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Child mortality levels and trends: A new compositional approach

Fatine Ezbakhe1,2

Agustí Pérez-Foguet1

Abstract

BACKGROUND
Trend analysis of child mortality is vital to evaluate countries’ progress towards
achieving the Sustainable Development Goal on health (SDG 3). However, strictly
speaking, child mortality data are probabilities, and thus subject to non-negativity and
constant-sum constraints.
OBJECTIVE
Our objective is to assess the application of compositional data analysis for estimating
levels and trends in child mortality.
METHODS
We compare two data transformations: logit, which is widely used in child mortality
estimation, and isometric log-ratio (ILR), which is specifically designed for
compositional data. We use publicly available household survey data on neonatal (NMR)
and under-five (U5MR) mortality ratios in sub-Saharan Africa.
RESULTS
Although both data transformations yield similar estimates, only the ILR transformation
is consistent with the compositional properties of child mortality data. However, the ILR
suffers from one key drawback: it requires complete data series, with pairs of
observations for both NMR and U5MR. As a result, ILR entails excluding a large amount
of available data from the regression analysis.
CONCLUSIONS
Complete data is needed to be able to undertake a compositional trend analysis of child
mortality. This gap in data can be closed by employing imputation strategies that replace
missing values in the existing datasets, and by developing new methods for the indirect
estimation of NMR from summary birth history data, as it is currently done for U5MR.
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CONTRIBUTION
This paper extends the literature on child mortality estimation by examining the
application of compositional data analysis to this field. It constitutes a first step towards
building a Bayesian compositional regression approach for child mortality estimation.

1. Introduction

The ongoing decline in child mortality is considered one of the most critical successes in
public and population health of the past three decades. The deaths of children under 5
years old have fallen from 12.5 million per year in 1990 to 5.3 million per year in 2018,
even as the world’s population under age 5 grew by nearly 32.7 million (UNICEF 2019;
UNESA 2019). Notwithstanding this progress, there is still a heavy burden of child deaths
due to preventable or treatable causes such as pneumonia, malaria, and diarrhoea. Such a
burden has both social and economic consequences: in the WHO African region alone,3
the cost of child mortality amounted to 150.3 billion US dollars in 2013 (i.e.,
approximately 6% of the combined GDP in the region) (Kirigia et al. 2015). In
recognition of the crucial need to further combat child mortality, the third Sustainable
Development Goal (SDG 3) of the 2030 Agenda explicitly calls for countries to “ensure
healthy lives and promote wellbeing for all at all ages” (UNGA 2015). In particular,
Target 3.2 specifies the end of preventable deaths of newborns and children under 5 by
lowering the neonatal and under-5 mortality rates to at least 12 and 25 deaths per 1,000
live births, respectively, by 2030.

Achieving this ambitious child survival target goes beyond ensuring universal
access to adequate, good-quality, and affordable healthcare for women and children. It
also requires understanding the levels and trends in child mortality in order to evaluate
countries’ performances and identify effective policies (UNICEF 2019). That is why
measuring and monitoring child mortality is a global priority. However, tracking progress
towards reducing child mortality can be challenging, particularly in developing countries
with dysfunctional vital registration systems. According to Mahapatra et al. (2007), vital
statistics are unavailable or of poor quality in 111 countries, mainly in sub-Saharan
Africa, South-East Asia, and the Western Pacific, which represent 72% of the world’s
population. This lack of reliable data inevitably takes a toll on the effectiveness of public
health policymaking.

