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Unobserved population heterogeneity and dynamics of health
disparities

Hui Zheng1

Abstract

BACKGROUND
A growing body of literature has reported widening educational health disparities across
birth cohorts or time periods in the United States, but research has paid little attention to
the implication of mortality selection on the cohort trend in health disparities.

OBJECTIVE
This study investigates how changes in the variance of unobserved frailty over time
may complicate the interpretation of cohort trends in health disparities and life
expectancy.

METHODS
We use the microsimulation method to test the effect of mortality selection and further
propose a counterfactual simulation procedure to estimate its contribution. Data used in
the simulations are based on Panel Studies of Income Dynamics 1968–2013, National
Health and Nutrition Examination Survey data 1999‒2012, and National Health
Interview Survey data 1986‒2011.

RESULTS
Simulation shows that mortality selection may generate seemingly contradictory trends
in health disparities and life expectancy across birth cohorts at the group and individual
level. Life expectancy can change even when the individual mortality curve is fixed. In
the absence of a change in the causal effect of education on mortality at the individual
level, an educational life expectancy gap can change across cohorts as a result of the
change in frailty variance. Empirical analysis shows that mortality selection accounts
for a sizeable amount of contribution to the widening educational life expectancy gap
from the 1950s to 1960s birth cohorts in the United States.

CONTRIBUTION
We demonstrate how mortality selection can complicate the cohort trend in health
disparities and life expectancy and propose a counterfactual simulation method to
evaluate its contribution.

1 Ohio State University, USA.
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1. Introduction

Unobserved individual frailty is prevalent and consequential in the population patterns
of health and mortality. The theory of population heterogeneity proposes that
populations are composed of individuals or subpopulations that vary in physiological
vulnerability to mortality, or ‘frailty’ (Vaupel, Manton, and Stallard 1979; Vaupel and
Yashin 1987). Mortality tends to remove frailer individuals from the population at
earlier ages and to leave stronger individuals to survive to older ages. Therefore, health
and mortality within any given birth cohort becomes increasingly dominated by robust
individuals as the cohort ages. This ‘mortality selection mechanism’ leads to the
deviation of a population-level mortality pattern from the individual-level mortality
pattern, and it may produce a population mortality pattern surprisingly different from
the individual pattern (Vaupel, Manton, and Stallard 1979; Vaupel and Yashin 1985a).

However, recent literature has yet to fully explore how unobserved frailty may
complicate the cohort trend in health disparities and life expectancy (Lynch 2003).
Broadly speaking, the impact of mortality selection on cohort trends belongs to a
sizable body of literature in demography that considers how changes in population
composition determine changes in observed, aggregate-level trends. Some recent
studies argue that educational expansion in the United States makes higher education
more accessible and equitable, so individuals without higher education increasingly
come from vulnerable family backgrounds, those with lower socioeconomic status
(SES), and this is pronounced in recent cohorts rather than earlier cohorts (Dowd and
Hamoudi 2014; Hendi 2015, 2017). In this study, we argue that the ‘changing selection-
into-education’ process across cohorts can further alter the variance of frailty
distribution for both lower- and higher-educated groups across cohorts. Mortality
selection mechanism operating in the context of changing frailty variance can further
complicate the interpretation of cohort trends in health disparities and life expectancy.

This study investigates into this mechanism with both simulated and empirical
data. We first review the literature in recent trends in health disparities in the United
States and increasing attention to selection issues, then discuss mortality selection
mechanism and its contribution to life course health disparities pattern, followed by
discussion of its possible contribution to cohort trend of health disparities and life
expectancy. Then we describe the data and methods. We employ microsimulations to
illustrate that mortality selection may either widen or narrow the life expectancy gap
between lower- and higher-educated groups across cohorts even if the true causal effect
of education on mortality is unchanged at the individual level across cohorts. We use
health disparities as a general term in explaining the contribution of mortality selection
to health difference between groups over the life course and across cohorts, but we use
life expectancy gap as a specific example of health disparities in the simulation
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experiment, which focuses on testing the impact of mortality selection on life
expectancy gap.

We further propose a counterfactual simulation procedure to estimate the
contribution of mortality selection to the trends in the life expectancy gap between two
educational groups (high school or less and any college) across recent birth cohorts in
the United States. With empirical data from Panel Studies of Income Dynamics (PSID),
National Health and Nutrition Examination Survey (NHANES), and National Health
Interview Survey (NHIS), we find that mortality selection accounts for a sizeable
amount of contribution to the widening life expectancy gap between these two
educational groups from the 1950s to the 1960s cohorts. We wrap up the paper with a
discussion section emphasizing that the impact of group composition and unobserved
heterogeneity in studying health disparities and life expectancy across cohorts should
not be underestimated.

2. Background

2.1 Recent trends in health disparities and increasing attention to selection

A wealth of studies has found an increase in SES disparities in health, disability, and
life expectancy in the United States in recent decades (Feldman et al. 1989; Pappas et
al. 1993; Preston and Elo 1995; Hummer, Rogers, and Eberstein 1998; Meara,
Richards, and Cutler 2008; Jemal et al. 2008; Schoeni et al. 2005; Crimmins and Saito
2001; Goesling 2007; Liu and Hummer 2008; Zheng, Yang, and Land 2011; Zheng and
Land 2012; Montez and Zajacova 2013; Sasson 2016). Some studies suggest that
mortality rates may have increased in some of the poorer U.S. counties (Kindig and
Cheng 2013) or among the least educated non-Hispanic whites (Olshansky et al. 2012;
Case and Deaton 2015). There is also evidence for a widening gap in self-rated health
and mortality by education levels across birth cohorts (Lynch 2003; Masters, Hummer,
and Powers 2012).

These findings are striking and attract substantial attention from academicians,
health practitioners, and the media. At the same time, they raise significant
methodological concerns regarding the selection issue. Dowd and Hamoudi (2014) put
forward the concept of lagged selection bias ‒ the theory that changing selection
mechanisms into exposure groups over time may result in misleading conclusions. For
example, studies of the differences in health outcomes for individuals with bachelor’s
degrees and those without have paid little attention to the empirical issue that the
mechanism of selection into college has substantially changed in the United States. Due
to the expansion of college education, individuals are gaining more equitable access to
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college. Individuals without a college degree may increasingly come from families in
the lower and lowest SES groups over time. This changing population composition
could increase the health gap between individuals with and without a college degree
even if the true causal effect of college on health is constant (Dowd and Hamoudi 2014;
Hendi 2015, 2017).

While the work by Dowd, Hamoudi, and Hendi emphasizes that exposure groups
may be non-comparable due to cohort changes in the level of vulnerability with regard
to family background, we argue that these changing selection mechanisms may further
change the variance of unobserved frailty or vulnerability to mortality among these
groups. Importantly, mortality selection mechanisms that hinge on this frailty variance
may widen or narrow health disparities among these groups across birth cohorts,
depending on the changes in frailty variance. In order to understand these mechanisms,
we first need to determine (1) the law governing the slope of mortality acceleration over
the life course, and (2) how mortality selection may affect health disparities over the
life course.

2.2 The law governing the slope of mortality acceleration over the life course

The theory of population heterogeneity posits that death selectively removes the frailest
members of a cohort so that mortality rate at the cohort level becomes increasingly
dominated by robust members over the life course (Vaupel, Manton, and Stallard 1979;
Vaupel and Yashin 1985a). This means that the individual hazard curve should be
steeper than the cohort mortality curve, or individuals ‘age’ faster than heterogeneous
cohorts (Vaupel and Yashin 1985b). Yashin and Iachine (1997) infer that the
underlying individual hazard function from the semiparametric shared-frailty model
using Danish twins’ data supports the assumption that individuals age faster than
cohorts.

