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Population aging caused by a rise in the sex ratio at birth

Zhen Zhang1

Qiang Li2

Abstract

BACKGROUND
In the last several decades, notwithstanding its historical and biological stability, the sex
ratio at birth (SRB) has risen in various parts of the world. The resultant demographic
consequences are well documented and typically include ‘missing girls/women’ and the
‘marriage squeeze.’ However, the underlying mechanism and impact of the SRB on
demographic dynamics have not been explored in depth.

OBJECTIVE
In this study, we investigate the impact of a rise in the SRB on the size, structure, and
growth of a population, with a focus on population aging.

METHODS
We develop a simple methodological framework derived from classical stable
population models to analyze how a rise in the SRB reduces population size and ages a
population.

RESULTS
Cohorts born with a higher SRB are smaller than those born with a lower SRB. The
smaller size of these cohorts leads to a reduction in the total population size, thereby
increasing the proportion of cohorts of older persons born during periods with a lower
SRB that are the same size as earlier cohorts. As cohorts continue to be born during the
period with the higher SRB, their proportion in the population increases and the process
of population aging accelerates.

CONTRIBUTIONS
This study shows that, in addition to fertility and mortality, the SRB can be a driving
factor in population dynamics, especially when it rises well above normal biological
levels.
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1. Introduction

A sex ratio at birth (SRB) of 1.05 male births to 1 female birth is considered
biologically stable (Chahnazarian 1988). Since the late 1970s a rising trend in the SRB
in some Asian and Eastern European countries has been evident (Babiarz et al. 2019;
Cai and Lavely 2003; Chao et al. 2019; Guilmoto 2012a; Guilmoto and Ren 2011).
Reasons for this trend include prenatal sex selection driven by a rapid decline in
fertility, a strong preference for sons, and easy access to sex-selection technologies
(Guilmoto 2009, 2012a, 2012b, 2012c; Kashyap and Villavicencio 2016; Meslé, Vallin,
and Badurashvili 2007). In light of mounting concern regarding the rapid rise in the
SRB, the governments of various countries have introduced national policies and
programs to address gender inequality and sex selection at birth, thereby lowering
abnormally high sex ratios (Guilmoto 2012a; Li 2007). In recent years, South Korea has
succeeded in reducing its SRB to a biologically normal level (Den Boer and Hudson
2017), and in other countries such as China the pace of the increase in the SRB has been
reduced (Chao et al. 2019).

The demographic consequences of a high SRB, which typically include the
phenomena of ‘missing girls/women’ and the ‘marriage squeeze’, have been well
documented (Guilmoto 2012a, 2015; Jiang, Feldman, and Li 2014; Li 2007; Sen 1990;
Tuljapurkar, Li, and Feldman 1995). Moreover, simulations conducted in several
studies have shown that a higher SRB is often associated with population aging or a
reduced pace of population growth (Cai and Lavely 2003; Chen and Li 2010; Chen and
Zhang 2019). However, there have been few in-depth explorations of the underlying
mechanism driving these phenomena. Therefore, questions of whether the link between
the sex ratio and population aging is coincident under specific population conditions,
and if not, how it arises, and what factors are involved in the process, remain
unanswered.

We aim to investigate the impact of an increase in male births on the population
structure using a simple methodological framework derived from classical stable
population models (Lotka 1939). Applying this framework, we perform a perturbation
analysis to examine how a rise in the SRB reduces the population size and induces
population aging.

The rest of this paper is organized as follows. First, we introduce the settings and
notation used in this study. Second, we present a simple case in which the number of
births remains constant over time. We formulate the relationship between the SRB and
population size and visualize the process of population aging resulting from a rise in the
SRB. Third, we present a case with constant fertility schedules, which is not only more
realistic but also can show the impacts attributed solely to a rise in the SRB. Last, we
discuss the implications of our findings.
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2. Settings and notations

We based our analysis on an assumption of female dominance; i.e., population
dynamics are determined by female vital rates and the number of males is always
sufficient for pairs to be formed with all of the females. This assumption can be
justified by the widespread phenomenon of excess males within all populations that
demonstrate an abnormally high SRB (Guilmoto 2012a, 2012b, 2015; Sen 1990;
Tuljapurkar, Li, and Feldman 1995). Additionally, net migration rates are assumed to be
zero at all ages, so in effect the population is assumed to be closed to migration. We
formulated the following notations to simplify our analysis:

 𝑆𝑅𝐵(𝑡): the sex ratio at birth at time 𝑡 expressed by the number of male
births per female birth.

 𝜋𝑓(𝑡) and 𝜋𝑚(𝑡): the proportions of female and male births at time 𝑡, with
𝜋𝑓(𝑡) + 𝜋𝑚(𝑡) = 1. The two proportions are equivalent to the SRB; for
example, 𝜋𝑚(𝑡) = 𝑆𝑅𝐵(𝑡)/(1 + 𝑆𝑅𝐵(𝑡)) or 𝑆𝑅𝐵(𝑡) = 𝜋𝑚(𝑡)/(1 −
𝜋𝑚(𝑡)).

 𝑁𝑓(𝑎, 𝑡),  𝑁𝑚(𝑎, 𝑡), and 𝑁(𝑎, 𝑡): female, male, and total populations aged 𝑎
years at time 𝑡.

 𝐵𝑓(𝑡), 𝐵𝑚(𝑡), and 𝐵(𝑡): female, male, and total births at time 𝑡. The numbers
of female and male births are expressed as 𝐵𝑠(𝑡) = 𝜋𝑠𝐵(𝑡), where 𝑠 = 𝑓, 𝑚,
respectively. If the number of annual births is fixed, then 𝐵(𝑡) = 𝐵.