To overcome the absence of reliable vital registration data in many countries, the
United Nations Inter-agency Group for Child Mortality Estimation (UN IGME) produces

3 The World Health Organization (WHO) divides the world into six WHO regions for reporting and analysis.
The WHO African region comprises 47 countries, listed at https://www.who.int/about/regions/afro/en/.

https://www.who.int/about/regions/afro/en/
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and publishes estimates of child and young adolescent mortality rates every year (UN
IGME 2018). The UN IGME provides child mortality estimates for three different age
intervals: (1) neonatal mortality rate (NMR), i.e., the number of deaths within the first 28
days of life per 1,000 live births; (2) the infant mortality rate (IMR), i.e., the number of
deaths among children under the age of 1 year per 1,000 live births; and (3) under-5
mortality rate (U5MR), i.e., the number of deaths of children up to the age of 5 per 1,000
live births. With this input data, the UN IGME generates child mortality estimates for
years of interest using a Bayesian B-splines Bias-adjusted (B3) regression model
(Alkema and New 2014; Alkema et al. 2014a; Alexander and Alkema 2018). Several
alternative curve-fitting models have been developed both at national (Rajaratnam et al.
2010; Hill et al. 2012; Wang et al. 2014; Alkema et al. 2014b) and subnational levels
(Dwyer-Lindgren et al. 2014; Mercer et al. 2015; Pezzulo et al. 2016; Golding et al. 2017;
Chao et al. 2018; Wakefield et al. 2018; Li et al. 2019). The UN IGME’s B3 model also
adjusts the errors and biases in the data.

However, besides accounting for the inherent uncertainty in child mortality data, the
analysis should also consider its compositional nature. Strictly speaking, child mortality
indicators are not rates but probabilities calculated according to the conventional life-
table approach (Rutstein 1984) and are thus naturally constrained. Indeed, the sum of
probabilities of dying in the neonatal (0–28 days), post-neonatal (29–364 days), and
childhood (1–4 years) age intervals and the probability of surviving beyond 5 years must
equal 1. This constant sum constraint makes it impossible to follow the usual Euclidean
geometry, since data belongs to a subspace of the Euclidean space, known as the
Aitchison simplex, with its geometrical structure and operations (Aitchison 1982;
Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado 2015). Therefore, child mortality
rates must not be analyzed separately, as this may lead to spurious correlations and,
consequently, to wrong interpretations. In the B3 model, the compositional nature of data
is accounted for to some extent by considering logarithms and ratios. For instance, the
UN IGME models the U5MR in the log scale (i.e., log(U5MR)). For the IMR, it considers
the log-odds transformation of the ratio r between the IMR and the median B3 model
estimates of U5MR (i.e., log(𝑟 (1 − 𝑟)⁄ )). For the NMR, it considers the ratio between
NMR and the difference between U5MR and NMR (i.e., NMR (U5MR − NMR)⁄ ).
However, as Aitchison (1999) emphasized, to be fully in line with the principles of
compositional data analysis, log-ratio transformations between the compositional parts
are needed.

The application of compositional analysis to mortality data is not new. Oeppen
(2008) explores the use of centered log-ratio transformation for forecasting mortality by
cause of death. Similarly, Salomon and Murray (2001) develop a compositional model
based on additive log-ratios to predict cause-of-death patterns by age and sex, and
Bergeron-Boucher et al. (2017, 2018) apply centered log-ratios to forecast the
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distribution of deaths of subpopulations coherently. Other researchers focus on using
isometric log-ratios to model trends in other SDG-related indicators, such as safe water
and sanitation (Pérez-Foguet, Giné-Garriga, and Ortego 2017; Ezbakhe and Pérez-Foguet
2019), clean energy (Marcillo-Delgado, Ortego, and Pérez-Foguet 2019), and health-
related outcomes (Carson et al. 2016; Fairclough et al. 2017). However, the modelling of
compositional trends in child mortality remains an unexplored area.

In that context, this paper aims to assess the application of compositional data
analysis for estimating levels and trends in child mortality. Specifically, our intention is
twofold:

 From a theoretical perspective, we investigate the need to consider the
compositional properties of child mortality data – in particular their unit-sum
constraint – by comparing two data transformations based on logarithms of
ratios: (1) the log of the odds (LOGIT), and (2) the isometric log-ratio (ILR).

