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Distributionally adjusted life expectancy as a life table function

Francisco José Goerlich Gisbert1

Abstract

BACKGROUND
Life expectancy is one of the most useful indicators of mortality and development in a
given society but considers only one aspect of the distribution of length of life: the
average.

OBJECTIVE
Within an axiomatic framework we investigate alternative measures of life expectancy
that take into account distributional considerations in the length of life of the generation
in a period life table. Most of the literature studying inequality in the length of life
distribution has used inequality tools from income distribution analysis, focusing on life
expectancy and inequality as separate, albeit related, issues.

CONTRIBUTION
We propose an alternative, integrated framework, which allows us to combine both
dimensions in a single index and provide an axiomatic derivation that delivers the
particular indexes to be used given a set of axioms. We illustrate the proposed index
using data from the Human Mortality Database.

1 Departamento de Análisis Económico, Universidad de Valencia, Spain. Email: Francisco.J.Goerlich@uv.es.
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1. Introduction

Life expectancy at birth summarizes in a single number the mortality conditions of a
given population, and it does so in a way that is independent of the age structure of the
underlying population. Essentially this means that the indicator is comparable, in time
and across societies, with populations having very different age structures. This feature
has contributed to make life expectancy one of the most widely used indicators in
international comparisons on development. Additionally, life expectancy at birth is one
of the simplest summary measures of population health for a community (Murray et al.
2002) and, as a consequence, of its degree of development (Sen 1998, 1999).

For all these reasons life expectancy has become one essential index in the
complex and elusive concept of quality of life: Without life there is no possibility to
enjoy the consumption opportunities represented by per capita income, the other widely
used development indicator in international comparisons. However, the Stiglitz, Sen,
and Fitoussi (2009) report recognizes the need to look beyond GDP to measure the
progress of actual societies. This was in fact the goal of the United Nations
Development Program (UNDP 2019) Human Development Index, together with many
other proposals to include life expectancy as part of synthetic quality of life indexes
(Osberg and Sharpe 2002).

In the same vein this paper attempts to go beyond life expectancy by trying to
introduce distributional aspects into a single life expectancy index constructed from the
standard functions of a period life table, but one that can be computed more generally
for a population or a real generation.

The structure of the paper is as follows. The next section tries to motivate the life
expectancy index proposed by looking at standard curves: the survival function and the
distribution of age at death in the life table. A critical assessment of the literature on
length of life inequality follows. The fourth section introduces the proposed measure
and the fifth offers an illustrative application. A final brief section concludes.

2. Motivation

Figure 1 represents the survival function of the Spanish life table population for 2009.
The area under the curve represents life expectancy at birth, which was 81.64 years at
that date, and the curve itself summarizes the mortality experience of the Spanish
population in 2009 as projected onto a fictitious generation.
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Figure 1: Survival function of total population, Spain, 2009

Life expectancy at birth 81.64 years

It should be obvious that many different shapes of the survival function are
consistent with a given level for life expectancy. Figure 2 depicts some of them. It is
worth mentioning the implications of these curves for the mortality experience of the
population they represent.
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Figure 2: Alternative survival functions with the same life expectancy at birth

 Abrupt step (blue) line: According to this line everybody survives until the age
of 81.64 years. Everybody has the same length of life.

 Dotted (red) line: According to this line 25.78% of the population dies at birth
and the remaining 74.22% of the population survives until the age of 110.
Mortality is concentrated at two points in the life of the generation, at the
beginning and at the end; nobody dies between these two extremes.

These two survival functions represent extreme – and unrealistic – cases. In the
first case everybody has the same life length and there is no inequality in the
distribution of the length of life. In this case the survival function is a perfect rectangle
(Wilmoth and Horiuchi 1999). Hence rectangularization of a survival curve is directly
associated with decreasing variability in the distribution of ages at death.

In the second case a lottery determines whether you die just at the start of life or at
the end of life. There are only two possible outcomes, and the inequality in the
distribution of length of life is maximum.

In both cases, however, the population’s life expectancy is identical, 81.64 years,
although the two situations are extremely different.
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 Dashed (green) line: According to this line every newborn survives until the age of
30 and then 20% of the population dies. The remaining 80% survives until the age
of 60 and then another 20% of the initial population dies. The remaining 60%
survive until the age of 90 and then a further 11.8% of the initial population dies.
The survivors, 48.2% of the initial population, live to the age of 110 years and
then they all die abruptly.

 Continuously descending (purple) line: According to this line the newborns
decrease linearly by a constant amount. The generation lives until the incredible
age of 163 years (twice the life expectancy of the actual survival curve as depicted
in Figure 1), although the maximum age shown in Figure 2 is only 110 years.

All these survival functions represent the same life expectancy but have very
different implications for the age at death distribution. Society can clearly value these
functions in different ways. The purpose of this paper is to propose a way of
incorporating this aspect into a more general measure of life expectancy, at any age, and
at the same time to lay its foundations from an axiomatic point of view: a
distributionally adjusted life expectancy.

It is worth stressing that although the economic literature has a clear preference for
equality, which can be achieved for a given amount of total income or wealth resources
just by a convenient set of transfers, there is no clear preference for equality in the
length of life distribution in the demographic or public health literature. In this latter
case there is no possibility for transfers, and life expectancy and measures of spread of
the distribution are clearly related. Reducing childhood mortality will increase life
expectancy but at the same time will reduce inequality. Reducing mortality at older ages
will increase life expectancy but will also increase inequality in the length of life
distribution. We return to these questions in future sections.