 𝜔: the upper limit of the human lifespan.
 𝑝𝑓(𝑎) and 𝑝𝑚(𝑎): the constant probability that a newborn female (male)

baby will survive up to age 𝑎.
 𝑝(𝑎): the constant probability that a newborn child will survive up to age 𝑎,

which is calculated as the weighted average of 𝑝𝑓(𝑎) and 𝑝𝑚(𝑎): 𝑝(𝑎) =
𝜋𝑚 ⋅ 𝑝𝑚(𝑎) + (1 − 𝜋𝑚) ⋅ 𝑝𝑓(𝑎).

 𝑒𝑓
𝑜,  𝑒𝑚

𝑜 , and 𝑒𝑜: life expectancy at birth for females, males, and the total
population respectively, defined by the integral of 𝑝(𝑎) from age 0 to 𝜔. For
instance, 𝑒𝑜 = ∫ 𝑝(𝑎)𝑑𝑎𝜔

0 . The three life expectancies are related to one
another, as indicated by 𝑒𝑜 = 𝜋𝑚 ⋅ 𝑒𝑚

𝑜 + (1 − 𝜋𝑚) ⋅ 𝑒𝑓
𝑜, usually with

𝑒𝑚
𝑜 < 𝑒𝑓

𝑜.
 𝛿(𝑎) = 𝑝𝑓(𝑎) − 𝑝𝑚(𝑎): the sex difference relating to the probability of

survival from birth to age 𝑎, which is usually positive because of the female
survival advantage. Thus, ∫ 𝛿(𝑎)𝜔

0 𝑑𝑎 = 𝑒𝑓
𝑜 − 𝑒𝑚

𝑜 , which is the sex
difference in life expectancy at birth.
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 𝑚(𝑎): the constant fertility schedules of women for their female and male
offspring, combined with the total fertility rates; that is, 𝑇𝐹𝑅 = ∫ 𝑚(𝑎)𝑑𝑎𝛽

𝛼 ,
where 𝛼 and 𝛽 are the lower and upper bounds of the reproductive age span,
respectively.

 𝑚𝑓(𝑎)  and 𝑚𝑚(𝑎): the constant fertility schedules for female and male
offspring, respectively.

3. SRB-induced reduction in population size

In this section we demonstrate how a rise in the SRB can reduce the size of a
population. Consider a stationary, female-dominant population that is characterized by a
fixed number of annual births, a fixed life table for each sex, and zero net migration
rates for all age groups. Accordingly, the number of persons aged 𝑎 years at time 𝑡 is
equal to the number of births 𝑡 − 𝑎 years earlier multiplied by the probability of
surviving from birth to age 𝑎:

𝑁(𝑎, 𝑡) = 𝐵(𝑡 − 𝑎) ⋅ 𝑝(𝑎) = 𝐵 ⋅ 𝑝(𝑎). (1)
The total population size is thus expressed as:

𝑁(𝑡) = ∫ 𝑁(𝑎, 𝑡)𝑑𝑎𝜔
0 = 𝐵 ⋅ ∫ 𝑝(𝑎)𝑑𝑎𝜔

0 = 𝐵 ⋅ 𝑒𝑜, (2)

where 𝑒𝑜 denotes life expectancy at birth for the population as a whole.
For a two-sex population, 𝑁(𝑎, 𝑡) can be expressed in terms of the proportion of

male births denoted by 𝜋𝑚:

𝑁(𝑎, 𝑡) = 𝐵 ⋅ ቀ𝜋𝑚 ⋅ 𝑝𝑚(𝑎) + (1 − 𝜋𝑚) ⋅ 𝑝𝑓(𝑎)ቁ

= 𝜋𝑚 ⋅ 𝐵 ⋅ ቀ𝑝𝑚(𝑎) − 𝑝𝑓(𝑎)ቁ + 𝐵 ⋅ 𝑝𝑓(𝑎)

= −𝜋𝑚 ⋅ 𝐵 ⋅ 𝛿(𝑎) + 𝐵 ⋅ 𝑝𝑓(𝑎). (3)
The derivative of Equation (3) with respect to 𝜋𝑚 is:

𝑑𝑁(𝑎,𝑡)
𝑑𝜋𝑚

= −𝐵 ⋅ 𝛿(𝑎). (4)
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The slope at age 𝑎, with the sign reversed, is the product of 𝐵 and 𝛿(𝑎). This
expression indicates how many more extra male births resulting from a rise in 𝜋𝑚
would be lost up to age 𝑎 because of the male survival disadvantage.

Analogously, the total population can be expressed as:

𝑁(𝑡) = 𝐵 ⋅ 𝑒𝑜 = 𝐵 ⋅ ൫𝜋𝑚 ⋅ 𝑒𝑚
𝑜 + 𝜋𝑓 ⋅ 𝑒𝑓

𝑜൯ = −𝐵 ⋅ 𝜋𝑚 ⋅ ൫𝑒𝑓
𝑜 − 𝑒𝑚

𝑜 ൯ + 𝑒𝑓
𝑜. (5)

The differentiation of Equation (5) produces the following equation:

𝑑𝑁(𝑡)
𝑑𝜋𝑚

= −𝐵 ⋅ ൫𝑒𝑓
𝑜 − 𝑒𝑚

𝑜 ൯. (6)

Because 𝑒𝑓
𝑜 > 𝑒𝑚

𝑜  the equation result is negative, indicating the total number of
extra deaths that would occur if more boys were born because of a rise in 𝜋𝑚.

The mechanism behind the above-described impact is intuitively straightforward.
Given the number of births, the SRB is higher, and more male than female infants are
born. Because male mortality rates are usually higher than female mortality rates, a
higher number of male births than female births implies an increase in the number of
deaths, leading to a reduction in the population size. As shown in Equation (5), when 𝐵
(the number of births) is fixed and 𝜋𝑚 is rising, the increasing weight of the male
population will lead to decreasing 𝑒𝑜 and hence to a reduced population size.