The theory of population heterogeneity further suggests that the slope of mortality
acceleration at the population level is negatively related to the variance of the
distribution of frailty in the population (Yashin et al. 2002; Vaupel 2010). Using
microsimulation, Zheng and Cheng (2018) demonstrate that the slope of the age-
dependent mortality curve becomes steeper when the variance of frailty distribution
declines, because when a smaller proportion of frail individuals is selected out of the
population at earlier ages, a relatively larger proportion of frail individuals survive to
old age. This mechanism not only shapes the cohort pattern of age-dependent mortality
rates (Zheng and Cheng 2018), it also contributes to the life course pattern and cohort
pattern of health disparities as we explain below.
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2.3 The impact of mortality selection on health disparities over the life course

Mortality selection mechanism has been used to explain the convergence of health
disparities between more and less advantaged groups over the life course (Lynch 2003;
Dupre 2007; Eberstein, Nam, and Heyman 2008; Zajacova, Goldman, and Rodríguez
2009). Mortality selection mechanism predicts that if a smaller proportion of frail
individuals among more advantaged groups was selected out of the population at
younger ages, this in turn would cause a larger proportion of frail individuals to survive
into old age and could cause their overall mortality rate to converge with less
advantaged groups.

A counterargument is the cumulative advantage mechanism, which is popular in
the medical sociology and social epidemiology literature. This argument posits that
disparities in health, physical functioning, well-being, disease incidence, and mortality
between more and less advantaged groups increase over the life course due to the
cumulative health benefits of advantaged resources (Ross and Wu 1996; Lauderdale
2001; Dannefer 2003; House et al. 1994). This argument may appear to be in conflict
with the findings from most empirical studies that report convergence, instead of
divergence, in health status over the life course. But this contradiction will be resolved
if we consider the law of mortality selection (Lynch 2003; Dupre 2007). While
cumulative advantage mechanism predicts a divergence in health status between more
and less advantaged groups at the individual level, health convergence may still happen
at the group level due to mortality selection mechanism. Thus, without purging the
mortality selection effect, empirical findings on health convergence at the group level
may be misleading with regard to patterns on the individual level.

2.4 How may mortality selection influence the cohort trend in health disparities?

Mortality selection influence health disparities not only over the life course but also
across birth cohorts. As Dowd and Hamoudi (2014) contended, individuals in more
recent cohorts who were vulnerable to a shorter life span due to a disadvantaged family
background had increasing access to higher education while those exposed to similar
conditions in earlier birth cohorts had no such opportunity. Therefore, the more highly
educated group might become increasingly heterogeneous with regard to family
background across birth cohorts. The less educated group might have become
increasingly homogeneous with regard to family background because individuals who
did not have access to higher education were increasingly vulnerable individuals
coming from disadvantaged family backgrounds. If the individuals coming from
disadvantaged families were more vulnerable to mortality or had higher levels of frailty,
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we might then expect the variance of unobserved frailty distribution to increase among
the highly educated group and decrease among the less educated group across birth
cohorts.

But the trends in the level and variance of frailty by educational groups across
birth cohorts are not just affected by selection into education by family background but
also by macro ‘technophysio evolution’ (Fogel and Costa 1997) and improving ‘cohort
morbidity phenotype’ (Finch and Crimmins 2004) or ‘cohort evolution’ process (Zheng
2014). Increasing health capital across birth cohorts may generally reduce the variance
of frailty (Zheng, Yang, and Land 2016; Zheng and Cheng 2018). Changing family-
background-based selection mechanisms into different education groups may interact
with the macro process of improving health capital and cause the variance of frailty
distribution to decrease at a faster rate among the lower-educated group than the higher-
educated group. But this statement needs to be examined with empirical evidence.

What are the implications of changing frailty variance across cohorts on the trends
of health disparity and life expectancy? According to the law of mortality selection, if
the variance of frailty distribution among the lower-educated group decreases by a
larger extent compared to that among the higher-educated, the slope of the lower
education group’s morality curve would increase more than that of the higher education
group. This, in turn, would widen disparities in health and increase the gap in life
expectancy between the lower and higher-educated across birth cohorts. In this case,
without purging the mortality selection effect, we would overestimate the growth in
health disparities. Conversely, if the variance of frailty distribution among the lower-
educated group increases by a larger extent compared to that of the higher-educated,
their mortality curve might become even flatter compared to the higher-educated group.
In this case, without purging the mortality selection effect, we would underestimate the
degree of enlarging health disparities.

3. Analytical strategy and methods

We rely on microsimulations to demonstrate the effect of mortality selection on group-
level age-dependent mortality pattern, health disparities over the life course, and the life
expectancy gap across birth cohorts. After these simulation experiments, we will use
empirical data and a counterfactual simulation procedure to analyze how changing
frailty variance may have affected the trends in life expectancy gap between high
school or less and any college from the 1950s to later cohorts. The percentage of
college graduates in the United States has increased substantially since the 1915 birth
cohort, stalled around the 1950s birth cohort, and resumed its upward trend with the
1960s birth cohort (Torche 2011). Therefore, comparing the 1950s to later birth cohorts



Demographic Research: Volume 43, Article 34

https://www.demographic-research.org 1015

is an ideal case for testing the selection effect induced by the expansion of higher
education.

3.1 Microsimulation method

3.1.1 Basic mathematical formulation

We use the microsimulation method to conduct both the simulation experiments and
empirical evaluations. We start our simulation by setting up a model for individual
hazard function. Following Vaupel, Manton, and Stallard (1979), we let individuals in a
cohort differ from each other in the value of frailty (denoted as z) characterizing their
susceptibility to death, such that the force of mortality conditional on z is

𝜇𝑖(𝑥) = 𝑧𝑖𝜇0(𝑥),

where 𝜇𝑖(𝑥) is the force of mortality for individual i at age x, 𝑧𝑖 is frailty for individual i
at the initial age, and 𝜇0(𝑥) is the unobserved baseline hazard function with a frailty of
1. An individual with a frailty of 1 can be called a ‘standard’ individual. An individual
with a frailty of 1.5 is one and half times more likely to die at any particular age than
the standard individual. An individual with a frailty of 0.5 is only half as likely to die.
We specify the distribution of frailty 𝑧𝑖 as a Gamma distribution at the initial age
(Vaupel and Missov 2014).

Following Vaupel and Yashin (1985b) with some modification, we further assume
the individual baseline hazard function as

𝜇0(𝑥)=𝑎𝑒𝑏𝑥𝑒
𝑎(𝑒𝑏𝑥−1)

𝑏 , 2

where the force of mortality for individual i at age x is

2 We remove frailty variance term from the second exponential in the original paper because otherwise the
frailty variance term in the hazard model and frailty model would cancel out and cause the slope of the
generated cohort mortality pattern not to be influenced by frailty variance in our simulation. But as
demonstrated in Appendix 1, Appendix 2, Appendix Table A-1, and Appendix Figure A-1, we also try
alternative model specifications, including Gamma-Gompertz specification. The negative association between
variance of frailty and cohort slope of mortality acceleration is observed in all the model specifications. We
present this particular model specification in the main text because Yashin and Iachine (1997) infer the
underlying individual hazard function from the semiparametric shared-frailty model using Danish twins’ data,
and find that the individual hazard curve is steeper than Gompertz.
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𝜇𝑖(𝑥) = 𝑧𝑖𝑎𝑒(𝑏𝑥)𝑒
𝑎(𝑒𝑏𝑥−1)

𝑏 ,

or

ln൫𝜇𝑖(𝑥)൯ = ln(𝑎) + 𝑏𝑥 + 𝑎(𝑒𝑏𝑥−1)
𝑏

+ ln (𝑧𝑖).

It can be shown that the simulated cohort mortality curve will follow a Gompertz
function 𝜇(̅𝑥) = 𝑎𝑒𝛽𝑥 or ln൫𝜇(̅𝑥)൯ = ln(𝑎) + 𝛽𝑥, which is consistent with empirical
pattern (Gompertz 1825; Gavrilov and Gavrilova 2011). For a detailed explanation of
this mathematical formation and alternative model specifications, please refer to
Appendix 1, Appendix 2, Appendix Table A-1, and Appendix Figure A-1.