Nevertheless, given that life expectancy at birth – the area under the survival
function in Figure 1 – is in fact the average length of life of the fictitious generation in
the life table, or equivalently the mean age at death of this generation, it is of interest to
see what this distribution looks like. Figure 3 shows the age distribution of deaths
corresponding to the survival function depicted in Figure 1.

The general shape of this curve is well known. It has two modes, one at age 0, and
the other at a much older age, 89 years, in Figure 3. This figure makes clear why our
interest should reside not only in the mean of the distribution – life expectancy at birth –
but also in other distributional patterns of the length of life distribution. Although we
concentrate exclusively on measures of location, the mean is not the only interesting
statistic. Some national statistical institutes published the median age at death – the age
at which half of the generation has died and the other half is still alive – in their period
life tables at the beginning of the 20th century (INE 1952, 1958). Also some authors
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have proposed the mode age at death as a more appropriate measure of longevity than
life expectancy at birth (Canudas-Romo 2008).

Figure 3: Age distributions of death of total population, Spain, 2009
Number of deaths in the life table generation

3. A critical assessment of the literature

This paper does not directly take into account the question of measuring length of life
inequality, but of course it will do so indirectly since its purpose is to develop a life
expectancy index that incorporates distributional features.

Many papers in the demographic tradition deal with the issue of measuring
inequality in length of life, most of them using the technical apparatus of the income
distribution literature. Notable examples include Hanada (1983); Illsey and Le Grand
(1987), who compute inequality from distributions of deaths by age in real populations;
Wilmoth and Horiuchi (1999); Anand and Nanthikesan (2000); Shkolnikov, Andreev,
and Begun (2003); Edwards and Tuljapurkar (2005); Smits and Monden (2009);
Edwards (2011); Seaman, Leyland, and Popham (2016); Jordá and Niño-Zarazúa
(2017); García and Aburto (2019); and Permanyer and Scholl (2019). Other scholars
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make use of alternative tools more specific to the mortality dimension, such as Zhang
and Vaupel (2009); van Raalte and Caswell (2013); Wrycza, Missov, and Baudisch
(2015); Fernandez and Beltrán-Sánchez (2015); and Aburto et al. (2019, 2020).

In addition, a few papers have taken up the issue of incorporating inequality into
the health dimension of the Human Development Index – for example Hicks (1997);
Foster, Lopez-Calva, and Szekely (2005); and Kovacevic (2010). Moreover, Ghislandi,
Sanderson, and Scherbov (2019) propose using the geometric average in the length of
life distribution as an indicator of development, arguing that it takes into account not
only the level but also the distribution of ages at death around its average value. We
provide an axiomatic justification for this index, within a more general setup, from
which the geometric average is a particular case. In addition we show how the
geometric mean is related to life expectancy and a well-known inequality index.

Most of this literature, however, does not discuss some of the key assumptions
used in measuring income or wealth inequality where the aversion to inequality has a
more intuitive appeal. Some key assumptions commonly employed in this literature
cannot be directly transposed to the health context. While reducing inequality in the
income distribution is possible, without altering the mean through a transfer of income
from the rich to the poor – the so-called Pigou (1932)–Dalton (1920) condition – a
reduction of inequality in the length of life distribution cannot be achieved by this
mechanism. We simply cannot reduce longevity of older people to increase the length
of life of younger people. However, it seems sensible to assume that some aversion to
inequality in the length of life does exist, as “inequality in the length of life is the most
fundamental of all inequalities; every other type of inequality is conditional upon being
alive” (van Raalte, Sasson, and Martikainen 2018).

Another important question in this literature is whether the appropriate inequality
measures for analyzing the length of life distribution should be scale invariant (relative)
or translation invariant (absolute). Scale invariant indicators are usually used for dealing
with income variables since this guarantees that inequality is independent of the scale,
so it is irrelevant whether we measure income in euros, dollars, or pounds.

However, relative inequality measures have another important implication that
may be not so appealing when we deal with health outcomes. Two length of life
distributions with different means – life expectancy at birth – will be ranked as equal by
scale invariant indicators if the relative distance between individuals in terms of the
length of life is exactly the same. The following example, taken (and expanded) from
Jordá and Niño-Zarazúa (2017), clearly shows this situation. Imagine we are interested
in ranking two distributions with two individuals each according to their inequality
only. In distribution A we have two individuals; one lived for only 5 years and the other
for 50 years. Life expectancy at birth of this distribution is 27.5 years. In distribution B
we have two individuals; one lived for only 6 years and the other for 60 years. Life



Goerlich Gisbert: Distributionally adjusted life expectancy as a life table function

372 https://www.demographic-research.org

expectancy at birth of this distribution is 33 years. Relative inequality indicators will
rank both distributions as equally unequal since the relative distance between the older
and the younger is of the order of 10 in both distributions. Notice that we have 20%
longer life in distribution B than in distribution A, 11 years, and that distribution B can
be obtained from distribution A simply by multiplying the length of life of each
individual by the scale factor 1.2. By contrast, absolute inequality indicators will rank
distribution B as more unequal than distribution A since the absolute difference in
lifespan between individuals in distribution B is 54 years, but in distribution A it is just
45 years.