The impact of the SRB is symmetrical. Thus, a decrease in 𝜋𝑚 or, equivalently, a
rise in 𝜋𝑓 can lead to an increase in the population size unless the assumption of female
dominance, and vice versa, is invalidated by the resulting outcomes. The results of our
analysis regarding the impact of changes in the SRB on the population size and
structure can work in both directions relating to population size, as evidenced in
Equations (4) and (6).

Dividing Equation (4) by Equation (1) yields the rate of the relative change in
𝑁(𝑎, 𝑡) given a rise in 𝜋𝑚:

𝑑 ln 𝑁(𝑎,𝑡)
𝑑𝜋𝑚

= 𝑑𝑁(𝑎,𝑡)
𝑁(𝑎,𝑡)𝑑𝜋𝑚

= − 𝐵⋅𝛿(𝑎)
𝐵⋅𝑝(𝑎)

= − 𝛿(𝑎)
𝑝(𝑎)

. (7)

Equation (7) shows that with the removal of the impact of the number of births, the
resultant reduction in population size depends on the ratio of sex difference in the
probability of survival up to age 𝑎 to the same probability for the population as a whole.
In the continuous life tables the probability of survival up to age 𝑎 can also be
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interpreted as the number of survivors at age 𝑎. Thus, 𝛿(𝑎)/𝑝(𝑎) indicates the ratio of
the relative importance of the sex difference concerning the number of survivors at age
𝑎 to the combined number of survivors of both sexes at the same age. A finding that a
small 𝛿(𝑎) together with an even lower 𝑝(𝑎) could yield a high ratio is not surprising.

Analogously, dividing Equation (6) by Equation (2) gives the rate of the relative
change in the total population as a response to a rise in 𝜋𝑚:

𝑑 ln 𝑁(𝑡)
𝑑𝜋𝑚

= −
𝑒𝑓

𝑜−𝑒𝑚
𝑜

𝑒𝑜 , (8)

meaning that the relative change in the total population is equal to the ratio of the sex
difference in life expectancy at birth to life expectancy at birth for both sexes combined.

More generally, the subpopulation above a certain age is given by:

𝑁𝑥+(𝑡) = ∫ 𝑁(𝑎, 𝑡)𝑑𝑎.𝜔
𝑥

The relative change in 𝑁𝑥+(𝑡) with respect to 𝜋𝑚 is expressed as:

𝑑 ln 𝑁𝑥+(𝑡)
𝑑𝜋𝑚

= − ∫ 𝛿(𝑎)𝑑𝑎𝜔
𝑥

∫ 𝑝(𝑎)𝑑𝑎𝜔
𝑥

= −𝑅𝑥, (9)

where 𝑅𝑥 = ∫ 𝛿(𝑎)𝑑𝑎𝜔
𝑥

∫ 𝑝(𝑎)𝑑𝑎𝜔
𝑥

 is the ratio of the cumulative sex difference in survival above age

𝑥 to the cumulative survival above age 𝑥 for the total population. When 𝑥 = 0, Equation
(9) can be simplified and expressed as Equation (8). Our results indicate that 𝑅𝑥 is a
strictly increasing function of age 𝑥 (see Appendix 1 for the detailed proof):

𝑑𝑅𝑥
𝑑𝑥

> 0. (10)

Figure 1 depicts the age trajectories of 𝑝(𝑎), 𝛿(𝑎), 𝛿(𝑎)
𝑝(𝑎)

, and 𝑅𝑥. Prior to reaching
middle age (around 50 years), 𝛿(𝑎) is relatively small (indicated by a solid red line),
while 𝑝(𝑎) remains at a high level (green dotted line), so their ratio (blue dashed line) is
small. After this age, 𝛿(𝑎) increases with age and peaks at an approximate age of 75
years, with a subsequent gradual decline. At the same time, 𝑝(𝑎) declines at a fast pace
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at older ages, which are associated with a high mortality rate. Consequently, the value
of 𝛿(𝑎)/𝑝(𝑎) rises rapidly after middle age, implying that the impact of a rise in 𝜋𝑚 on
population size increases rapidly with advancing age. 𝑅𝑥 reveals an upward trend
similar to that of 𝛿(𝑎)/𝑝(𝑎) but at a higher level, with both curves converging at
advanced ages.

Figure 1: Age trajectories of functions 𝒑(𝒂), 𝜹(𝒂), 𝜹(𝒂)
𝒑(𝒂)

, and 𝑹𝒙, Japan 2010

Source: Human Mortality Database (2020).

We assumed that a constant number of births implies that the fertility rates must
rise to some degree to offset the reduction in births resulting from the rise in the SRB.
As noted above, a higher proportion of male births implies fewer female births.
Consequently, there will be fewer women of childbearing age in the following decades.
If the fertility schedules remain unchanged, the decreased number of these women will
lead to a further reduction in the number of births, nearly half of which will be female
births. This trend will continue across generations, leading to a decreasing number of
annual births, which conflicts with the assumption of a fixed number of births.
Therefore, fertility must rise to ensure a constant number of annual births.
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4. SRB-induced population aging

4.1 A case of fixed annual births

We first prove that a stable female-dominant population with a higher SRB may be
younger than one with a lower SRB. Next, we visualize how a rise in the SRB can
cause a population to age.