3.1.2 Simulation procedure

In the simulation experiments, we estimate parameter combinations so that the
generated aggregate age-dependent mortality patterns approximate those of the 1990
synthetic birth cohort from NHIS 1986‒2009 surveys with linked mortality data
through 2011 (Blewett et al. 2008).3 We let a be the observed mortality rates at initial
age 30 for two groups (high school or less, and any college) in the 1990 synthetic birth
cohort. Thus, a equals the mean of mortality hazards across individuals within each
group at the initial age. We use calibration methods to determine the optimal values for
𝑏 and the variance of frailty parameter (𝑧𝑖) (i.e., 𝜎2) that best fit the observed mortality
curve of 1990 synthetic birth cohort. Specifically, we vary 𝑏 and 𝜎2 to create a large set
of possible combinations of their values and simulate the cohort mortality curve based
on each combination. We compare this simulation result with the empirical mortality
pattern for the 1990 synthetic birth cohort from age 30 to 90 to narrow down to the
combination of 𝑏 and 𝜎2 that generates the closest fit in terms of mean squared error,
that is, the average of the squares of the difference between the observed and simulated
mortality rates.

We conduct simulations beginning at age 30 because the cohort mortality curve
follows a Gompertz law starting from that age (Gompertz 1825). We stop the
simulation at age 90 because mortality patterns past age 90 might not follow the

3 For details about NHIS-linked mortality data, please refer to the following “Data for empirical evaluation”
section. The 1990 synthetic birth cohort includes 253,367 individuals who experienced 2,599 deaths in 1990.
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Gompertz curve (Vaupel 1997).4 Simulations proceed in every one year of age for a
hypothetical population of 1 million individuals. At the individual level, we rely on the
piecewise-constant force of mortality assumption to specify a constant (𝜇𝑖∗) force of
mortality within each year of age. Under this assumption, the central mortality rate with
each year of age for every individual i, 𝑚𝑥

𝑖 , equals 𝜇𝑖∗. Then the probability of surviving
between age x and x + 1 for every individual i is denoted as 𝑝𝑥𝑖 , equals 𝑒−𝑚𝑥

𝑖  (Preston,
Heuveline, and Guillot 2001). At each age, we calculate the probability of dying for
each surviving individual at age x as 𝑞𝑥𝑖 = 1 − 𝑝𝑥𝑖 , and then perform a random draw
following a binomial distribution where the probability of  getting a value of 1 equals
𝑞𝑥𝑖 . Individuals who receive a value of 1 will die between age x and x + 1.

After generating the simulated group survival data, the next step is to calculate the
group age-dependent mortality rate. We hold the same piecewise-constant force of
mortality assumption that we use in the simulation procedure. Under this assumption,
person-years within each one-year age interval equal (𝑙𝑥+1−𝑙𝑥)

ln (𝑙𝑥+1𝑙𝑥
)

, where lx is the number of

individuals left alive at age x (Preston, Heuveline, and Guillot 2001). The group age-
dependent mortality rates are calculated as the number of deaths divided by this
measure of person-years within each one-year interval. Life expectancy at age 30 is
constructed under the same piecewise-constant force of mortality assumption.

In different rounds of simulation experiments, we alter the values of the variance-
of-frailty parameter (𝑧𝑖) (i.e., 𝜎2) in specifying the individual-level mortality hazard to
experiment with different frailty conditions. These simulations demonstrate the effect of
mortality selection on group-level age-dependent mortality pattern, health disparities
over the life course, and life expectancy gaps across birth cohorts, when operating in the
context of changing frailty variance.

3.2 Empirical evaluation

3.2.1 Data for empirical evaluation

In order to further illustrate the impact of mortality selection on health disparities across
birth cohorts in the United States, we use empirical data from PSID, NHANES, and
NHIS. We use PSID and NHANES to calculate frailty variance across birth cohorts for
both the high school or less and any college groups, and we use NHIS to produce
observed age-specific mortality rates across birth cohorts.

4 But Gavrilov and Gavrilova (2011) used data for single-year birth cohorts with hazard rates measured at
narrow (monthly) age intervals and found that mortality trajectory at advanced ages follows the Gompertz law
up to the ages 102–105 years without a noticeable deceleration.
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PSID survey began in 1968 with a nationally representative sample of families in
the United States. The survey was administered annually until 1997, then biennially
thereafter. We use the Family Files 1968‒2013. Children from the original 1968
families were interviewed in the Family Files after they become the head of a
household or spouse. Since 2007, PSID collected self-reported childhood diseases
information before age 17. Our sample consists of all individuals born in 1950‒1989
who provided information on these measures. The early life disease index consists of
the sum of any of the 12 health problems a respondent reported he or she had before age
17, and scores for this index range from 0 to 12. These health problems are asthma,
diabetes, respiratory disease, allergies, heart trouble, epilepsy, severe headaches or
migraines, stomach problems, high blood pressure, depression, drug/alcohol problem,
and emotional/psychiatric problem. The original sample size is 14,036. After dropping
respondents with missing data for any of the 12 diseases (n = 2,642), the final sample
size is 11,394.

In order to test the robustness of disease index from PSID data, we further create a
similar index from NHANES data. The NHANES collected information about health
and diet from a nationally representative sample of the noninstitutionalized civilian U.S.
population. We utilize data from 1999 to 2012. We select health problems consistently
measured throughout the waves that first occurred before the individual reached age 17.
These health problems are asthma, arthritis, heart failure, coronary heart disease,
angina, heart attack, stroke, emphysema, thyroid, chronic bronchitis, liver condition,
and diabetes. We construct a health index based on these 12 diseases. The original
sample size for those born from 1950 to 1989 is 31,492. After dropping respondents
with missing data for education (n = 31) or any of the 12 diseases (n = 9,280), the final
sample size is 22,181. For both PSID and NHANES data, the variance of the summary
health index is used as a proxy for the unobserved frailty variance. This variance
measure is calculated for the high school or less and any college by 10-year birth
cohorts.

We use IPUMS NHIS 1986‒2009 surveys linked to mortality data through the year
2011 to generate age-dependent mortality patterns across birth cohorts
(https://ihis.ipums.org/ihis/)(Blewett et al. 2018). The NHIS is a multistage probability
sample survey of the non-institutionalized civilian US population conducted by the
National Center for Health Statistics. NHIS collects health information for each
member of a family or household sampled, as reported by one primary respondent.
Respondents are linked to death records in the National Death Index through
probabilistic record-matching methods based on 12 criteria to ascertain the vital status
of each respondent. To date, death records from the NHIS 1986‒2009 surveys are
available to the public. At the time of our study, mortality information at quarter-year
intervals was available through December 31, 2011. Because the 1970s and later
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cohorts are not old enough to produce reliable mortality patterns, we focus on the birth
cohorts of the 1950s and 1960s. The original sample size for these two 10-year birth
cohorts with eligible mortality status is 579,183. After dropping respondents with
missing data for education (n = 3,478), the final sample size is 575,705 experiencing
23,665 deaths. We reshape the data to person-year format left truncated at age at survey
and right-censored at the age of death or age at December 31, 2011. This sample
contributes 8,509,452 person-years of exposure.