Now let us imagine we have distribution C with two individuals; one lived for 10.5
years and the other for 55.5 years. Life expectancy at birth of this distribution is 33
years, the same as in distribution B. Absolute inequality indicators will rank distribution
A and distribution C as equally unequal since the absolute difference in lifespan
between individuals in both distributions is the same: 45 years. By contrast, relative
inequality indicators will rank distribution C as more equal than distribution A since the
relative distance between the older and the younger is of the order of 10 in distribution
A but only of the order of 5.3 in distribution C. Notice that again we have 20% longer
life in distribution C than in distribution A, 11 years, and that distribution C can be
obtained from distribution A by simply adding half of this, 5.5 years of life, to each
individual.

How the observed increments in life expectancy should be distributed among the
generation in the life table to consider inequality constant when we compare the spread
of the distribution independently of the mean is not a trivial question. Scale invariant or
translation invariant inequality indexes provide different answers according to different
perspectives. Whereas some demographers prefer absolute inequality measures
(Wilmoth and Horiuchi 1999; Edwards 2011), others argue in favor of relative ones
(Shkolnikov, Andreev, and Begun 2003; Smits and Monden 2009), and most of them
present a plethora of different indexes in order to obtain robust results (Jordá and Niño-
Zarazúa 2017).

Contrary to what happens in economics, the great tendencies – but not the finer
details – seem to be robust to the choice of absolute versus relative indicators of
inequality (Smits and Monden 2009). Part of the reason is due to the strong negative
association found between life expectancy at birth and length of life inequality,
especially during the demographic transition (Vaupel, Zhang, and van Raalte 2011;
Colchero et al. 2016). It is widely known that the epidemiological transition goes hand
in hand with a substantial mortality compression (Edwards and Tuljapurkar 2005).
Although reducing mortality at any age will increase life expectancy, inequality
reductions are only achieved if reductions in younger age mortality rates are greater
than reductions in older age mortality rates (Zhang and Vaupel 2009; Gillespie, Trotter,



Demographic Research: Volume 43, Article 14

https://www.demographic-research.org 373

and Tuljapurkar 2014; Aburto et al. 2019). Figure 3 clearly shows that the reduction in
younger age mortality rates compresses the age distribution of deaths while reducing
older age mortality rates tends to expand the distribution. As a result, and given that
modern mortality patterns are characterized by a high average age at death with much
lower variability than in the past, there is evidence – especially in mature societies –
that actual increases in life expectancy do not necessarily lead to lower inequality,
which in addition may differ widely among societies at the same level of life
expectancy (Sasson 2016; van Raalte, Sasson, and Martikainen 2018; Aburto and van
Raalte 2018).

The bottom line of this argument is that the choice between scale and translation
invariant inequality indicators may be more important now than in the past, given that
the relation between life expectancy at birth and length of life inequality is likely to be
less strong in the future as mortality reductions shift to older ages (van Raalte, Sasson,
and Martikainen 2018).

Focusing only on length of life inequality may eventually lead us to unethical
conclusions. Imagine that a policy objective is to reduce length of life inequality per se.
In that case it could be argued that we should devote resources to prevent and treat
diseases that can lead to premature deaths, while letting older people die, since that
would reduce the inequality in the length of life. Equalizing the length of life
distribution cannot be an objective on its own right. We should take into account that
length of life inequality is just one aspect of health inequality, which in turn should not
be confused with health inequity (Braveman and Gruskin 2003).

Instead of focusing on length of life inequality, a more productive line of work that
to some extent escapes the discussion about relative versus absolute inequality indexes
would be to focus on developing life expectancy indicators that take into account the
duration of lives at different ages so they are sensitive to distributional considerations.
The idea parallels the measures of unemployment developed by Sengupta (2009) and
Shorrocks (2009a, 2009b) that take into account spell duration, with the difference that
incidence is not an issue here given that everybody will eventually die. We develop this
idea in the next section.

4. Life expectancy indexes in a life table population

4.1 Life expectancy and inequality in length of life

Consider the standard notation in a period life table in discrete time (Preston,
Heuveline, and Guillot 2001), where x denotes age, dx the deaths occurred throughout
the age interval [x, x  1), and ax the average number of years lived within the age



Goerlich Gisbert: Distributionally adjusted life expectancy as a life table function

374 https://www.demographic-research.org

interval [x, x  1) for people dying at that age.2 Hence the average length of life for
those persons is x xz x a  . As shown in the appendix, life expectancy at birth, 0e ,
can be written as

0
0 0

0

( )x x x
x x x

x x

d x a
e z

d





 
   


(1),

where
0

x
x

x x

d
d

 


, the proportion of deaths in the interval [x, x  1), so 0 1x x   .

The same expression holds for life expectancy at age 0x  , simply by redefining the
remaining length of life, conditional on survival to age x, and the corresponding
weights, x i x i ie z   ; so without loss of generality we use (1) in the derivations that
follow. The important point here is that our object of interest is a weighted distribution,
  0

;x x xz


 .
We follow an axiomatic approach similar to Shorrocks (2009b) in developing a life

expectancy index adjusted for distributional considerations, taking into account that
Shorrocks (2009b) deals with unemployment and its duration, which is a ‘bad,’ whereas
we deal with length of life, which is a ‘good,’ and while not everybody is unemployed,
everybody will eventually die, so incidence is not an issue here but intensity and
inequality are.

Let the vector 0 1 2( , , ,..., ,...)xz z z z z  represent the length of life, which is
naturally ordered, 1x xz z   for 0x  , and collects the characteristic of interest: life
length, x xz x a  ; and let 0 1 2( , , ,..., ,...)x      represent the proportion of deaths
in each interval [x, x  1) for 0x  . As we have just observed, the mean of this
distribution is just life expectancy at birth, 0 0x x xe z   , which summarizes the life
intensity of our distribution.