A widely used indicator of population aging is the proportion of the population
above the age of 65 years:

𝐶65(𝑡) = ∫ 𝑁(𝑎,𝑡)𝑑𝑎𝜔
65

∫ 𝑁(𝑎,𝑡)𝑑𝑎𝜔
0

= 𝑁65+(𝑡)
𝑁(𝑡)

.  (11)

The derivative of 𝐶65 with respect to 𝜋 is:

𝑑 ln 𝐶65(𝑡)
𝑑𝜋𝑚

= 𝑑 ln 𝑁65+(𝑡)
𝑑𝜋𝑚

− 𝑑 ln 𝑁(𝑡)
𝑑𝜋𝑚

= 1
𝑁65+(𝑡) ∫ 𝑑𝑁(𝑎,𝑡)

𝑑𝜋𝑚
𝑑𝑎𝜔

65 − 1
𝑁(𝑡) ∫ 𝑑𝑁(𝑎,𝑡)

𝑑𝜋𝑚
𝑑𝑎𝜔

0

= − ∫ 𝛿(𝑎)𝑑𝑎𝜔
65

∫ 𝑝(𝑎)𝑑𝑎𝜔
65

− ൬− ∫ 𝛿(𝑎)𝑑𝑎𝜔
0

∫ 𝑝(𝑎)𝑑𝑎𝜔
0

൰

= −𝑅65 + 𝑅0.      (12)

Because 𝑅𝑥 is an increasing function of age 𝑥, 𝑅65 > 𝑅0 and the right-hand side of
Equation (12) has a negative value. In other words, a rise in 𝜋𝑚 can lead to a younger
population. The reason for this situation is that with increased male births attributed to a
rise in the SRB, more individuals in this male cohort will die before reaching old age,
leading to a relatively small older population. The total population size will also
decrease but at a relatively slow rate, so the proportion of the older population will
decrease.

The same logic can be applied to the old-age dependence ratio (OADR), which is
another widely used indicator of population aging, as follows:

𝑂𝐴𝐷𝑅(𝑡) = ∫ 𝑁(𝑎,𝑡)𝜔
65 𝑑𝑎

∫ 𝑁(𝑎,𝑡)64
20 𝑑𝑎

= 𝑁65+(𝑡)
 45𝑁20(𝑡)

,
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where the denominator is the population’s labor force. Similar to Equation (12), we can
have

𝑑 ln 𝑂𝐷𝐴𝑅(𝑡)
𝑑𝜋𝑚

= − ∫ 𝛿(𝑎)𝑑𝑎𝜔
65

∫ 𝑝(𝑎)𝑑𝑎𝜔
65

− ൬− ∫ 𝛿(𝑎)𝑑𝑎64
20

∫ 𝑝(𝑎)𝑑𝑎64
20

൰ = −𝑅65+45𝑅20.

It follows from Equation (10) that 45𝑅20 < 𝑅20 < 𝑅65 and then the right-hand side
of the above equation is negative, which suggests that a rise in the SRB will lead to a
decrease in the OADR.

The question that arises is that if a population with a higher SRB is younger than
one with a lower SRB, how can a rise in the SRB prompt population aging? The answer
to this question can be found in continual changes in the composition of a population in
terms of cohorts born during periods with different sex ratios at birth during the
transition from a lower SRB period to a higher SRB period (Figure 2).

Figure 2: Graph illustrating how a rise in the SRB alters the composition of a
population, and induces its aging

Note: The unshaded area to the left of the diagonal line depicts cohorts born during a period of normal 𝜋𝑚 before time 𝜏, denoted as
𝑁(𝑎, 𝑡). The shaded area to the right of the diagonal line depicts cohorts born during a period of abnormally high 𝜋𝑚

∗  after time 𝜏,
denoted as 𝑁∗(𝑎, 𝑡).

𝜏 + 𝜔
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If the proportion of male births rises from the normal 𝜋𝑚 level to 𝜋𝑚
∗ , which is an

abnormally high level, at time 𝜏, then, as illustrated in Figure 2, the resultant change in
the population age structure will occur over three stages until the last individual born
with 𝜋 dies. In the first stage covering the period 𝜏 to 𝜏 + 65, the population above the
age of 65 years, which was born at least 65 years earlier, is not affected by 𝜋𝑚

∗ , so its
size remains unchanged. However, the cohorts born during the 𝜋𝑚

∗  period are smaller in
size than those born before time 𝜏, resulting in a decline in the total population size.
Accordingly, the proportion of the elderly will rise. At this stage, the percentage of
people aged 65 years and over can be calculated as follows:

𝐶65
(1)(𝑡) = ∫ 𝑁(𝑎,𝑡)𝑑𝑎𝜔

65

∫ 𝑁∗(𝑎,𝑡)𝑑𝑎𝑡−𝜏
0 +∫ 𝑁(𝑎,𝑡)𝑑𝑎𝜔

𝑡−𝜏
, 0 ≤ 𝑡 − 𝜏 ≤ 65,      (13)

where 𝑁∗(𝑎, 𝑡) denotes the cohorts born during the new 𝜋𝑚
∗  period and 𝑁(𝑎, 𝑡) denotes

cohorts born during the normal SRB period. Because ∫ 𝑁∗(𝑎, 𝑡)𝑑𝑎𝑡−𝜏
0  is smaller in

value than ∫ 𝑁(𝑎, 𝑡)𝑑𝑎𝑡−𝜏
0 , 𝐶65

(1) is higher than 𝐶65 in Equation (11). As more cohorts
are born in the 𝜋𝑚

∗  period, ∫ 𝑁∗(𝑎, 𝑡)𝑑𝑎𝑡−𝜏
0  will account for an increasing share of the

population, so the denominator of the right hand side of Equation (13) will decrease.
Consequently, 𝐶65

(1) will continue to rise and peak at time 𝜏 + 65 when all individuals
below 65 years are born during the 𝜋𝑚

∗  period.
In the second stage that occurs between time 𝜏 + 65 and 𝜏 + 𝜔, the proportion of

the population above the age of 65 years is calculated as follows:

𝐶65
(2)(𝑡) = ∫ 𝑁∗(𝑎,𝑡)𝑑𝑎𝑡−𝜏

65 +∫ 𝑁(𝑎,𝑡)𝑑𝑎𝜔
𝑡−𝜏

∫ 𝑁∗(𝑎,𝑡)𝑑𝑎𝑡−𝜏
0 +∫ 𝑁(𝑎,𝑡)𝑑𝑎𝜔

𝑡−𝜏  
, 65 ≤ 𝑡 − 𝜏 ≤ 𝜔. (14)

As cohorts born during the 𝜋𝑚
∗  period enter old age, the number of older people

decreases by ∫ 𝑁(𝑎, 𝑡)𝑑𝑎𝑡−𝜏
65 − ∫ 𝑁∗(𝑎, 𝑡)𝑑𝑎𝑡−𝜏

65 , where ∫ 𝑁(𝑎, 𝑡)𝑑𝑎𝑡−𝜏
65  would be the

number of older people if they were born during the normal 𝜋𝑚 period. This decrease
applies to both the numerator and denominator shown in Equation (14), but it can
induce a bigger change in the numerator relative to the denominator. Hence, 𝐶65

(2)(𝑡) <
𝐶65

(1)(𝑡), which conveys that the population is younger in the second stage than it was in
the first stage. As in the case of the expansion, the cohorts born during the 𝜋𝑚

∗   period,
∫ 𝑁(𝑎, 𝑡)𝑑𝑎,𝜔

𝑡−𝜏  will approach zero and 𝐶65
(2)(𝑡) will evidence a continuous decline.

In the last stage, at time 𝜏 + 𝜔, the population will consist entirely of the cohorts
born during the 𝜋𝑚

∗  period, and the percentage of older individuals within the
population will return to a constant level, as defined in Equation (12).
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Figure 3: Simulated evolution of population aging with SRB perturbation

Note: Between year 0 and year 10 in the simulation, the SRB remained at 1.05 and then rose to 1.25. The number of annual births
was 10,000, and the mortality rates for both sexes were assumed to be constant over time, with a difference of about four years in
their life expectancy at birth.

We performed a female-dominant simulation to illustrate SRB-induced population
aging. The number of births was estimated by applying the fertility rate only to women
(Preston, Heuveline, and Guillot 2001: 121–124). The data on mortality and fertility
were derived from the World Population Prospects estimates for China in 1990 (United
Nations 2019). Tables with detailed data are provided in Appendices 2 and 3.

For this simulation, we assumed that the normal SRB of 1.05 continued up to year
10, followed by a rise to 1.25. As shown in Figure 3, the percentage of the elderly aged
65 years and over (depicted as a solid red line) increased, peaking at the end of stage 1.
Cohorts born during stage 2, entailing an SRB of 1.25, would account for an increasing
share of the population, with a corresponding decrease in the size of the elderly
population. As previously noted, a reduction in the population size resulting from a rise
in the SRB would be much more significant for older cohorts, so their proportions
would rapidly decline. At the beginning of stage 3 all members of the population would
be born during the period characterized by the new SRB, so the population would reach
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a new stationary state with a lower proportion of older individuals than the stationary
population born during the period entailing a normal SRB of 1.05.

Despite a clear trend of population aging, the impact of the SRB on the population
structure was not significant, with just a small range of variation in percentages of the
population above the age of 65 years (14.78%–14.93%). This is mainly because to
ensure a fixed number of births the fertility level would need to increase accordingly,
and fertility increase will make a population younger, thereby in part offsetting the
SRB-induced population aging. In this case, the total fertility rate (TFR) would have to
rise from 2.18 to 2.40 to maintain a constant number of annual births.

Although fertility may offset SRB-induced population aging, it should be noted
that SRB and fertility have differential effects on the population structure. The SRB can
directly impact on the number of females, who represent the future fecundity of a
population, whereas fertility rates determine the total number of babies born, nearly half
of whom are female, thus impacting indirectly on fecundity. When the total number of
births is fixed, the SRB and fertility can become intermeshed with each other.

The different pathways of the impacts of the SRB and fertility imply that they have
distinct influences on the growth rate, as shown in the following relationship (Coale
1972:18‒22; Dublin and Lotka 1925; Preston et al. 2001:152‒154):

𝑟 =
ln 𝑇𝐹𝑅+ln 𝜋𝑓+ln 𝑝𝑓(𝐴𝑀)

𝑇
, (15)

where 𝜋𝑓 denotes the proportion of female births, 𝑇𝐹𝑅 is the total fertility rate, 𝑝𝑓(𝐴𝑀)
denotes the probability of women surviving up to the mean childbearing age (𝐴𝑀), and
𝑇 denotes the mean length of a generation. The intrinsic growth rate is an additive
function of the log of 𝑇𝐹𝑅, 𝜋𝑓 , or 𝑝𝑓(𝐴𝑀). Hence, the effect on the growth rate depends
only on the proportionate change in any of the three variables. Hence, the change in 𝑟
caused by 𝜋𝑓 is obtained using the following equations:

Δ𝑟 =
lnቀ𝜋𝑓

∗ /𝜋𝑓ቁ

𝑇
(16a)

Δ𝑟 = ln (𝑇𝐹𝑅∗/𝑇𝐹𝑅)
𝑇

 or Δ𝑟 =
ln (𝑝𝑓

∗ (𝐴𝑀)/𝑝𝑓(𝐴𝑀)

𝑇
, (16b)

where the superscript * indicates the new level of the 𝑇𝐹𝑅 and of 𝑝𝑓(𝐴𝑀).
Furthermore, it follows from Equation (16) that the three variables can separately

yield the same change in growth, although they entail distinct operations relating to
population dynamics. Accordingly, specific changes in the three variables are
equivalent in terms of their impacts on the growth rate. For instance, if the SRB rises
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from 1.05 to 1.25, or, equivalently, if 𝜋𝑓 falls by 9.02% from 0.488 to 0.444, and if
𝑇 = 27, then the growth rate will decline by 0.35%. The same change in the growth
rate can result from the TFR being reduced by the same percentage (9.02%) from 2.10,
which is the fertility replacement level, to 1.91. Analogously, 𝑝(𝐴𝑀) can drop from
0.9844 to 0.8956.