 From a practical viewpoint, we examine the suitability of a compositional
approach to child mortality modelling by comparing the ILR-based estimates
with those provided by the UN IGME. Although these models use two
significantly different regression methods – Generalized Additive Model
(GAM) and Bayesian penalized B-splines, respectively – we complete this
comparison as an initial step towards building a Bayesian compositional
regression approach to child mortality estimation.

To this end, we use all publicly available household survey data on the child
mortality indicators used in SDG 3 monitoring – neonatal (NMR) and under-5 (U5MR)
mortality rates – in sub-Saharan Africa. We select this region for two reasons. First, it
accounted for nearly 52.5% of global under-5 deaths in 2018 (UNICEF 2019). Second, it
fully overlaps with the African countries included in UNICEF’s EQUItable Impact
Sensitive Tool.4

The remainder of the paper is structured as follows. Section 2 provides the
background to the use of household survey data in child mortality monitoring (2.1) and
the general principles behind compositional data analysis (2.2). Section 3 presents an
overview of the method (3.1) and data (3.2) used in our analyses. Section 4 presents and
discusses the results from applying the two data transformations – LOGIT and ILR – to
child mortality (4.1), by comparing our ILR-based estimates and those provided by the
UN IGME (4.2), and by analyzing the geographical distribution of child mortality in sub-

4 The EQUitable Impact Sensitive Tool (EQUIST) is a medium-term analysis and strategic planning tool that
aims to help decision-makers maximize the effect of public policies and improve health and nutrition for
children from low-income countries (UNICEF 2017).
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Saharan Africa (4.3). Section 5 concludes the paper by summarizing the primary
outcomes of our analyses and indicating directions for further research.

2. Background

In this section, we first provide a background on the monitoring of child mortality, in
particular the use of household surveys (2.1). We then explain the statistical methodology
for compositional data analysis (2.2).

2.1 Child mortality monitoring

The responsibility for monitoring and assessing child mortality at the global, regional,
and country level lies with the United Nations Children’s Fund (UNICEF). Together with
other members5 of the UN Inter-agency Group for Child Mortality Estimation (IGME),
UNICEF estimates child mortality every year to monitor progress and shares it in their
public database (http://www.childmortality.org). The UN IGME first reviews and
compiles all available nationally representative data relevant to the estimation of child
mortality, including data from civil registration systems, population censuses, and
household surveys, and assesses their quality to exclude those with substantial errors.

The most reliable data sources for child mortality estimates are civil registration and
vital statistic (CRVS) systems, in which all births and deaths are routinely registered and
certified. Unfortunately, most developing countries lack comprehensive CRVS systems.
In the absence of continuous recording systems, measures of child mortality are derived
from alternative data sources, most notably periodic, nationally representative household
surveys (Hill et al. 2015), using both direct and indirect methods. Direct estimation
approaches collect child mortality from the full birth histories (FBHs) of women of
reproductive age (i.e., 15 to 49 years old). In an FBH, women report the date of birth,
sex, survival status, age (if alive), and age at death (if dead) for each of their births.
Probabilities of dying in childhood are then computed based on synthetic cohort life
tables (Rutstein and Rojas 2006). However, this approach is time-consuming and
expensive due to the extensive questionnaires and training of interviewers. Indirect
estimation methods, on the other hand, use summary birth histories (SBHs), whereby
women only report the total number of children they have given birth to and the number
who have died – or equivalently the number still alive – at the time of the survey. Instead

5 The other members of the UN IGME are the World Health Organization (WHO), the World Bank, and the
United Nations Population Division of the Department of Economic and Social Affairs (UNESA).

http://www.childmortality.org/
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of a full distribution of births and deaths over time as in FBHs, SBHs only provide the
proportions of children dead at the time of the survey. In SBHs, probabilities of dying in
childhood are derived from modelling the relationship between the proportions of
children dead and the age of the women (Brass 1971; Zlotnik and Hill 1981).