However, life expectancy is indifferent to how the total life time, 0x x xd z , is
distributed among the generation of interest. Let us consider that society has a
preference, weak or strong, for equality in the distribution of length of life. In other
words we favor rectangular survival functions, following Figure 2, or highly
concentrated age distribution of deaths, following Figure 3.

A simple way, although not the only one, to incorporate distributional aspects into
the measurement of life expectancy is to consider power means of order ,

2 See the appendix for the full notation, the derivations that follow, and the proofs of the lemmas.
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1

0( ; ) , where 1x x xU z z 
         (2).

For 1   we are back to life expectancy at birth, 1 0( ; )U z e  , but for 1  ,
( ; )U z   introduces a preference for equality as we shall see in the sequel.

For 1   the family measure ( ; )U z   satisfies six basic properties:
(A1) Normalization: If there is no life 0, for allx x  , so 0  and ( ; ) 0U z   .

(A2) Symmetry or anonymity: ( ; ) ( ; )U z U z       whenever ( ; )z   is obtained
from ( ; )z   by a permutation, so ( ; ) ( ; )z z      for some permutation matrices,
 .

The symmetry or anonymity condition (A2) implies that what matters is the length
of life vector and the associated deaths but not the characteristics of the individuals
dying at a particular age, x. Personal features do not enter into the life expectancy index.

(A3) Replication invariance: ( ; ) ( ; )U z U z       whenever ( ; )z   is obtained from
( ; )z   by a replication of the generation.

The replication invariance condition (A3) is a standard assumption when we have
to compare societies of different sizes.

Properties (A2) and (A3) are redundant if ( ; )U z   is calculated from a period life
table, but we retain them just for the more general case in which ( ; )U z   is calculated
from a real cohort or even a population, a possibility that it is not disregarded from our
definition.

(A4) Monotonicity: ( ; ) ( ; )U z U z       if some people live longer, but nobody lives
less, so the total amount of life time increases, 0 0x x x x x xd z d z      . Hence,   is
obtained from   in the following form: x x   , x j x j    , and

x j x x j x         for some 0x   and some 0 j x  , while

, for ally y y x    . The variable z  can be of the same size as z  or may have
additional ages if extreme longevity is increased.

The monotonicity condition is more intuitively enunciated in terms of xd . So
given 0 1 2( , , ,..., ,...)xd d d d d , we have a distribution 0 1 2( , , ,..., ,...)xd d d d d      in
which some people live longer but nobody lives less. That is, d  is obtained from d  in
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the following form: x xd d  , x j x jd d   , and x j x x j xd d d d      for some 0x 
and some 0 j x  , while , for ally yd d y x   .

This form of stating the monotonicity condition assumes ( ; )U z   is calculated
from a life table, so if we have more deaths at age x, we should necessarily have fewer
deaths at age x j  since the size of the generation is fixed in advance, 0 0x xd l  .
This restriction is not necessary if ( ; )U z   is calculated from a real population.

The monotonicity condition implies that the life expectancy index should increase
as life is extended for at least one individual. Note that this will affect inequality,
although we cannot anticipate in which direction; this will depend on the inequality
index and the age separating early deaths from late deaths (Zhang and Vaupel 2009;
Aburto et al. 2019, 2020). Contrary to what happens in the analysis of the income
distribution, the level and the spread of the length of life distribution cannot be fully
separated.

These four properties – normalization, symmetry, replication invariance, and
monotonicity – are all satisfied by life expectancy, 1( ; )U z  . The next one is not.

To motivate the next property let us consider a situation in which we are concerned
with the distribution of some amount of total life time, 0x x xd z , so we are back to
Figures 1 and 2, and the question of interest is which survival curve do we prefer given
that all of them have the same life expectancy at birth. If the proposed life expectancy
index (2) makes sense, it should be the case that a rectangular survival function should
be preferred over the rest (van Raalte, Sasson, and Martikainen 2018). More generally,
when comparing two survival functions with the same life expectancy, society should
have a preference for the one closest to rectangularity. In other words society should
prefer two individuals, each living for 50 years, over one individual living 100 years
and the other dying at the moment of birth; or society should prefer two individuals to
live for 40 and 60 years over 20 and 80 years each. From the point of view of society as
a whole, if a hypothetical social welfare function defined over our distribution of
interest,   0

;x x xz


 , is increasing in life length and concave, this assumption can be
justified (Sen 1973).

(A5) Preference for equality in the length of life: ( ; ) ( ; )U z U z       if both
distributions,   0

;x x xz


  and   0
;x x xz


  , have the same total life time,

0 0x x x x x xd z d z      , but   0
;x x xz


   is obtained from   0

;x x xz


  by a life time
equalization transformation.
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In our case   0
;x x xz


   is obtained from   0

;x x xz


  by means of a life time
equalization transformation if, given two ages x and y, the former is obtained from the
latter in the following form: x x x x y yz z z      , where x x y y x x y yz z z z         

and , for all ,k k k kz z k x y     .
The preference for equality in length of life is more intuitively enunciated in terms

of xd , given that what matters is the life time at different ages, x xd z . A life time
equalization transformation implies x x x x y yd z d z d z   , where

x x y y x x y yd z d z d z d z       and , for all ,k k k kd z d z k x y   .
Property (A5) is the analogue to the Pigou–Dalton principle of transfers in the

analysis of income inequality. One way to justify its inclusion here is to have a
preference for younger lives, so from society’s point of view one additional year of life
of a young person is valued more than the same additional year for an older person.
This property is not satisfied for life expectancy but it is for ( ; )U z   when 1  . The
parameter  in ( ; )U z   governs the degree of preference for equality since the lower
the value, the higher the preference for equality, but also the higher the preference for
younger lives, since as tends to   we increasingly pay more attention to the life of
the youngest people, as we will see later on.