3.2.2 Counterfactual simulation procedure for empirical evaluation

Cross-cohort changes in health disparities can be affected by a number of mechanisms
besides the mortality selection effect. These include changes in the true causal effect at
the individual level, changes in individual-level hazard pattern, and external period
effects. We propose a counterfactual simulation procedure to remove these confounding
factors and to evaluate the extent to which the widening educational mortality
disparities from the 1950s to 1960s birth cohorts are due to mortality selection. We
proceed in the following steps: (1) Construct a person-year file from NHIS data and
compute age-specific mortality rates by education and cohort for every five-year age
category. The large sample size contained in the NHIS facilitates stable estimates
within five-year age categories. We then use log-Gompertz to smooth and extrapolate
log mortality rates to age 90. We then construct life tables, generate life expectancies,
and calculate the degree of widening gap in life expectancies between two educational
groups across birth cohorts. (2) Calibrate the frailty variance for the two education
groups in the 1950s cohort so that the predicted age-dependent mortality rates can
replicate those observed in the NHIS data.5 (3) Obtain frailty variances for the later
birth cohorts based on their relative percentages as calculated from PSID or NHANES
data. (4) Create mortality patterns for the later birth cohorts using observed mortality
rates at age 30 and their corresponding frailty variances obtained in step 3, construct life
tables, generate life expectancies for two education groups across birth cohorts, and
calculate the growth in educational gap across birth cohorts. (5) Create mortality
patterns for the later birth cohorts using observed mortality rates at age 30 and fixing
the frailty variance at the 1950s level, construct life tables, generate life expectancies
for two education groups across birth cohorts, and calculate the degree of widening gap

5 We use calibration methods to determine the optimal values for 𝑏 and the variance of frailty parameter (𝑧𝑖)
(i.e., 𝜎2) that best fit the observed mortality curve. Specifically, we vary 𝑏 and 𝜎2 to create a number of
combinations of their values and simulate the cohort mortality curve based on each combination. We compare
this simulation result with the empirical mortality pattern for the 1950s cohort from ages 30 to age 90 and find
the combination of 𝑏 and 𝜎2 that generate the closest fit in terms of mean squared error, that is, the average of
the squares of the difference between the observed and simulated mortality rates.
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across birth cohorts. This gives the counterfactual mortality patterns for the later
cohorts assuming mortality selection is absent but individual-level hazard pattern and
all other confounding factors are fixed in this simulated world. (6) Calculate the net
contribution of mortality selection on the widening gap in life expectancy between
lower and higher-educated groups across birth cohorts by taking the difference in the
degree of widening gap in life expectancy obtained in steps 4 and 5 as a percentage of
the widening gap obtained in step 4. (7) Predict the size of mortality selection’s effect in
observed mortality data by multiplying the percentage obtained in step 6 with the
observed widening gap obtained in step 1.

4. Results

We start with presentation of the results from simulation experiments, which
demonstrate the effect of mortality selection on health disparities over the life course
and the life expectancy gap across birth cohorts. After presenting these simulation
experiments, we will present the results from the counterfactual simulation procedure
that is used to analyze the contribution of mortality selection to the widening life
expectancy gap between high school or less and any college from the 1950s to 1960s
cohorts in the United States.

4.1 Simulation experiments

4.1.1 Mortality patterns over the life course

We first conduct a simulation experiment from simulated data where the generated age-
specific mortality-rate pattern approximates that of the 1990 synthetic birth cohort from
NHIS data. Appendix Figure A-2 shows that when 𝑏 = 0.075 and 𝜎2 = 0.77 and 0.34
for the lower-educated and higher-educated respectively, the simulated mortality pattern
is very close to the observed mortality pattern. Therefore, we choose to use this
combination of parameters to generate the simulated data. Figure 1 shows the mortality
differentials between lower and higher-educated groups over the life course at the group
level (left panel) and for a ‘standard’ individual with frailty of 1 (right panel) from the
simulated data. Within each education group, individual mortality hazard increases at a
faster rate over the life course than does group mortality rate due to the mortality
selection mechanism that selectively removes the frailest members of a group.
Moreover, mortality differential diverges over the life course at the individual level due
to the cumulative advantage mechanism, and it converges at group level due to
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mortality selection. We apply the standard Cox model to these simulated data and find
that without purging mortality selection mechanism, survival benefits associated with
higher education diminish over the life course, as indicated by the 1.03 hazard ratios for
the interaction between five-year age groups (i.e., 30‒34, 35‒39, …, 85‒90) and the
higher education group (Table 1).

Figure 1: Mortality differentials between lower-educated and higher-educated
groups over the life course at the group and individual levels

Group 𝐥𝐧 (𝒂) 𝝈𝟐 𝒃 Individual 𝐥𝐧 (𝒂) 𝒛𝒊 𝒃
Lower educated ‒6.76 0.77 0.075 Lower educated ‒6.76 1.00 0.075
Higher educated ‒7.19 0.34 0.075 Higher educated ‒7.19 1.00 0.075

Table 1: Results from the standard Cox model applied to simulated data
Figure 1 Figure 2

HR 95% CI HR 95% CI
Higher-educated, cohort 1 0.55 [0.53, 0.57] 0.55 [0.53, 0.57]
(Higher-educated, cohort 1) * age groups 1.03 [1.03, 1.04] 1.03 [1.03, 1.04]
Higher-educated, cohort 2 0.59 [0.57, 0.62]
(Higher-educated, cohort 2) * age groups 1.02 [1.01, 1.02]
Higher-educated, cohort 3 0.71 [0.68, 0.73]
(Higher-educated, cohort 3) * age groups 0.98 [0.98, 0.99]
Higher-educated, cohort 4 0.82 [0.78, 0.85]
(Higher-educated, cohort 4) * age groups 0.95 [0.95, 0.96]

Note: HR: Hazard Ratio; CI: Confidence Interval
These 100,000 cases are randomly drawn from 1 million cases in each simulated data. They are split into long format by 12 five-year
age groups: 30‒34, 35‒39, 40‒44, 45‒49, 50‒54, 55‒59, 60‒64, 65‒69, 70‒74, 75‒79, 80‒84, and 85‒90. These age groups are
coded from 1 to 12.
Time metric in the continuous Cox model is attained age (age of death or being censored). Therefore, the main effects of age groups
are not controlled in the model. Inclusion does not alter the results.
Advantageous over other parametric models, Cox model does not need to make any parametric assumption of the underlying hazard
function. Piecewise exponential model (piecewise constant hazard) and discrete time non-parametric baseline model (estimated with
pgmhaz command) are also used to test the robustness of results. These two models provide almost identical results to those from
the Cox model. But these models do not adjust for Gamma distribution of frailty.
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4.1.2 Mortality patterns across birth cohorts with changing frailty variance

We then examine how mortality selection operates in the context of changing frailty
variance while the individual-level hazard pattern is fixed (i.e., the true causal effect of
education on mortality is fixed at the individual level). Figure 2 shows the mortality
differentials between lower-educated and higher-educated groups over the life course
across four birth cohorts assuming a fixed-mortality pattern at the individual level. We
further let frailty variance be fixed at 0.77 across four hypothetical birth cohorts for the
lower-educated group while it increases from 0.34 to 1.50 for the higher-educated
group. The mortality curve of the higher-educated group becomes flatter at the group
level, while the individual hazard curve remains unchanged. This is because when
frailty variance increases, frail individuals are selected out of the population at a faster
rate (Figure 3). This causes the group-level mortality curve to be quickly dominated by
relatively robust members and consequently become flatter. As a result, mortality
differentials between the lower- and higher-educated groups widen at the group level
across four cohorts but remain fixed at the individual level. In other words, even though
the true effect of education on mortality remains unchanged at the individual level, the
educational mortality gap at the group level can still increase across cohorts as a result
of the changing frailty variance. We further apply the standard Cox model to these
simulated data and find that without purging mortality selection mechanism, the yielded
changing associations between education and mortality risk over the life course reflect
the group-level rather than individual-level pattern (Table 1).