It is noteworthy that an underlying assumption in all of the relations derived using
the above equations is that women have survival advantages over men, that is, 𝑝𝑓(𝑎) >
𝑝𝑚(𝑎). In some contexts, however, this assumption may not be relevant because of
discriminatory behavior against girls (Guilmoto 2012a). Consequently, female mortality
rates may be higher than expected and may even exceed equivalent male rates. When
𝑝𝑓(𝑎) < 𝑝𝑚(𝑎), the formula and the results are interpreted in the reverse manner.
China and India, which are two of the ten countries in the world where the mortality
rates of girls are higher than expected (Alkema et al. 2014), also feature in the list of 12
countries with significant rises in the SRB (Chao et al. 2019). In China, excess female
mortality has decreased since the 1990s (Alkema et al. 2014), making the formula
𝑝𝑓(𝑎) > 𝑝𝑚(𝑎) applicable (United Nations 2019). In India, the mortality rate of girls
has long exceeded that of boys. This excess female mortality has even worsened in
recent decades (Alkema et al. 2014), and this situation will likely continue throughout
this century (United Nations 2019). Therefore, in the case of India, Equation (4) will be
positive for young cohorts, with 𝑝𝑓(𝑎) < 𝑝𝑚(𝑎), indicating that a rise in the SRB will
increase the number of male births, resulting in the population becoming even younger.

4.2 A case of a fixed fertility regime

An assumption of fixed births facilitates our demonstration of how a rise in the SRB
can change the age structure of a population. This assumption, however, is an over-
simplification. Hence, we relaxed the assumption regarding the fixed number of births
by assuming a time-invariant fertility schedule.

The number of births was obtained by applying women’s fertility rates as follows:

𝐵(𝑡) = 𝑁(0, 𝑡) = ∫ 𝑁𝑓(𝑎, 𝑡) ⋅ 𝑚(𝑎)𝑑𝑎𝛽
𝛼 = ∫ 𝑁𝑓(0, 𝑡) ⋅ 𝑒−𝑟𝑎 ⋅ 𝑝𝑓(𝑎) ⋅ 𝑚(𝑎)𝑑𝑎𝛽

𝛼       (17)

The intrinsic growth rate 𝑟 is defined by the female fertility and mortality
schedules:

1 = ∫ 𝑒−𝑟𝑎 ⋅ 𝑝𝑓(𝑎) ⋅ 𝑚𝑓(𝑎)𝑑𝑎𝛽
𝛼 ,      (18)
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where 𝑝𝑓(𝑎) and 𝑚𝑓(𝑎) apply only to females. The same growth rate can also apply to
the male subpopulation because the births are determined by female fertility and
mortality within a female-dominant population (Coale 1972: 54). Substituting
𝑁𝑓(0, 𝑡) = 𝑁(0, 𝑡) ⋅ 𝜋𝑓 into Equation (17) yields

𝑁(0, 𝑡) = ∫ 𝑁(0, 𝑡) ⋅ 𝜋𝑓 ⋅ 𝑝𝑓(𝑎) ⋅ 𝑒−𝑟𝑎 ⋅ 𝑚(𝑎)𝑑𝑎𝛽
𝛼 .

Canceling the 𝑁(0, 𝑡) from both sides yields

1 = 𝜋𝑓 ⋅ ∫ 𝑒−𝑟𝑎 ⋅ 𝑝𝑓(𝑎) ⋅ 𝑚(𝑎)𝑑𝑎𝛽
𝛼 .      (19)

Perturbation analysis can be conducted to determine the impact of the SRB on
population growth. The sensitivity of r to 𝜋𝑓 is obtained as the derivative of r with
respect to 𝜋𝑓. If the SRB or the proportion of female births is constant in relation to the
age of women, that is, 𝑚𝑓(𝑎) = 𝜋𝑓 ⋅ 𝑚(𝑎), then Equation (18) for a one-sex (female)
population can be extended to Equation (19) for a two-sex population. The intrinsic
growth rate of the male population is identical to that of the female population.

We designated the integral on the right-hand side of Equation (19) as the function
𝜓(𝑟). We subsequently obtained the following equation according to the rules of
implicit function and chain differentiation:

𝑑𝜓
𝑑𝜋𝑓

= 𝜕𝜓
𝜕𝑟

𝜕𝑟
𝜕𝜋𝑓

+ 𝜕𝜓
𝜕𝜋𝑓

.      (20)

Because 𝜓 is always equal to 1 and its value does not change with 𝜋𝑓, the left-hand
side of Equation (20) should amount to zero. Rearranging the right-hand side of
Equation (20), we obtained the following equation:

𝑑𝑟
𝑑𝜋𝑓

= −
𝜕𝜓

𝜕𝜋𝑓
𝜕𝜓
𝜕𝑟

= ∫ 𝑒−𝑟𝑎⋅𝑝𝑓(𝑎)⋅𝑚(𝑎)𝑑𝑎𝛽
𝛼

∫ 𝜋𝑓⋅𝑎⋅𝑒−𝑟𝑎⋅𝑝𝑓(𝑎)⋅𝑚(𝑎)𝑑𝑎𝛽
𝛼

= 1
𝜋𝑓𝐴𝐵

> 0,      (21)

where 𝐴𝐵 = ∫ 𝑎 ⋅ 𝑒−𝑟𝑎 ⋅ 𝑝𝑓(𝑎) ⋅ 𝑚(𝑎)𝑑𝑎𝛽
𝛼  is the mean age of childbearing in the stable

population. Equation (21), in which 𝑑𝑟/𝑑𝜋𝑓  > 0, confirms the above finding that an
increase in the proportion of female births can result in increased population growth and
vice versa. In a female-dominant population, a rise in the number of girls leads to an
increase in fecundity, which will boost population growth even if the TFR remains
constant.
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Figure 4 illustrates the evolution of population aging when there is a perturbation
of the SRB. For the baseline setting, fertility rates were adjusted to 10,000 annual births
based on the pattern of age-associated fertility rates in China in 1990. This adjustment
yielded results that could be compared to the above-described case entailing a fixed
number of births. The mortality was the same as in the above simulation. The SRB
remained at the normal level of 1.05 during the first ten years in the simulation,
followed by a rise to 1.25. As expected, the proportion of the older population (depicted
by a solid red line) rose rapidly and peaked at approximately 16.8%, followed by a
decreasing frequency of oscillations before a new level was reached. The oscillations
resulted from the perturbation in the numbers of male and female births attributed to the
rise in the SRB (Figure 5) (see Coale 1972: 63‒65). During the process of convergence
towards a stable form the gradually decreasing oscillations in the percentage of older
people remained visible until around year 200, indicating that a rise in the SRB has a
long-run impact.

Moreover, as shown in Equation (16), specific changes in fertility and mortality
can induce the same changes in the population growth rate as are caused by a rise in the
SRB. Accordingly, we assessed the relative influence of each of these three factors in
altering the age structure of the population. As noted above, for the growth rate to
decrease by 9.02% the TFR should reduce from 2.10 to 1.91 and in 𝑝(𝐴𝑚) from 0.9844
to 0.8956. Further, although the SRB is treated as being exogenous to fertility within
stable population models, a rise in the SRB can be attributed to a decline in fertility.
Therefore, we established a scenario in which a rise in the SRB occurred conjointly
with a decline in the TFR.

Of the three factors, a decline in the TFR yielded the highest 𝐶65 value, which was
about two percentage points higher than the baseline level, followed by the rise in SRB,
with a reduction in 𝑝(𝐴𝑀) having the least effect. Moreover, the time taken to attain a
new equilibrium after a perturbation occurred differed for the three factors: 35 years
for 𝑝(𝐴𝑀), 70 years for TFR, and nearly 100 years for the SRB.

The combination of the rise in the SRB and a decline in fertility was evidently
considerably more significant than their separate influences. A rise in the SRB
increased the level of 𝐶65 by 1.85 percentage points, while a decline in the TRF raised
its level by 2.03 percentage points relative to the baseline. The sum of the two effects
was 3.88, whereas the combined effect of the rise in the SRB and a decline in the TFR
resulted in an increase of 4.14 percentage points for 𝐶65, indicating that the two factors
can augment the demographic dynamics. The same combined effect occurred in the
case of fixed births. Under the assumption of fixed births, a rise in fertility is needed to
ensure a constant number of annual births, which partly offsets the effect of a rise in the
SRB. For fixed births and fixed fertility there was a difference of about two percentage
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points in the 𝐶65, which was indicative of the effect of a rise in the SRB combined with
an increase in fertility.

Figure 4: Trajectories of the percentages of the elderly aged 65 years and over
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Figure 5: Simulated numbers of births of females, males, and both sexes
combined

5. Conclusions

We investigated the role of the SRB in population dynamics, focusing on changes in the
age distribution. Using a simple methodological framework derived from classical
stable population models, we demonstrated that a change in the SRB can affect the size,
structure, and growth of a population. Typically, the rise in the SRB can age a
population, and vice versa.

The underlying mechanism is intuitively straightforward. A rise in the SRB will
lead to an addition of male infants within the population, who are subject to a higher
mortality rate. Thus, more deaths of the new, young cohorts are anticipated. Moreover,
a higher proportion of male births implies fewer female births, and therefore fewer
women who will give birth in the future. Because the decrease in the number of
childbearing women will further reduce the number of births in the next generation,
such a process will continue to occur across generations until the population eventually
shows a trend towards stability after more than a century. If the number of births is
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assumed to be fixed, fertility needs to increase to some degree to ensure a constant
number of births. If fertility is assumed to be unchanging the number of births will
decline, which will lead to smaller young cohorts. In either case, during the transient
period extending from a stationary or stable population with a normal SRB to a period
in which the SRB is abnormally high, the population will consist of two groups: older
cohorts born during a period with a normal SRB and younger cohorts born during a the
period with the new SRB. Because the young cohorts are smaller than they would be if
they had been born during the normal SRB period, the population will be older than it
was before the increase in the SRB. After a new equilibrium is reached, the population
age structure may be younger or older than it was before the SRB rose, depending on
which assumption is held: a fixed number of births (implicitly changing fertility) or a
fixed fertility regime.

Our findings support those of previous studies, namely that a decline in fertility is
the key factor accounting for an aging population and is much more important than a
reduction in mortality (Lee and Zhou 2017). Moreover, we found that the SRB is also
an important factor accounting for population aging. The effect of a rise in the SRB on
𝐶65 was slightly smaller than that of a decline in the TFR but much higher than that of a
decline in 𝑝(𝐴𝑚). Moreover, our simulations revealed that whereas the impacts of each
individual factor on the population age structure was modest, their combined effect,
entailing mutual reinforcement within a feedback loop, could have significant
demographic consequences for population dynamics.