(A6) Homogeneity in the length of life: ( ; ) ( ; ), for all 0U z U z        .
 So if everybody’s length of life doubles, the life expectancy index doubles.

Two characteristics of the family of life expectancy index ( ; )U z   make it
attractive from a practical point of view. First, it can be shown to be a multiple of life
expectancy at birth. Second, it can be multiplicative decomposed into two terms taking
into account the two key aspects of the length of life distribution: average life and
inequality. Hence, we can measure the contribution of any of these aspects to the
evolution of the life expectancy index (Fernandez and Beltrán-Sánchez 2015; Aburto et
al. 2019).

Lemma 1: ( ; )U z   can by written as

0( ; ) (1 )U z e A    (3),
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where
0

1

0

1
x

x
x

z
A

e


 



  
     
   
  is the relative Atkinson (1970) inequality index for

1  , so this parameter has a clear interpretation as the aversion to inequality. As

tends to  , 0

0

tends to 1
z

A
e  , and A  takes its maximum value.

This formulation makes clear that ( ; )U z   belongs to the class of ‘equal
equivalent length of life’ indexes that could be derived from a social welfare function
defined over our distribution of interest,   0

;x x xz


 , which is symmetric, increasing in

life length, and concave. So 0( ; ) (1 )U z e A     is well founded in welfare
economics. However, it appears that this family has not attracted the attention of the
demographic literature.

For a particular application it remains to choose the value of . This relates to the
question of our aversion to inequality in the length of life; a value not much lower than
1 will probably suffice. In economic applications a common value is 0  , so

0
0

0

1
x

x xz
A

e




  , and 0 0 0 0( ; ) (1 ) x
x xU z e A z
     , and the life index is the

geometric mean of the distribution of the length of life. Hence, using the geometric
mean instead of the arithmetic mean as a life index incorporates a preference for
equality in length of life (Ghislandi, Sanderson, and Scherbov 2019).

4.2 Life length profiles and life length dominance

In inequality analysis a common graphical device is the Lorenz (1905) curve, which
plots cumulative income shares against population shares after income has been ordered
in a nondecreasing fashion. This result was extended by Shorrocks (1983) when
comparing income distributions with different means so levels matter, using the
generalized Lorenz curve, which plots cumulative income means against population
shares after income has been ordered in a nondecreasing fashion.3

For any   0
;x x xz


 , the length of life profile, ( , ; )D z p , is computed in a simple

way: just plot cumulative means, 0
p
x x xz  , against cumulative death shares, 0

p
x x  ,

3 Even if the Lorenz curve appears in some studies of length of life inequality (Anand and Nanthikesan 2000;
Shkolnikov, Andreev, and Begun 2003), the generalized Lorenz curve seems to be absent in length of life
inequality studies.
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from the life table. As observed above, z is naturally ordered since it represents ages at
death. Figure 4 depicts some typical length of life profiles.

The graph of the life of length profile provides a highly convenient way of
summarizing information on life length in our distribution,   0

;x x xz


 . As Figure 4
shows, the curve starts at the origin and is continuous, nondecreasing, and convex. Its
maximum corresponds to life expectancy at birth, as life expectancy increases the life
length profiles shift upwards, and the curvature represents the inequality: the more
convex the function the higher the inequality.

A distribution   0
;x x xz


   life length dominates   0

;x x xz


 , in a weak form,
whenever the curve of the former lies on or above that of the latter,

( , ; ) ( , ; ), for all [0,1]D z p D z p p     (4).

Figure 4: Life length profiles

In terms of Figure 4 distributions A and C life length dominate distribution B,
although neither A nor C dominates over the other. Shorrocks (1983) establishes a
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fundamental result in ordering distributions by means of life expectancy indexes of the
type (2), ( ; )U z  . If   0

;x x xz


   life length dominates   0
;x x xz


 , then

( ; ) ( ; )U z U z       for 1  . Hence the family of life expectancy indexes ( ; )U z 
for 1   is fully consistent with partial orderings that come from length profiles, but
the direct examination of life length profiles gives us a full picture of the evolution of
life in its two dimensions: mean level – intensity – and inequality. So in a practical
application the best course of action is to examine the life length profiles directly.

This result, the relation between life length dominance and partial orderings
employing ( ; )U z   indexes, holds true for a wider class of life expectancy indexes. In
fact it is true for all life expectancy indexes satisfying properties (A2)–(A5) above.

Two additional alternatives to the ( ; )U z   family, (2), are worth mentioning.

1. Consider the alternative family of life expectancy indexes

0( ; ) , 1x x xU z z       (5).

For 1   we are back to life expectancy at birth, 1 0( ; )U z e  , but for 1  ,
( ; )U z   introduces a preference for equality. ( ; )U z   satisfies properties (A1)–(A5)

but not (A6), homogeneity in length of life, since ( ; )U z   is homogeneous of degree

, ( ; ) ( ; ), for all 0U z U z
        . As a consequence ( ; )U z   is not

proportional to life expectancy at birth. However, since (5) is just a mean this measure
is decomposable by population subgroups.