Due to the flatter mortality curve at the group level, the corresponding life
expectancy at age 30 increases from 50.35 years to 52.50 years across these four
hypothetical cohorts with increasing frailty variance among higher-educated groups.
This, in turn, leads to a widening gap in life expectancy between lower- and higher-
educated groups across cohorts as shown in Figure 4, even though the extent of survival
advantage associated with higher education remains unchanged at the individual level.
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Figure 2: Mortality differentials between lower-educated and higher-educated
groups over the life course across multiple birth cohorts assuming
increasing frailty variance among the higher-educated group

Individual 𝐥𝐧 (𝒂) 𝒛𝒊 𝒃
Lower educated, cohort1-cohort4 ‒6.76 1.00 0.075
Higher educated, cohort1 ‒7.19 1.00 0.075
Higher educated, cohort2 ‒7.19 1.00 0.075
Higher educated, cohort3 ‒7.19 1.00 0.075
Higher educated, cohort4 ‒7.19 1.00 0.075

Group 𝐥𝐧 (𝒂) 𝝈𝟐 𝒃
Lower educated, cohort1-cohort4 ‒6.76 0.77 0.075
Higher educated, cohort1 ‒7.19 0.34 0.075
Higher educated, cohort2 ‒7.19 0.50 0.075
Higher educated, cohort3 ‒7.19 1.00 0.075
Higher educated, cohort4 ‒7.19 1.50 0.075

Figure 3: Variance of frailty over the life course among four hypothetical
cohorts of higher-educated groups
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Figure 4: Gaps in life expectancy at age 30 between lower-educated and
higher-educated groups across four hypothetical cohorts assuming
increasing frailty variance among the higher-educated group

Next, we conduct a simulation experiment in which the frailty variance decreases
among the lower-educated group (Appendix Figure A-3, Figure A-4, and Figure A-5).
We let the individual-level hazard pattern be fixed or the true effect of education on
mortality be fixed at the individual level. We further fix the frailty variance across three
hypothetical birth cohorts for the higher-educated group and let it decrease for the
lower-educated groups. When variance of frailty distribution decreases across birth
cohorts for lower-educated groups, the mortality curve becomes steeper at the group
level. As a result, mortality differentials between lower- and higher-educated groups
widen, and the life expectancy gap increases across these three hypothetical cohorts.

4.2 Empirical evaluation

4.2.1 Counterfactual simulation analysis

How does mortality selection work in the real world? A major challenge to the
empirical investigation of cohort changes and mortality selection is that the true
distribution of frailty is unobserved in the population. However, since our main focus is
the change between cohorts and education differences in the relative magnitude of
frailty variation (rather than the variances of the absolute scores of unobserved frailty),
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it is possible to construct a proxy indicator of relative frailty variances through
longitudinal survey data. We rely on PSID data to construct this frailty indicator for
individuals and sub-populations before they reach age 17, after which some of them
will be in college. We calculate a health problem summary index by adding up the
number of health problems from a 12-item list before the person reaches age 17. The
variance of this index is then used as a proxy for the unobserved frailty variance.6

We calculate the variance measure for high school or less and any college and for
the 1950, 1960, 1970, and 1980 cohorts respectively. We also adjust the individual-
level index for the differences in the mean of this index across cohort-education
subgroups so that the cohort changes in frailty variance is purged of any changes in
their means. We then express the calculated frailty variance, for the college and non-
college groups as a percentage of the frailty variance in their respective 1950 cohorts.
This gives us the relative sizes of frailty variance. For example, if the frailty variance in
cohort 1950 and cohort 1960 are 𝜎19502  and 𝜎19602  respectively, then the relative
percentage for cohort 1960 is calculated as: 𝜎1960

2

𝜎1950
2 .

Figure 5 reports the calculated absolute frailty variance and relative frailty
variance using this method. The left panel shows the absolute frailty variance. Different
from the simulations for the 1990 synthetic birth cohort, the any college group has a
larger frailty variance than non-college across all four birth cohorts, which is partially
due to lower means among this group. This implies that the age-dependent mortality
pattern between these two groups will be similar to that of the higher-educated cohort 4
vs. lower-educated in Figure 2. That is, the any college group will have a flatter slope
than non-college group. The right panel shows relative frailty variance declines across
cohorts for both education groups, but the decline is more dramatic in relative terms for
the lower-educated group. This pattern is consistent with our prediction that the
changing family background composition in different education groups may interact
with the macro process of improving health capital and cause the variance of frailty
distribution to decrease at a faster rate among the lower-educated group than the higher-
educated group. This implies that mortality curves will become steeper for both
education groups across four birth cohorts, but the change is greater for those without a
college education, which may then widen the mortality gap between these two
education groups across birth cohorts. For sensitivity analysis, we also created a similar
health index from NHANES 1999‒2012. Appendix Figure A-7 shows the cross-cohort
pattern is similar to the one in Figure 5.

6 To examine the distributional properties of our constructed frailty measure, we fit a Gamma distribution to
the empirical distribution of our PSID-based frailty measure and compare them in Appendix Figure A-6. The
theoretical Gamma density is fitted using maximum likelihood estimation. The figure suggests that the
empirical distribution of our constructed frailty measure can be reasonably approximated by the Gamma
distribution.



Zheng: Unobserved population heterogeneity and dynamics of health disparities

1026 https://www.demographic-research.org

Figure 5: Absolute frailty variance and relative frailty variance as a percentage
of the 1950 level for high school or less and any college groups from
PSID 1968‒2013

Note: Data are from PSID 1968‒2013. Sample consists of all individuals born in 1950‒1989 who had information on early life disease
measures before age 17. Sample size for these four cohorts is 11,394.

We follow the counterfactual simulation procedure explained in the method
section to estimate the contribution of mortality selection to the widening educational
health disparities from the 1950s to 1960s cohorts.

Step (1): We generate logged age-dependent mortality rates for the two education
groups in the 1950s and 1960s birth cohorts from NHIS data. Following the Gompertz
function of age-dependent mortality pattern, we use a linear function of log mortality
rate to extrapolate mortality rates up to age 90 as shown in Figure 6. As predicted from
the frailty variance in Figure 5, any college has a flatter slope than high school or less
for both birth cohorts. However, the 1960s birth cohorts have flatter slopes than those
from the 1950s despite a smaller variance of frailty, which is probably due to period-
related medical advancement in older ages. Based on these age-specific mortality rates,
we construct life tables and generate life expectancies at age 30 as shown in the top
panel of Table 2. Life expectancies for high school or less and any college increase by
1.50 and 2.56 years across the two birth cohorts respectively. Therefore, the gap
between the two education groups increases from 5.70 to 6.76 years, which indicates a
difference of 1.06 years between the two birth cohorts.
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Figure 6: Observed and extrapolated mortality patterns for two education
groups in the 1950s and 1960s birth cohorts from NHIS 1986‒2009
with linked mortality through 2011

Note: Data are from NHIS 1986-2009 surveys linked to mortality data through 2011. Sample size for the 1950s and 1960s birth
cohorts is 575,705 experiencing 23,665 deaths and 8,509,452 person-years of exposure. Following the Gompertz function of age-
dependent mortality pattern, we use a linear function of log mortality rate to extrapolate mortality rates up to age 90.

Table 2: Life expectancies at age 30 in high school or less and any college
groups in the 1950s and 1960s birth cohorts from empirical and
simulated data using PSID frailty measure

High school or less Any college
Empirical C-H

Cohort 1950s 47.02 52.72 5.70
Cohort 1960s 48.52 55.28 6.76
1960s‒1950s 1.50 2.56 1.06

Simulated (mortality selection present) C-H

Cohort 1950s 46.65 52.38 5.73
Cohort 1960s 46.68 53.37 6.69
1960s‒1950s 0.03 0.99 0.96

Simulated (mortality selection absent) C-H

Cohort 1950s 46.65 52.38 5.73
Cohort 1960s 46.98 53.43 6.46
1960s‒1950s 0.33 1.05 0.72

Note: Empirical data are from NHIS 1986-2009 surveys linked to mortality data through 2011. The sample size for the 1950s and
1960s birth cohorts is 575,705 experiencing 23,665 deaths and 8,509,452 person-years of exposure. Following the Gompertz
function of age-dependent mortality pattern, we use a linear function of log mortality rate to extrapolate mortality rates up to age 90.
Based on these observed and extrapolated mortality rates, we construct life tables and calculate the life expectancies at age 30.
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Step (2): We calibrate the frailty variance for the two education groups in the
1950s cohort so that the predicted age-dependent mortality rates can replicate those
observed in the NHIS. By following the calibration method, we are able to generate
simulated 1950s mortality patterns very similar to those created from the NHIS data as
shown in Figure 7 when 𝑏 = 0.075 and 𝜎2 = 0.63 and 0.87 for high school or less and
any college respectively. Therefore, we decide to use these numbers as the variance of
frailty for these two education groups in the 1950s cohort.