Most countries turn to household surveys to collect data on child mortality. As seen
in Table 1, household surveys account for 91.1% and 79.4% of the total number of data
series compiled for NMR and U5MR, respectively, which represent 40.2% and 55.7% of
all mortality observations in the database. Amongst the most common household surveys
are Demographic and Health Surveys (DHS), providing 59.8% and 52.4% of household
data in NMR and U5MR, respectively.

Table 1: Data availability for neonatal (NMR) and under-5 (U5MR) mortality
rates from the UN IGME public database (extracted on 28 May 2019)

Indicator Type Source Number of
countries

Number of
series

Number of
observations

% excluded by
UN IGME

% with
unreported
standard errors

NMR

Vital registration
VR 115 20 3,320 29.2 -
SVR 4 4 91 1.1 -

Censuses CEN 0 0 0 0 -

Household
surveys

MICS 37 22 222 27.0 16.7
Other MICS 0 0 0 0.0 0.0
DHS 90 73 1,372 8.1 4.6
Other DHS 72 49 362 14.1 21.5
LSMS 0 0 0 0 0
Other surveys 59 103 337 15.4 47.2

U5MR

Vital registration
VR 136 78 5,619 42.5 -
SVR 4 7 140 21.4 -

Censuses CEN 137 128 2,332 48.1 -

Household
surveys

MICS 79 58 1,008 44.5 21.4
Other MICS 4 3 24 16.7 100.0
DHS 90 176 5,333 40.1 22.5
Other DHS 96 123 1,465 39.9 37.8
LSMS 1 1 1 100.0 100.0
Other surveys 130 462 2,349 41.6 88.7

Notes: The acronyms are as follows: VR (Vital Registration), SVR (Sample Vital Registration), CEN (Census), MICS (Multiple Indicator
Cluster Survey), DHS (Demographic and Health Survey) and LSMS (Living Standard Measurement Survey). ‘Other MICS’ category
includes National MICS, and ‘Other DHS’ includes Interim DHS, Special DHS, National DHS, World Fertility Survey, Malaria Indicator
Survey, and AIDS Indicator Survey.

We highlight two other relevant features from the child mortality database. First, the
UN IGME excludes a significant number of data points from their estimation process (an
average of 10.5% and 43.9% for NMR and U5MR, respectively), because of their
substantial degree of non-sampling errors or omissions. Second, information on sampling
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errors in NMR observations is missing in more than 15% of the household surveys, and
nearly 62% in U5MR observations.

Non-sampling errors may arise due to many different factors, including non-
coverage, non-response, questionnaires of inadequate quality, or poor survey
implementation and data collection and processing (Lesser and Kalsbeek 1999).
Specifically, errors in data collection can be due to the underreporting of deceased
children (especially of neonatal deaths) or misreporting of ages at death (in particular age
heaping around age 1) (Guillot et al. 2012).

While non-sampling errors can be minimized in many ways (e.g., proper design of
survey questionnaire and data collection), sampling errors will always exist, as the sample
size is always smaller than the size of the population. Such sampling errors can be quite
significant in child mortality estimates. A review by Korenromp et al. (2004) of sampling
errors from Demographic and Health Surveys (DHS) in various sub-Saharan African
countries reveals median relative errors of 5.6% and 4.4% for IMR and U5MR,
respectively. This considerable amount of uncertainty is mainly because “most household
surveys are not designed to produce highly accurate estimates of child mortality, but
rather aim for high accuracy of a number of other indicators” (UNESA 2011). For
instance, in the Multiple Indicator Cluster Surveys (MICS), child mortality rates are not
selected as key indicators on which to base the calculation of the sample size. This is
because the sizes that would be required to measure child mortality indicators with the
same precision as recommended for other indicators would be too large and impractical.
Other indicators, such as school attendance or immunization coverage, are used instead
(UNICEF 2006).

That is why, in addition to further minimizing these errors, uncertainty assessment
of the estimates – in the form of uncertainty intervals, for example – is indispensable for
an evidence-based analysis of child mortality levels and trends. Failure to conduct and
report such uncertainty intervals may lead to misinterpretation of rates and trends, and
ultimately undermine effective policymaking for child mortality reduction.