Lemma 2: ( ; )U z   can by written as

0( ; ) (1 )U z e E
    (6),

where
0 0

1
x

x
x

z
E

e






 
    

 
 is the counterpart of a generalized entropy index with

coefficient  (Shorrocks 1980, 1984). As tends to  , tends to 1E , and E  takes

its maximum value. Because ( ; )U z   cannot be written as proportional to 0e  this

family has less appeal than ( ; )U z   in our context.
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2. Use a generalized Lorenz evaluation.

Another way of obtaining an expression similar to (3) is to take twice the area
under the life length profile, which yields

0( ; ) (1 )GU z e G   (7),

where G is the Gini index for the distribution   0
;x x xz


 ,

0 0
0

1( ; )
2 x y x y x yG z z z
e         (8),

which can also be obtained by any other formula proposed in the literature (Hanada
1983, Shkolnikov, Andreev, and Begun 2003).

( ; )GU z   satisfies properties (A1)–(A6) since G is a relative inequality measure
and hence homogeneous of degree zero, so ( ; ) ( ; ), for all 0G GU z U z       .
However, ( ; )GU z   cannot be written as some form of a generalized mean, such as (2)
or (5), nor does it depend on a coefficient picking up the aversion to inequality. Both of
these characteristics make it less attractive than ( ; )U z  .

5. An illustrative example

We now illustrate the historical evolution of our generalized life expectancy index,
( ; )U z  , for a sample of countries using data from the Human Mortality Database

(Shkolnikov, Barbieri, and Wilmoth 2019). The full set of complete, single year, period
life tables were used. These cover 40 countries and 49 populations because for some
countries we have more than one reference population; for example for Germany we
have three sets of life tables: East Germany, West Germany, and the aggregate.
Temporal span varies according to the country and runs from 1751 for Sweden – the
only country with data from the 18th century – to 2017 for most countries. Of course
most of the data are available from the mid-20th century onwards. In total we have
13,920 complete life tables, covering the total population and both sexes, so we have
4,640 life tables for each sex.
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For each complete period life table in the Human Mortality Database two
additional columns were added for 0  ,4 a moderate degree of preference for equality
in the length of life: (i) the generalized life expectancy index and (ii) and the
corresponding inequality index. These are computed for any age, x, so the two
additional columns are complete from birth to 110 years old.

Table 1 shows life expectancy, distributionally adjusted life expectancy, and the
corresponding inequality index for two ages – at birth and at 65 years old – for selected
years and countries as an illustration. By definition, distributionally adjusted life
expectancy is lower than life expectancy. At birth Table 1 shows that the difference was
important at the beginning of the 20th century, between 20 and 30 years, given that
inequality in the length of life was substantial at that time. Early mortality was high,
which tends to increase inequality. Over time life expectancy increases, but
simultaneously inequality falls. The natural consequence is that distributionally
adjusted life expectancy has increased historically much more than life expectancy at
birth. In fact, at the beginning of the 21st century the difference is just between 2 and 4
years. We can see that inequality has decreased by a factor of ten or even more. The
Spanish case is remarkable. While life expectancy at birth increased by more than 30
years between 1930 and 2016, distributionally adjusted life expectancy at birth
increased almost twice as much to 60 years. The reason is the huge reduction in
inequality in length of life in those years for Spain, as Shkolnikov, Andreev, and Begun
(2003) already note.

Because by lemma 1 the generalized life expectancy index, ( ; )U z  , can be

written as the product of life expectancy, 0e , and the corresponding equality index,

(1 )A , relative changes in the distributionally adjusted life expectancy can be broken
down using logarithmic approximation to growth rates into the change due to life
expectancy and the change due to the reduction in inequality. Using this decomposition
and focusing on the extreme years, 1930 and 2016, Table 1 shows that the contribution
of the reduction in inequality in length of life to the increase in the distributionally
adjusted life expectancy at birth exceeds 50% in all cases, reaching around 60% in
Canada, Denmark, and Spain. Historically, then, not only have we observed an
important increment in life expectancy at birth in all countries, but also a huge
reduction in inequality in the length of life.

4 A value 0.5   produced similar qualitative results.
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Table 1: Life expectancy, distributionally adjusted life expectancy, and
inequality ( = 0) for selected years and countries, both sexes
combined
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This is good news for the length of life distribution because increments in the
mean are associated overall with a reduction in dispersion, that is, with a fall in
inequality. This is clearly a general pattern, so increments in life expectancy seem to
have widespread benefits. However, in the income distribution literature the growth in
per capita income is not always associated with a reduction in inequality, so growth
does not benefit everybody in all cases.

At age 65 we have a similar but less marked pattern. Life expectancy increases and
inequality falls, but the reduction in inequality is much less pronounced: on average it is
reduced by a factor of two. It seems interesting to note that while inequality in the
length of life was lower at the age of 65 than at birth for all countries in 1930, just the
opposite is true in 2016. Today inequality at older ages is much higher than at birth.
This is because the reduction in infant mortality is the main reason for the decrease in
inequality in the length of life and at the same time for the increase in life expectancy at
birth.

By looking at the relative contribution of both life expectancy and inequality to the
relative changes in the distributionally adjusted life expectancy at age 65 for the period
1930–2016, we see that now the relative contribution of the inequality component is
much lower, at around 20%, with a maximum of 25% for Iceland. Hence, at older ages
the increment in the distributionally adjusted life expectancy comes mainly from
increments in life expectancy, but the contribution of the reduction in inequality is not
negligible. At age 65 we still find a strong negative relation between life expectancy
and inequality.