Figure 7: A comparison between a simulated mortality pattern using variance
of frailty from calibration and an observed mortality pattern from
NHIS data, 1950s birth cohort

Note: Empirical data are from NHIS 1986–2009 surveys linked to mortality data through 2011. Sample size for the 1950s birth cohort
is 320,173 experiencing 17,728 deaths and 5,093,549 person-years of exposure. Following the Gompertz function of age-dependent
mortality pattern, we use a linear function of log mortality rate to extrapolate mortality rates up to age 90.

Step (3): We obtain frailty variances for the later birth cohorts based on their
relative percentages as calculated from PSID data. We use the calibrated variances from
Step 2 as the 1950 cohorts’ baseline in deriving the 1960 cohorts’ frailty variance,
which is 0.54 for high school or less and 0.83 for any college. Note that the larger
frailty variance in the any college group is inconsequential for our analysis because
only the relative percentage to the 1950 cohorts within each education group is used for
the simulation.
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Then we follow steps 4 to 7 laid out in the methods section and find the life
expectancy gap between these two education groups increases by 0.96 years from the
1950s to 1960s cohort when mortality selection mechanism is present (as shown in the
middle panel of Table 2) and increases by 0.72 years when mortality selection is absent
(as shown in the bottom panel of Table 2). This means mortality selection contributes to
24% of the increase in the educational life expectancy gap across these two birth
cohorts. Multiplying this percentage with the observed widening gap 1.06 years
obtained from step 1, we get 0.26. This means mortality selection adds 0.26 years to the
observed widening educational gap in life expectancy. After adjusting for the effect of
mortality selection, the cross-cohort increase in the educational life expectancy gap still
exists but is now 0.8 year.

4.2.2 Sensitivity analysis with different data and model specifications

We replicate this counterfactual analysis using relative frailty variance information
obtained from NHANES data and find that mortality selection contributes to 21% of the
increase in the educational life expectancy gap from the 1950s to the 1960s cohorts,
which translates to 0.22 years (Appendix Table A-2). In other words, the gap would
have increased by 0.84 years (1.06 ‒ 0.22 = 0.84) if mortality selection were not in
effect; this estimate is very similar to the PSID results. We further do a sensitivity
analysis using Gamma-Gompertz model specification (Appendix 2 and Appendix Table
A-1) and find the contribution of mortality selection is around 17%.

5. Discussions and conclusions

In demographic research, cohort changes in age-specific mortality rates and life
expectancy are important indicators of the cohort changes in health conditions and
between-group disparities. However, the presence of unobserved frailty and mortality
selection mechanisms may lead to cohort changes in these population-level indicators
even when there are no actual cohort changes in the individual mortality patterns.
Therefore, empirical estimates of cohort changes in health disparities and life
expectancy may be biased if we do not adjust for the mortality selection mechanism.
We examined the impact of mortality selection in simulated as well as real data.

In the simulation experiments, we find (1) trends in life expectancy across birth
cohorts can be altered by the variance of frailty distribution in the absence of change in
the level and shape of individual mortality curve; and (2) trends in disparities in health
and life expectancy between more- and less-educated groups across birth cohorts may
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be distorted by the changes in the variance of frailty distribution in the absence of
change in the health (mortality) difference at the individual level (i.e., in the absence of
change in the true causal effect of education at the individual level). For example, if
variance of frailty distribution increases among the more-educated group or decreases
among the less-educated group, disparities in health and life expectancy widen across
birth cohorts. If frailty variance decreases among the more-educated group or increases
among the less-educated group, disparities in health and life expectancy narrow across
birth cohorts. These simulation experiments demonstrate the complexity of the ways in
which changing unobserved frailty distributions may contribute to the observed patterns
in health disparities between lower- and higher-educated groups across cohorts.

We then demonstrate the relevance of the mortality selection mechanism to
empirical research using the counterfactual simulation method. We create two
scenarios ‒ one with mortality selection in effect, the other a counterfactual scenario
without mortality selection. By comparing the different amounts of growth in the life
expectancy gap in these two scenarios, we find that mortality selection contributes to
21%–24% of the widening life expectancy gap between the high school or less and any
college groups from the 1950s to 1960s birth cohorts. We also use a different model
specification (Gamma-Gompertz) and find the contribution of mortality selection is
slightly lower, which is 17%. We further use a different categorization of education
(college degree or more vs. without college degree), and the results suggest that the
contribution of mortality selection is about 20%.

A major challenge to the empirical evaluation of the mortality selection effect is
that true frailty distribution is not observed. We use the summary disease index before
age 17 from PSID and NHANES as a proxy for frailty. We are not particularly
concerned about the elevated frailty variance among the higher-educated group for
three reasons. First, the frailty variance here is the coefficient of relative variation,
which is the variance divided by mean, to account for changing means across birth
cohorts. The reason why frailty variance is higher among the higher-educated group is
partially because their means are lower. Second, the information we used in the
counterfactual simulation is not the raw frailty variance but the cohort changes in
relative magnitude of frailty variation. That is the percentage of the frailty variance in
later birth cohorts to their respective 1950s cohort within each educational group. This
percentage is not affected by the between-educational group difference in frailty
variance. Third, the empirical age-dependent mortality patterns by education for the
1950s birth cohort are consistent with the larger frailty variance among the higher-
educated group, which has a flatter slope of mortality acceleration compared to the
lower-educated group.

This study faces several limitations. First, better frailty measures should be
collected in the future in order to more robustly and accurately estimate the contribution
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of mortality selection to the trends in health disparities. We have considered several
other possible proxies for frailty, such as birth weight, parental health, and Apgar
scores. For the purposes of this study, we need to construct the frailty variance by
education and cohort. But these proxies are either not available for early birth cohorts or
do not have information on level of education. Second, even though the rule governing
the contribution of mortality selection to cohort trend in life expectancy gap is applied
to all the model specifications, the estimate of exact contribution does depend on model
specification. Our analysis implies a range of 17%‒24%. This is a common problem in
the unobserved frailty literature (Keiding, Andersen, and Klein 1997; Heckman and
Singer 1982). Bound analysis using different model specifications might be one way to
account for this uncertainty. Due to these limitations, we should interpret the empirical
findings with caution. The exact contribution of mortality selection to the widening
educational life expectancy gap from the 1950s to the 1960s cohort is very hard to be
accurately estimated because of the unobservable nature of frailty. The goal of this
paper is to illustrate how mortality selection may complicate the interpretation of cohort
trend in health disparities and life expectancy gap, and propose a counterfactual
simulation procedure to tentatively estimate this contribution. The exact contribution,
however, does need future research to further push this endeavor forward with better
knowledge and measures of frailty when they become available.

Notwithstanding these limitations, this study demonstrates that mortality selection
can complicate the cohort trend in health disparities and life expectancy. We caution
that population health scientists need to carefully consider the impact of composition
changes on the trends in health disparities and life expectancy across cohorts. Other
work has pointed out that it is not easy to completely and accurately solve the mortality
selection bias even if we know the underlying individual-level hazard function and
group-level frailty distribution function (Heckman and Singer 1982; Keiding, Andersen,
and Klein 1997; Hougaard, Myglegaard, and Borch-Johnsen 1994). Recent
methodological developments suggest using an appropriately weighted survival curve
(Cole and Hernán 2004; Hernán 2010) or accelerated-failure-time model (Bradburn et
al. 2003) to mitigate mortality selection bias. These strategies for addressing changing
mortality selection across birth cohorts is worth further examination. The counterfactual
simulation procedure we propose in this article can be utilized as an alternative to these
methods to mitigate or estimate the mortality selection effect.
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Appendix

Appendix 1. Basic mathematical formulation for simulation

We start our simulation by setting up a model for individual hazard function. Following
Vaupel, Manton, and Stallard (1979), we let individuals in a cohort differ from each
other in the value of frailty (denoted as z) characterizing their susceptibility to death,
such that the force of mortality conditional on z is

𝜇𝑖(𝑥) = 𝑧𝑖𝜇0(𝑥),     (1)

where 𝜇𝑖(𝑥) is the force of mortality for individual i at age x, 𝑧𝑖 is frailty for individual i
at the initial age, and 𝜇0(𝑥) is the unobserved baseline hazard function with frailty of 1.
An individual with a frailty of 1 can be called a ‘standard’ individual. An individual
with frailty of 1.5 is one and half times more likely to die at any particular age than the
standard individual. An individual with a frailty of 0.5 is only half as likely to die.
Frailty 𝑧𝑖 follows a Gamma distribution at the initial age, with p.d.f.:

𝑓0(𝑧) = 𝜆𝑘𝑧𝑘−1𝑒−𝜆𝑧/Γ(𝑘),     (2)

where λ and k are the parameters of the distribution. The mean and variance of a
Gamma variable are given by:

𝑧 =̅ 𝑘/𝜆 and     (3a)

𝜎2 = 𝑘/𝜆2.     (3b)

We follow earlier work to set mean frailty 𝑧 ̅as 1 (which is also the value of frailty
for a standard individual). Thus, the shape parameter k equals λ, and the variance of
frailty distribution 𝜎2 equals the inverse of k.