2.2 Compositional data analysis

Compositional data are non-negative multivariate data that are some part of a whole.
They are usually recorded in closed form, summing to a constant (e.g., percentages
summing to 100% or proportions summing to 1). Such data have particular and essential
properties that arise from the fact that they represent parts of some whole (Pawlowsky-
Glahn and Egozcue 2006): they are a vector of strictly positive real numbers with a
constant sum constraint:
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𝒙 = (𝑥1, 𝑥2, … , 𝑥𝐷); 𝑥𝑖 > 0 𝑖 = 1, 2, … ,𝐷; ∑ 𝑥𝑖𝐷
𝑖=1 = 𝜅 (1)

The elements of a composition, 𝑥𝑖, are called components or parts, and the only
relevant information is contained in the ratios between them. This feature conditions the
relationships between the components. For instance, if one component is decreasing over
time, at least one other component has to increase to preserve the constant sum. As a
result, compositional data are enclosed in a subspace where they can only vary between
0 and the radix value (𝜅). This subspace, known as the simplex, does not follow the rules
of Euclidean geometry, which makes the use of standard statistical techniques
inappropriate for the analysis of compositional data (Aitchison 1999). Applying standard
statistical approaches to ‘raw’ compositional data might lead to spurious correlations and
inferences.

Thus, because of this particular geometry, working in the simplex can be
counterintuitive. As an alternative, compositional data may be transformed into the real
space where classic statistics can be applied (Pawlowsky-Glahn, Egozcue, and Tolosana-
Delgado 2015). These transformations are based on log ratios between components and
lead to ‘open’ data, called coordinates, which can take any real value between −∞ and
∞. Several log-transformations have been proposed, including the additive log-ratio
(ALR), the centred log-ratio (CLR), and the isometric log-ratio (ILR) (Aitchison 1982;
Egozcue et al. 2003).

In this paper we use the ILR transformation, which represents the composition given
a particular orthonormal basis in the simplex:

𝒛 = ilr(𝒙) = log(𝒙) ∙ 𝑽 (2)

where 𝒙 is the vector with the D parts of the composition, 𝑽 is a 𝐷 ∙ (𝐷 − 1) matrix
representing an orthonormal basis in the simplex, and 𝒛 is the resulting vector with 𝐷 −
1  coordinates of the composition in that basis 𝑽.

There are several ways to define orthonormal bases in the simplex, one of which
consists of a sequential binary partition (SBP) of the composition (Pawlowsky-Glahn,
Egozcue, and Tolosana-Delgado 2015). An SBP represents a hierarchy of the parts of a
composition and contains successive splits of the parts into two non-overlapping groups,
coded by the signs + and –, respectively.  The coordinates of the composition in the
orthonormal basis 𝑽 can be obtained from the SBP as:

𝑧𝑖 = ට
𝑟𝑖𝑠𝑖
𝑟𝑖+𝑠𝑖

logቆ
൫∏ 𝑥𝑖𝑗+ ൯

1 𝑟𝑖ൗ

(∏ 𝑥𝑖𝑘− )
1 𝑠𝑖ൗ
ቇ ; 𝑖 = 1, 2, … ,𝐷 − 1 (3)
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where 𝑧𝑖  is the ith coordinate (or balance) of the composition, 𝑥𝑖𝑗  and 𝑥𝑖𝑘 are the
components coded as + and – in the ith partition, and 𝑟𝑖 and 𝑠𝑖 are the number of parts
with positive and negative signs in that partition, respectively.

