
linearly in the Kannisto case, with constant oldest-age mortality.

The patterns of gains from further revivals in the right panel show that, as expected
from Relationship 4, gains from successive revivals stabilize when oldest-age mortality
rates tend toward a positive asymptotic limit as age increases (Kannisto case). This occurs
because as one moves the death densities to high ages in the Kannisto case, ex behaves

http://www.demographic-research.org 505
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Figure 2: Death densities δ(R)
xδ
(R)
xδ
(R)
x with different numbers of revivals at the

mortality rates in Figure 1 (excludes points where density< 10−5< 10−5< 10−5)

more and more like a constant ex ≈ 1
µ∗ = 1. Consequently Cov(R)[ ex , Hx ] → 0 and

gains stabilize as G(R) → 1.
In contrast, when oldest-age mortality rates increase monotonically with age (Gom-

pertz case), gains from successive revivals become smaller with R because
Cov(R)[ ex , Hx ] < 0, so that G(R+1) < G(R). Interestingly, although gains from suc-
cessive revivals decline toward zero in the Gompertz case, they do so slowly enough that
the cumulative gain G(0) +G(1) +G(2) + · · · does not converge to any limit. As shown
by Equation (14), the lower curve in the left panel of Figure 3 will continue increasing
with R indefinitely, although at an ever-slower rate.

506 http://www.demographic-research.org
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Figure 3: Life expectancy with different numbers of revivals under
alternative models of oldest-age mortality. Left panel illustrates
e
(R)
0e
(R)
0e
(R)
0 levels forR = 0, 1, . . . , 30R = 0, 1, . . . , 30R = 0, 1, . . . , 30 revivals. Right panel illustrates

gains from additional revivalsG(R)G(R)G(R).

http://www.demographic-research.org 507
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Table 1: Life expectancy at birth and gains from different numbers of
revivals RRR . Numerical approximations may include small rounding
errors. Last line shows limiting values as R →∞R →∞R →∞.

Cov(R)[ x , Hx ]

R + 1
=

Cov(R)[ x , Hx ]

R + 1
=

Cov(R)[ x , Hx ]

R + 1
=

Cov(R)[ ex , Hx ]

R + 1
=

Cov(R)[ ex , Hx ]

R + 1
=

Cov(R)[ ex , Hx ]

R + 1
=

e
(R)
0e
(R)
0e
(R)
0 G

(R)
G

(R)
G

(R)
G

(R+1) − G
(R)

G
(R+1) − G

(R)
G

(R+1) − G
(R)

R Kannisto Gompertz Kannisto Gompertz Kannisto Gompertz

0 76.30 76.30 11.19 11.19 −6.17 −6.18
1 87.49 87.49 5.02 5.02 −1.67 −1.68
2 92.52 92.51 3.36 3.34 −0.76 −0.78
3 95.88 95.85 2.61 2.57 −0.43 −0.45
4 98.50 98.43 2.19 2.12 −0.27 −0.31
5 100.68 100.55 1.91 1.81 −0.19 −0.23
6 102.60 102.36 1.73 1.58 −0.14 −0.18
7 104.33 103.95 1.59 1.41 −0.10 −0.14
8 105.92 105.37 1.49 1.27 −0.08 −0.12
9 107.41 106.64 1.41 1.15 −0.06 −0.10