At age 85 (results not shown) the pattern is still less marked but follows the same
tendency as at age 65. Even now we still find a positive contribution of the inequality
component to the increment in the distributionally adjusted life expectancy: around
15% for the period 1930–2016. Inequality still shows a decreasing temporal tendency at
this age, although its level is much higher than at younger ages. As some authors have
shown, the link between life expectancy and lifespan equality is weaker at very high
ages and have occasionally moved in opposite directions due to larger improvements in
mortality at older ages (Permanyer and Scholl 2019; Aburto et al. 2020).

The details illustrated in Table 1 for selected years and countries are in fact quite
general. Figure 5 shows this for all life tables from 1850 onwards. Here we represent
life expectancy and distributionally adjusted life expectancy at birth for men and
women separately. In both cases we find the same convergence trend of the
distributionally life expectancy approaching life expectancy over time, and also a high
correlation coefficient between both indexes, 0.98 for males and 0.99 for females. The
reason behind this convergence is the strong and well-known negative relation between
the increases in life expectancy and the reduction in life length inequality (Wilmoth and
Horiuchi 1999; Shkolnikov, Andreev, and Begun 2003; Smits and Monden 2009;
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Edwards 2011; Vaupel, Zhang, and van Raalte 2011; Colchero et al. 2016). This
reduction in inequality was particularly strong during the mid-20th century and has
slowed down considerably in recent years, essentially because infant mortality is so low
in most developed countries that it is now difficult to reduce inequality in the length of
life any further.

Figure 5: Life expectancy and distributionally adjusted life expectancy at birth
by sex

a) Men
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Figure 5: (Continued)
b) Women

Source: Own calculations from the Human Mortality Database.

This negative correlation between life expectancy and inequality in length of life
can alternatively be seen by plotting the inequality measure against life expectancy at
birth as in Figure 6. This is the representation preferred in most literature, essentially by
using different inequality measures. We simply focus on the Atkinson index that forms
part of our distributionally adjusted life expectancy index, using   0 in Figure 6.
Wilmoth and Horiuchi (1999) show that the choice of the inequality measure for
computing length of life inequality at country level is not a critical one; in fact the same
negative relation is found for the Atkinson index with   0.5 and also for the Gini
index, and it is also found for the inequality indicators conditional on surviving to
higher ages.
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Figure 6: Life expectancy at birth versus inequality in length of life

Source: Own calculations from the Human Mortality Database.

As is apparent from Figure 6, the negative relationship between inequality in the
length of life distribution and life expectancy is not a linear one since it clearly slows
down for values of life expectancy at birth above 60. Note that for values of life
expectancy at birth above 70 inequality is so low that it is extremely difficult to reduce
it even more since additional increases in life expectancy come from reductions in
mortality at older ages, which in addition tend to push inequality upwards.

6. Final comments

This paper has theoretically derived a distributionally adjusted life expectancy index
that summarizes in a single number the life expectancy and the inequality in length of
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life distribution at any age. This distributionally adjusted life expectancy index can be
added as an additional column in a period life table to inform about inequality in the
length of life distribution. The essential axiom that our new index should verify to make
sense is a preference for equality in length of life; if this preference cannot be socially
justified, our index serves no purpose, and life expectancy is a sufficient statistic.

On the other hand if there is a preference for equality in the length of life
distribution, then our set of axioms delivers a particular form of a distributionally
adjusted life expectancy that is proportional to life expectancy, where the
proportionality constant is one minus the Atkinson (1970) inequality family, a well-
known family of inequality indexes in the income distribution literature. Other
alternatives are available and are briefly reviewed in the paper, but the proposed
measure is axiomatically justified and is the most appealing one.

Because the proposed index can be written as a product of life expectancy and an
equality index, changes in distributionally adjusted life expectancy can be broken down
into the relative contributions of changes in life expectancy and changes in equality in
the distribution of length of life.

An illustration of our measure using data from the Human Mortality Database
shows an alternative way of looking at the strong and well-known negative relation
between the increases in life expectancy and the reduction in life length inequality.
Both, the distributionally adjusted life expectancy index and the corresponding
inequality index can be routinely added to period life tables as additional functions for
any age, thereby enriching the information on the length of life distribution.

In this paper, we derive axiomatically a distributionally adjusted life expectancy
index that captures in a single index the two most important aspects of mortality
regimes: life expectancy and lifespan variation (van Raalte, Sasson, and Martikainen
2018). In particular, this article contributes to the existing literature by showing how to
adjust life expectancy by inequality in the length of life, and at the same time imposing
that the resulting index is proportional to life expectancy. For a particular value of a
parameter, the distributionally adjusted life expectancy is just the geometric mean of the
length of life distribution that, despite the high correlation with life expectancy, has the
advantage of introducing a preference for equality in the length of life. The new index
should be particularly useful in a situation where the mortality decline is occurring at
ever higher ages in many countries, so we may find situations of increasing life
expectancy and, at the same time, increases in lifespan variation. The inequality
adjustment is a well-known family of inequality indexes, although this family has not
been investigated in the demographic literature. The distributionally adjusted life
expectancy index can be routinely computed from life table functions.
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Appendix

Notation

We use the standard notation for period life tables in discrete time (Preston, Heuveline,
and Guillot 2001) as implemented for example in the Human Mortality Database
methods protocol (Wilmoth et al. 2017).