The mortality selection mechanism yields a cohort-level force of mortality 𝜇(̅𝑥) as

𝜇(̅𝑥) = 𝜇0(𝑥)
1+𝜎2𝐻(𝑥)

,     (4)

where the cumulative hazard function from initial age to age x is 𝐻(𝑥) = ∫ 𝜇0(𝑡)𝑑𝑡𝑥
0

(Vaupel, Manton, and Stallard 1979). From comparing formula (2) and (4), we see that
cohort mortality function 𝜇(̅𝑥) deviates from individual hazard function 𝜇0(𝑥). The
higher value of the variance of frailty distribution 𝜎2, the more the slope of 𝜇(̅𝑥)
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deviates from that of 𝜇0(𝑥); the deviation also increases with age as 𝐻(𝑥) is an
increasing function of x (Yashin et al. 2002).

The theory of population heterogeneity posits that death selectively removes the
frailest members of a cohort so that the mortality rate at cohort level becomes
increasingly dominated by robust members over the life course (Vaupel, Manton, and
Stallard 1979; Vaupel and Yashin 1985a). This means that the individual hazard curve
should be steeper than the cohort mortality curve, or individuals ‘age’ faster than
heterogeneous cohorts (Vaupel and Yashin 1985b). This conclusion is also inferred
from formula (4). Cohort mortality function 𝜇(̅𝑥) in discrete time is observed and is
often parameterized as a Gompertz function (Gompertz 1825). Gavrilov and Gavrilova
(2011) use data for single-year birth cohorts with hazard rates measured at narrow
(monthly) age intervals and find mortality trajectory at advanced ages follows the
Gompertz law up to the ages 102–105 years without a noticeable deceleration. Yashin
and Iachine (1997) infer the underlying individual hazard function from the
semiparametric shared-frailty model using Danish twins’ data, and their findings
support the assumption that individuals age faster than cohorts. Their findings imply
that individual hazard curve is steeper than Gompertz.

Since there are limited empirical data to support any conjecture about individual
hazard curve, some studies have assumed individual hazard curve as a Gompertz
function in human populations (Service 2000; Wrigley-Field 2014). The model can be
specified as

𝜇0(𝑥)=𝑎𝑒𝑏𝑥,     (5)

where a is the hazard at initial age and 𝑏 is the rate of mortality acceleration. Replacing
𝜇0(𝑥) in formula (1) with formula (5), we get the force of mortality for individual i at
age x:

𝜇𝑖(𝑥) = 𝑧𝑖𝑎𝑒𝑏𝑥,     (6a)

or the logarithm form:

ln൫𝜇𝑖(𝑥)൯ = ln(𝑎) + 𝑏𝑥 + ln (𝑧𝑖).     (6b)

The rate of increase in mortality rate at age x is the derivative of ln൫𝜇𝑖(𝑥)൯ at age

x, that is, 𝑑 ln൫𝜇𝑖(𝑥)൯
𝑑𝑥

= 𝑏. In other words, individual log mortality curve is a linear
function of x with fixed slope b. However, by assuming individual hazard function as
formula (6a) or (6b), the simulated cohort mortality curve will ‘age’ even slower than
Gompertz. Our simulations based on this Gompertz specification, presented in
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Appendix Table A-1 and Appendix Figure A-1 as Model specification A, are also
consistent with this view.

Instead, Vaupel and Yashin (1985b) showed that the individual mortality curve can
be specified in a different way so that the population-level mortality curve closely
approximates the empirical pattern.  Following their formulation with some
modifications, we assume individual baseline hazard function as

𝜇0(𝑥)=𝑎𝑒𝑏𝑥𝑒
𝑎(𝑒𝑏𝑥−1)

𝑏 , 7     (7)

where the force of mortality for individual i at age x is

𝜇𝑖(𝑥) = 𝑧𝑖𝑎𝑒(𝑏𝑥)𝑒
𝑎(𝑒𝑏𝑥−1)

𝑏     (8a)

or

ln൫𝜇𝑖(𝑥)൯ = ln(𝑎) + 𝑏𝑥 + 𝑎(𝑒𝑏𝑥−1)
𝑏

+ ln (𝑧𝑖).     (8b)

The rate of increase in mortality rate at age x is the derivative of ln൫𝜇𝑖(𝑥)൯ at age

x, that is, 𝑑 ln൫𝜇𝑖(𝑥)൯
𝑑𝑥

= 𝑏 + 𝑎𝑒𝑏𝑥. In other words, the rate of individual mortality
acceleration is a Gompertz function of age x; it increases as age increases. More
importantly, by assuming individual hazard function as formula (8a) or (8b), the
simulated cohort mortality curve will follow a Gompertz function 𝜇(̅𝑥) = 𝑎𝑒𝛽𝑥 or
ln൫𝜇(̅𝑥)൯ = ln(𝑎) + 𝛽𝑥, which is consistent with empirical pattern (Gompertz 1825;
Gavrilov and Gavrilova 2011). The group-level rate of mortality acceleration is 𝛽. Our
simulations based on this specification, presented in Appendix Table A-1 and Appendix
Figure A-1 as Model specification B, are also consistent with this view.

We follow Vaupel and Yashin (1985b) in specifying the frailty distribution as a
Gamma distribution, but alternative distributions, namely Weibull and Lognormal
distributions, are used in robustness checks and presented in Appendix 2, Appendix
Table A-1, and Appendix Figure A-1. Specifying the frailty distribution as Gamma and
Weibull distribution both provide reasonably good approximation of cohort mortality
curve. We keep with previous literature such as work by Vaupel and Yashin in using
the Gamma distribution, and the results are similar under a Weibull distribution (see
Appendix Figure A-1). Overall, no matter which individual hazard function or frailty

7 We remove frailty variance term from the second exponential in the original paper because otherwise the
frailty variance term in the hazard model and frailty model would cancel out and cause the slope of the
generated cohort mortality pattern not to be influenced by frailty variance in our simulation.



Zheng: Unobserved population heterogeneity and dynamics of health disparities

1042 https://www.demographic-research.org

distribution function is used, the negative association between variance of frailty and
cohort slope of mortality acceleration is observed in all the model specifications.

Appendix 2. Robustness checks for alternative specifications of mortality

In this appendix, we examine the robustness of our results with respect to alternative
specifications of (1) the functional form of the individual-level force of mortality and
(2) the distribution of frailty in the population. The exact parametric forms, in
themselves, are unobserved and therefore cannot be directly tested. Therefore, previous
literature (Vaupel and Yashin 1985a, 1985b) has typically relied on the implied cohort-
level age-specific mortality rates as a benchmark for selecting the proper form of these
individual-level parameters. This literature suggests that to fit the observed empirical
pattern of cohort mortality rate, which follows a Gompertz curve, the individual

mortality hazard is best specified as the form of 𝜇𝑖(𝑥) = 𝑧𝑖𝑎𝑒(𝑏𝑥)𝑒
𝑎(𝑒𝑏𝑥−1)

𝑏 , and the
frailty distribution in the population is best fitted as a Gamma distribution (Vaupel and
Yashin 1985b).

