Volume 43 - Article 27 | Pages 779–816 Author has provided data and code for replicating results

Monitoring global digital gender inequality using the online populations of Facebook and Google

By Ridhi Kashyap, Masoomali Fatehkia, Reham Al Tamime, Ingmar Weber

Print this page  Facebook  Twitter


Date received:26 Nov 2019
Date published:08 Sep 2020
Word count:6868
Keywords:big data, development indicators, digital divide, gender inequalities, novel digital data sources, sustainable development goals
Additional files:readme.43-27 (text file, 649 Byte)
 demographic-research.43-27 (zip file, 105 kB)


Background: In recognition of the empowering potential of digital technologies, gender equality in internet access and digital skills is an important target in the United Nations (UN) Sustainable Development Goals (SDGs). Gender-disaggregated data on internet use are limited, particularly in less developed countries.

Objective: We leverage anonymous, aggregate data on the online populations of Google and Facebook users available from their advertising platforms to fill existing data gaps and measure global digital gender inequality.

Methods: We generate indicators of country-level gender gaps on Google and Facebook. Using these online indicators independently and in combination with offline development indicators, we build regression models to predict gender gaps in internet use and digital skills computed using available survey data from the International Telecommunications Union (ITU).

Results: We find that women are significantly underrepresented in the online populations of Google and Facebook in South Asia and sub-Saharan Africa. These platform-specific gender gaps are a strong predictor that women lack internet access and basic digital skills in these populations. Comparing platforms, we find Facebook gender gap indicators perform better than Google indicators at predicting ITU internet use and low-level digital-skill gender gaps. Models using these online indicators outperform those using only offline development indicators. The best performing models, however, are those that combine Facebook and Google online indicators with a country’s development indicators such as the Human Development Index.

Contribution: Our work highlights how appropriate regression models built on novel, digital data from online populations can be used to complement traditional data sources to monitor global development indicators linked to digital gender inequality.

Author's Affiliation

Ridhi Kashyap - University of Oxford, United Kingdom [Email]
Masoomali Fatehkia - Qatar Computing Research Institute (QCRI), Qatar [Email]
Reham Al Tamime - University of Southampton, United Kingdom [Email]
Ingmar Weber - Qatar Computing Research Institute (QCRI), Qatar [Email]

Other articles by the same author/authors in Demographic Research

» Demographic change and increasing late singlehood in East Asia, 2010–2050
Volume 43 - Article 46

Most recent similar articles in Demographic Research

» Gender inequality in domestic chores over ten months of the UK COVID-19 pandemic: Heterogeneous adjustments to partners’ changes in working hours
Volume 46 - Article 19    | Keywords: gender inequalities

» Family status and women’s career mobility during urban China’s economic transition
Volume 44 - Article 8    | Keywords: gender inequalities

» Mobile phones, digital inequality, and fertility: Longitudinal evidence from Malawi
Volume 42 - Article 37    | Keywords: digital divide

» Digital divide and body size disparities among Chinese adults
Volume 38 - Article 4    | Keywords: digital divide

» Dating across and hooking 'up': Status and relationship formation at an elite liberal arts university
Volume 37 - Article 60    | Keywords: gender inequalities