It should be noted that this study had several limitations. First, whereas the SRB is
treated as exogenous to fertility and mortality within stable population models, the rise
in the SRB within actual populations is associated with declining mortality and fertility
(e.g., Guilmoto 2009 and Kashyap 2019). Further, while we assumed that vital rates are
time-constant, in reality they are time-varying. Therefore, there is a dynamic interplay
between the resulting population momentum and the changing age structure. Unless the
correlation or interaction between these factors is considered, the long-run impact of the
distortion of the SRB on population dynamics may be underestimated. Consequently, in
a context in which all societies are grappling with the challenges of population aging,
much of the focus has been on how to tackle declining fertility and increasing
longevity, thereby discounting the SRB.

Second, our analysis was based on a two-sex model in which female dominance
was assumed. This assumption holds in most countries where SRB distortions are
evident, but it may not apply in extreme situations, such as wars. When there is excess
male mortality, a high proportion of women, particularly those of marriageable and
childbearing ages, results in a ‘marriage squeeze’ for women. In this case, the rise in the
SRB may boost population growth and rejuvenate the population age structure. It
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remains an open question as to how marriage can be included in an analysis, enabling
deficits relating to one sex, whether male or female, to be handled flexibly.
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Appendix

Proof for Equation (10).

If 𝑅𝑥 = ∫ 𝛿(𝑎)𝑑𝑎𝜔
𝑥

∫ 𝑝(𝑎)𝑑𝑎𝜔
𝑥

, then 𝑑𝑅𝑥
𝑑𝑥

> 0.

Proof:
𝑅𝑥 is differentiated with respect to 𝑥 as follows:

𝑑𝑅𝑥

𝑑𝑥
=

1

൫∫ 𝑝(𝑎)𝑑𝑎𝜔
𝑥 ൯

2 ቆ−𝛿(𝑥) න 𝑝(𝑎)𝑑𝑎
𝜔

𝑥
+ 𝑝(𝑥) න 𝛿(𝑎)𝑑𝑎

𝜔

𝑥
ቇ.

The right-hand side of the equation is modified through the substitution of

𝛿(𝑥) = 𝑝𝑓(𝑥) − 𝑝𝑚(𝑥) and 𝑝(𝑥) = 𝜋𝑚𝑝𝑚(𝑥) + (1 − 𝜋𝑚)𝑝𝑓(𝑥).

Thus, we have:

𝑑𝑅𝑥

𝑑𝑥
=

1

൫∫ 𝑝(𝑎)𝑑𝑎𝜔
𝑥 ൯

2 𝑝𝑓(𝑥)𝑝𝑚(𝑥) ቀ𝑒𝑓
𝑜(𝑥) − 𝑒𝑚

𝑜 (𝑥)ቁ.

Because 𝑒𝑓
𝑜(𝑥) > 𝑒𝑚

𝑜 (𝑥), 𝑑𝑅𝑥
𝑑𝑥

> 0, which means that 𝑅𝑥 is a strictly increasing function
of age 𝑥.
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Table A-1: Life tables for males and females

Male Female

x nqx lx nLx Tx ex x nqx lx nLx Tx ex

0 0.0442 1.0000 0.9624 67.43 67.43 0 0.0381 1.0000 0.9671 71.43 71.43

1 0.0107 0.9558 3.7977 66.47 69.54 1 0.0095 0.9619 3.8246 70.46 73.25

5 0.0050 0.9456 4.7161 62.67 66.28 5 0.0035 0.9527 4.7553 66.64 69.94

10 0.0030 0.9409 4.6972 57.96 61.60 10 0.0020 0.9494 4.7422 61.88 65.18

15 0.0040 0.9380 4.6808 53.26 56.78 15 0.0035 0.9475 4.7292 57.14 60.31

20 0.0050 0.9343 4.6598 48.58 52.00 20 0.0040 0.9442 4.7115 52.41 55.51

25 0.0065 0.9296 4.6331 43.92 47.24 25 0.0050 0.9404 4.6903 47.70 50.72

30 0.0075 0.9236 4.6008 39.29 42.54 30 0.0060 0.9357 4.6646 43.01 45.96

35 0.0100 0.9167 4.5607 34.69 37.84 35 0.0075 0.9301 4.6332 38.34 41.22

40 0.0144 0.9076 4.5053 30.13 33.19 40 0.0100 0.9232 4.5929 33.71 36.52

45 0.0198 0.8945 4.4283 25.62 28.64 45 0.0154 0.9140 4.5348 29.12 31.86

50 0.0363 0.8768 4.3044 21.19 24.17 50 0.0242 0.8999 4.4452 24.58 27.32

55 0.0583 0.8450 4.1017 16.89 19.99 55 0.0383 0.8781 4.3068 20.14 22.93

60 0.1002 0.7957 3.7793 12.79 16.07 60 0.0695 0.8446 4.0760 15.83 18.75

65 0.1651 0.7160 3.2844 9.01 12.58 65 0.1114 0.7859 3.7104 11.76 14.96

70 0.2747 0.5978 2.5782 5.72 9.57 70 0.1958 0.6983 3.1497 8.04 11.52

75 0.4013 0.4335 1.7327 3.14 7.25 75 0.2964 0.5616 2.3918 4.90 8.72

80 0.5476 0.2596 0.9425 1.41 5.44 80 0.4612 0.3951 1.5200 2.50 6.34

85 0.7326 0.1174 0.3721 0.47 3.99 85 0.6468 0.2129 0.7202 0.98 4.62

90 0.8969 0.0314 0.0866 0.10 3.08 90 0.8132 0.0752 0.2231 0.26 3.50

95 1.0000 0.0032 0.0101 0.01 3.12 95 1.0000 0.0140 0.0401 0.04 2.86

Table A-2: Age-specific fertility rates
Age mx

15‒19 0.094

20‒24 0.945

25‒29 0.791

30‒34 0.268

35‒39 0.057

40‒44 0.023

45‒49 0.006
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