In our main simulations, we follow this literature closely in selecting our preferred
model specifications for individual mortality hazard and frailty distribution. In addition,
alternative specifications are examined as robustness checks. These alternative
specifications are presented in Appendix Table A-1 and resulting logged cohort
mortality curves are given in Appendix Figure A-1. The first row of Appendix Figure
A-1 presents simulation results for logged cohort mortality in which the functional form
of individual mortality hazard is changed to a Gompertz curve, 𝜇𝑖(𝑥) = 𝑧𝑖𝑎𝑒(𝑏𝑥), and
we vary the functional form and variances of the frailty distribution. We fix the mean
frailty at one unit in all these simulations. In the second row of this figure, we keep the
individual mortality hazard as specified in our main simulations, and the frailty
distribution is altered in the same way as it is in the first row. Vaupel and Yashin
(1985b) also list examples of other functional forms of individual mortality hazard, but
as their mathematical derivation shows, other functional forms do not generate an
increasing cohort mortality rate over age and are therefore omitted in our analysis.

Our additional simulation results yield four conclusions that all support our choice
of model specifications in our main simulations. First, although a natural choice for the
functional form of mortality pattern is to choose a Gompertz mortality curve at the
individual level, we and many prior studies found that, if the individual-level mortality
hazard is specified as Gompertz, the implied cohort mortality pattern will not follow the
observed Gompertz curve after age 70 or 80. Although literature has debated whether
the deceleration of cohort mortality curve in late age is real, more refined analysis finds
that cohort mortality trajectory at advanced ages follows the Gompertz law up to the
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ages 102–105 years without a noticeable deceleration (Gavrilov and Gavrilova 2011).
Second, in our specification in the main simulation analysis, as well as in Vaupel and
Yashin’s original specifications, the individual-level mortality hazard curve that takes

the form of 𝜇𝑖(𝑥) = 𝑧𝑖𝑎𝑒(𝑏𝑥)𝑒
𝑎(𝑒𝑏𝑥−1)

𝑏  generates a Gompertz pattern on the cohort level,
which closely approximates the empirical pattern. Third, specifying the frailty
distribution as Gamma and Weibull distribution both provide reasonably good
approximation of cohort mortality curve. We keep with previous literature such as work
by Vaupel and Yashin in using the Gamma distribution, and the results are similar
under a Weibull distribution. Fourth, even though alternative specifications generate
different shapes of the cohort mortality curve, it is reassuring to see, from comparing
the curves within each sub-plot of Appendix Figure A-1, that our main conclusion ‒
that the cohort mortality increases at a faster rate over age when the variance of frailty
is smaller ‒ holds throughout all specifications.

Table A-1: Alternative specifications with different frailty distributions and
different functional forms of the individual-level force of mortality

Frailty distribution

Gamma Weibull Lognormal

Model specification A: Individual-level force of mortality 𝝁𝒊(𝒙) = 𝒛𝒊𝒂𝒆(𝒃𝒙)

𝜎2 = 1 𝜎2 = 1 𝜎2 = 1

Frailty variance 𝜎2 = 0.75 𝜎2 = 0.75 𝜎2 = 0.75

𝜎2 = 0.5 𝜎2 = 0.5 𝜎2 = 0.5

Model specification B: Individual-level force of mortality 𝝁𝒊(𝒙) = 𝒛𝒊𝒂𝒆(𝒃𝒙)𝒆
𝒂(𝒆𝒃𝒙−𝟏)

𝒃

𝜎2 = 1 𝜎2 = 1 𝜎2 = 1

Frailty variance 𝜎2 = 0.75 𝜎2 = 0.75 𝜎2 = 0.75

𝜎2 = 0.5 𝜎2 = 0.5 𝜎2 = 0.5
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Table A-2: Life expectancies at age 30 in high school or less and any college
groups in the 1950s and 1960s birth cohorts from empirical and
simulated data using NHANES frailty measure

High school or less Any college

Empirical C-H

Cohort 1950s 47.02 52.72 5.70

Cohort 1960s 48.52 55.28 6.76

1960s‒1950s 1.50 2.56 1.06

Simulated (mortality selection present) C-H

Cohort 1950s 46.65 52.38 5.73

Cohort 1960s 46.74 53.39 6.65

1960s‒1950s 0.09 1.00 0.92

Simulated (mortality selection absent) C-H

Cohort 1950s 46.65 52.38 5.73

Cohort 1960s 46.98 53.43 6.46

1960s‒1950s 0.33 1.05 0.72

Note: Empirical data are from NHIS 1986‒2009 surveys linked to mortality data through 2011. Sample size for the 1950s and 1960s
birth cohorts is 575,705 experiencing 23,665 deaths and 8,509,452 person-years of exposure.
Following the Gompertz function of age-dependent mortality pattern, we use a linear function of log mortality rate to extrapolate
mortality rates up to age 90. Based on these observed and extrapolated mortality rates, we construct life tables and calculate life
expectancies at age 30.



Demographic Research: Volume 43, Article 34

https://www.demographic-research.org 1045

Figure A-1: Simulation results for alternative specifications with different frailty
distributions and different functional forms of the individual-level
force of mortality
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Figure A-2: A comparison between a simulated mortality pattern using variance
of frailty from calibration and an observed mortality pattern from
NHIS data, 1990 synthetic birth cohort

Note: Empirical data are from NHIS 1986-2009 surveys linked to mortality data through 2011. Sample size for the 1990 synthetic
birth cohort is 253,367 experiencing 2,599 deaths in 1990. Following the Gompertz function of age-dependent mortality pattern, we fit
a linear function of log mortality rate to smooth the trend.

Figure A-3: Mortality differentials between lower-educated and higher-educated
groups over the life course across multiple birth cohorts assuming
decreasing frailty variance among the lower-educated group

Individual 𝐥𝐧 (𝒂) 𝒛𝒊 𝒃
Lower educated, cohort1 ‒6.76 1.00 0.075
Lower educated, cohort2 ‒6.76 1.00 0.075
Lower educated, cohort3 ‒6.76 1.00 0.075
Higher educated, cohort1-cohort3 ‒7.19 1.00 0.075

Group 𝐥𝐧 (𝒂) 𝝈𝟐 𝒃
Lower educated, cohort1 ‒6.76 0.77 0.075
Lower educated, cohort2 ‒6.76 0.50 0.075
Lower educated, cohort3 ‒6.76 0.25 0.075
Higher educated, cohort1-cohort3 ‒7.19 0.34 0.075



Demographic Research: Volume 43, Article 34

https://www.demographic-research.org 1047

Figure A-4: Variance of frailty over the life course among three hypothetical
cohorts of the lower-educated group

Figure A-5: Gaps in life expectancy at age 30 between lower-educated and
higher-educated groups across three hypothetical cohorts assuming
decreasing frailty variance among the lower-educated group
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Figure A-6: Empirical (histogram) and theoretical (Gamma distribution, red
smooth line) distributions of the frailty measure constructed from
PSID Data

Note: To examine the distributional properties of our constructed frailty measure, we fit a Gamma distribution to the empirical
distribution of our PSID-based frailty measure and compare them. The theoretical Gamma density is fitted using maximum likelihood
estimation. The left panel of the figure compares the empirical and theoretical density functions, and the right panel of the figure
compares the two cumulative distribution functions (CDF). The two panels suggest that the empirical distribution of our constructed
frailty measure can be reasonably approximated by the Gamma distribution. In sum, while there is no perfect measure for the frailty
distribution in the population, the distributional properties of our frailty measure seem to be generally consistent with our assumption
of the Gamma distribution in the simulation models.

Figure A-7: Absolute frailty variance and relative frailty variance as a percentage
of the 1950 level for high school or less and any college groups from
NHANES 1999‒2012

Note: Data are from NHANES 1999‒2012. Sample consists of all individuals born 1950‒1989 who had information on early life
disease measures before age 17. Sample size for these four cohorts is 22,181.
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