Let x denote ages, qx the probability of dying throughout the age interval [x, x  1),
its complementary, px  1  qx, the probability of surviving, and l0  100,000 the
number of the newborns in the life table population. Then, the number of survivors, lx
(of the initial 100,000), at age x is

1

1 1 0
0

. .
x

x x x i
i

l l p l p


 


   (A.1).

The distribution of deaths by age in the life table population is

1. .(1 )x x x x x x x x x xd l q l p l l p l l        (A.2)

until its extinction.
The person-years, Lx, lived by the life table population in the age interval [x, x  1)

are

1 . (1 ).x x x x x x xL l a d l a d     (A.3),

where ax represents the average number of years lived within the age interval [x, x  1)
for people dying at that age.

The person-years remaining for individuals of age x equal

x i
i x

T L


 (A.4).

Remaining life expectancy at age x is

x
x

x

T
e

l
 (A.5).
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For x  0 we obtain life expectancy at birth, 0
0

0

T
e

l
 .

Life expectancy: Mean of the distribution in the length of life

Lemma A1: Life expectancy at birth, x  0, viewed as the distribution of all life years

of the life table population among the new born, 0
0

0

T
e

l
 , is identical to the mean age at

death; that is, the mean of the length of life distribution of the life table population,

0
0

0

( )x x
x

x
x

d x a
e

d









, since the length of life for an individual dying in the interval

[x, x  1) is xx a , and we have dx people in the life table population dying in that
interval.

Proof: First, because every newborn eventually dies, 0 0x xd l  .
Second, from the definition of Tx at x  0,

0 1
0 0

( . )x x x x
x x

T L l a d
 

   

So it remains to show that 1
0 0

.x x
x x

l x d
 

  . The RHS of this expression is

1 2 3
0

1 2 3 4

1 2 3 4

1
0

. 2. 3. 4. ...

...

...

x x
x

x x x x
x x x x

x
x

x d d d d d

d d d d

l l l l
l



   




    

    

    





   



since the life table population extinguishes, so , for alli x
i x

d l x


 .

Thus the distribution of interest is the distribution of the length of life, x xz x a  ,
weighted by the number of people dying at that age, xd .
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To generalize the above lemma to any age, x, note that conditional on having
reached age x the origin to measure the remaining length of life is not 0 but x, so the
remaining length of life from that point onwards is ( ) xi x a   for 0i x  .

Lemma A2: Life expectancy at any age, x, viewed as the distribution of all the future

remaining life years of the life table population among the current survivors, x
x

x

T
e

l
 ,

is identical to the mean age at death; that is, the mean of the length of life distribution

for these survivors,
 ( )i i

i x
x

i
i x

d i x a
e

d




 




.

Proof: First, because survivors will eventually die, i x i xd l  .
Second, from the definition of Tx,

1( . )x i i i i
i x i x

T L l a d
 

    .

So it remains to show that 1 ( ).i i
i x i x

l i x d
 

   . The RHS of this expression is

( ). . . . .i i i i x
i x i x i x i x

i x d i d x d i d x l
   

        ,

and the first term of the second equality is

1 2 3

1 2 3

1 2 3

. . ( 1). ( 2). ( 3). ...

. 2. 3. ...

. 2. 3. ...

i x x x x
i x

i x x x
i x

x x x x

i d x d x d x d x d
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x l d d d
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  


  
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so

1 2 3 4

1 2 3 4

1 2 3 4
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Properties of power means of order 

Some properties of power means of order , ( ; )U z  , are worth remembering (Steel
2004: chapter 8):

 For a given distribution, ( ; )U z   is increasing in , so

*( ; ) ( ; )U z U z     for * 1      . Hence, 0( ; )U z e    for
1  .

 For 0   we have the geometric mean (as a limit), 0 0( ; ) x
x xU z z   .

 For 1    we have the harmonic mean,
1

1 0( ; ) x
x

x

U z
z



 

 
   

 
.

 As tends to   we get the minimum value of z , 0z ,

0 0 0( ; ) min{ }x xU z z z a     . Hence as  decreases, we increasingly
focus on mortality of younger people.

 ( ; )U z   is homogeneous of degree one in z ,
( ; ) ( ; ), for all 0U z U z        .

 ( ; )U z   is homogeneous of degree zero in 0 1 2( , , ,..., ,...)xd d d d d ,
since this leaves unaltered the weights, 0 1 2( , , ,..., ,...)x     .

 ( ; )U z   is monotonically increasing in each of the elements of z .
 Given the meaning we attach to z , ages arranged in an increasing

immutable order, ( ; )U z   is monotonically increasing in   in the
following sense: ( ; ) ( ; )U z U z     , where   is obtained from   in
the following form: x x   , x j x j     and x j x x j x         for
some 0x   and some 0 j x  , while , for ally y y x    .

 ( ; )U z   is concave as a function of z  for 1   and strictly concave for
1   (Magnus and Neudecker 1988, chapter 11, theorem 33).5

5 This is in fact the reason for restricting the parameter space in the definition of ( ; )U z   since power
means are defined for any real value of .
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Proofs of lemmas

Proof of lemma 1:

0

1

0

1
x

x
x

z
A

e


 



  
     
   
 

0

1

0

1
x

x
x

z
A

e


 



  
    
   


Hence, multiplying both sides by 0e ,

1

0 0(1 ) ( ; )x x xe A z U z 
          .

Proof of lemma 2:

0 0

1
x

x
x

z
E

e






 
    

 
 

0 0

1
x

x
x

z
E

e






 
   

 


Hence, multiplying both sides by 0e ,

0 0(1 ) ( ; )x x xe E z U z 
        .
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