10 108.82 107.80 1.34 1.06 −0.05 −0.08
11 110.17 108.86 1.29 0.97 −0.04 −0.07
12 111.46 109.84 1.25 0.90 −0.04 −0.06
13 112.71 110.76 1.21 0.84 −0.03 −0.05
14 113.93 111.61 1.18 0.79 −0.02 −0.05
15 115.11 112.41 1.16 0.74 −0.02 −0.04
16 116.27 113.16 1.14 0.70 −0.02 −0.04
17 117.41 113.87 1.12 0.66 −0.02 −0.03
18 118.53 114.55 1.10 0.63 −0.01 −0.03
19 119.64 115.19 1.09 0.60 −0.01 −0.03
20 120.73 115.80 1.08 0.57 −0.01 −0.03
21 121.81 116.39 1.07 0.55 −0.01 −0.02
22 122.89 116.95 1.06 0.52 −0.01 −0.02
23 123.95 117.49 1.05 0.50 −0.01 −0.02
24 125.00 118.01 1.05 0.48 −0.01 −0.02
25 126.05 118.51 1.04 0.46 −0.01 −0.02
26 127.10 118.99 1.04 0.45 0.00 −0.02
27 128.13 119.46 1.03 0.43 0.00 −0.01
28 129.17 119.91 1.03 0.42 0.00 −0.01
29 130.20 120.35 1.03 0.40 0.00 −0.01
30 131.22 120.77 1.02 0.39 0.00 −0.01
∞ ∞ ∞ 1 0 0 0
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4. Discussion

Analysis of potential life gained from repeatedly averting deaths is highly speculative but
demographically and mathematically interesting. Considering progress against mortality
as the outcome of repeated minimal repairs (Finkelstein 2005), in which individuals who
would otherwise have died are instead revived and directly returned to the living popula-
tion in their pre-death state, produces interesting insights into the potential consequences
of sustained mortality decline.

Some of these results have been analyzed and discussed in earlier demographic con-
tributions (Vaupel and Yashin 1987; Vaupel, Zhang, and van Raalte 2011; Finkelstein
2005, 2013). Most important for the exposition here, Vaupel and others have shown how
the potential gains from revival (e†) are related to disparity in the distribution of length
of life: The more unequal the distribution of current ages at death, the larger the potential
gains from averting (first) deaths.

Here I present an exposition that includes these earlier results about revivals, dispar-
ities, and gains in life expectancy and also allows generalization to a sequence of repeated
revivals. This analysis produces (1) interesting relationships between gains from revivals
and covariances of standard life table functions, (2) a finding that repeated revivals could
lead to increases in the dispersion of length of life if mortality rates approach an asymp-
totic limit at very high ages, and (3) insights about the (lack of) limits on life expectancy
with an unlimited number of revivals.

The model explored here highlights the same fundamental questions that any anal-
ysis of mortality improvement must must confront: Can life expectancy continue to in-
crease, are there decreasing gains to those improvements, and what are the implications
for inequality in life lived?

http://www.demographic-research.org 509
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Appendix

Derivation: E(R)[Hx ] = R+ 1
Note that

(15) E(0)[Hx ] =

∫ ω

0

Hx δxdx

can be integrated by parts using u = Hx, du = µxdx, dv = δxdx, v = −`x as

(16)

E(0)[Hx ] = −`xHx]
ω
x=0 +

∫ ω

0

µx`x dx

= 0 +

∫ ω

0

δx dx

= 0 + 1 = 1.

The first term has a limit of zero because `xHx = e−HxHx = Hx

eHx
, which has a limit of

zero by L’Hôpital’s rule. Thus E(0)[Hx ] = 1.
Integrating

(17) E(R)[Hx] =

∫ ω

0

Hx
HR

x

R! δx dx

by parts in the same manner, with u =
HR+1

x

R! , du = R+1
R! H

R
x µxdx, dv = δxdx, v = −`x,

yields

(18)
E(R)[Hx ] = −`x H

R+1
x

R! ]
ω
x=0 +

R+1
R

∫ ω

0

Hx
HR−1

x

(R−1)! δx dx

= 0 +
(
R+1
R

)
· E(R−1)[Hx].
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Repeated application of the recursive relationship in Equation (18) shows that

(19)

E(R)[Hx ] =
(
R+1
R

)
E(R−1)[Hx ]

=
(
R+1
R−1

)
E(R−2)[Hx ]

= · · ·
=
(
R+1
1

)
E(0)[Hx ]

= R+ 1.
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