Once the data are transformed into ILR balances, standard statistical approaches can
be applied. Finally, regression points can be back-transformed to the original space using
the inverse ILR:

𝒙 = ilr−1(𝒛) = 𝒞[exp(𝑽 ∙ 𝒛)] (4)

where 𝒛 contains the ILR coordinates of 𝒙 with respect to the basis 𝑽, and 𝒞 is the closure
operator:

𝒞[𝒙] = ൬ 𝑥1
∑ 𝑥𝑖𝐷
𝑖=1

, 𝑥2
∑ 𝑥𝑖𝐷
𝑖=1

, … , 𝑥𝐷
∑ 𝑥𝑖𝐷
𝑖=1

൰ ; 𝑖 = 1, 2, … ,𝐷. (5)

3. Methods overview

In this section, we first describe our method for the compositionally based estimation of
child mortality (3.1). We then present the data used to estimate child mortality in sub-
Saharan countries (3.2).

3.1 Proposed approach

We estimate the NMR and U5MR for each country during 1990‒2018 – or earlier if data
is available – using a Generalized Additive Model (GAM). We choose the GAM for three
main reasons. First, as a generalized linear model, the GAM uses a link function to
establish a relationship between the mean of the response variable and a smoothed
function of the set of explanatory variables. This limits the error in the prediction of the
response variable from various probability distributions. In our model, we apply thin-
plate regression splines with four degrees of freedom for the smoothing functions (Wood
2003). Second, the GAM allows for a non-parametric regression, where there is no
underlying assumption of linearity between the response variable and the covariates.
Thus, the GAM can deal with non-linear and non-monotonic relationships between the
response and the explanatory variables. Third, the GAM has been widely used to explore
demographic and health data, in particular child mortality data (Ayele, Zewotir, and
Mwambi 2015; Dlamini, Melesse, and Mwambi 2017; Burstein et al. 2018).
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We consider child mortality data as 3-part compositions, 𝒙 = (𝑥1, 𝑥2, 𝑥3), where 𝑥1
is the probability of dying in the neonatal age interval (0 to 28 days), 𝑥2 the probability
of dying in the post-neonatal and childhood age intervals (29 days to 4 years), and 𝑥3 the
probability of surviving beyond 5 years:

𝑥1 = NMR/1000; 𝑥2 = (U5MR − NMR)/1000; 𝑥3 = 1 − U5MR/1000. (6)

We perform two data transformations:
 Log of the odds (LOGIT) transformation, where we fit the model to the

logarithm of the odds, as in Equation 7.

𝑧𝑖 = log ቀ 𝑥𝑖
1−𝑥𝑖

ቁ , 𝑖 = 1,2,3 (7)

 Isometric log-ratio (ILR) transformation, in which we fit the model to the 𝐷 − 1
balances, as in Equation 3.

For ILR, we create an SBP6 that mimics the NMR ∙ (U5MR − NMR) ratio modelled
by the UN IGME:

Balance (zi) x1 x2 x3 r s
1 +1 +1 ‒1 2 1
2 +1 ‒1 0 1 1

With this established SBP, the orthonormal basis is:

𝑽 = ൦
ඥ1 6⁄ ඥ1 2⁄

ඥ1 6⁄ −ඥ1 2⁄
−ඥ2 3⁄ 0

൪

The ILR coordinates can be computed, following Equation 3, as:

𝑧1 = ට2
3

log ቀ√𝑥1𝑥2
𝑥3

ቁ = ට2
3

log ൬ඥNMR∙(U5MR−NMR)
1000−U5MR

൰ (8)

𝑧2 = 1
√2

log ቀ𝑥1
𝑥2
ቁ = 1

√2
log ቀ NMR

U5MR−NMR
ቁ (9)

6 Although the actual basis used to compute the ILR coordinates is irrelevant (i.e., the back-transformed results
are the same whichever basis), it is helpful to choose a basis that allows the interpretation of results on the level
of coordinates.
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The regression estimates are back-transformed to the original space using the inverse
LOGIT function (i.e., 𝑒𝑧𝑖 (1 + 𝑒𝑧𝑖)⁄ ) and the inverse ILR shown in Equation 4. The NMR
and U5MR estimates are finally derived from the values of 𝑥1 and 𝑥2 (as in Equation 6).

Similar to previous studies (Bermejo et al. 2015; Minnery et al. 2015; Hodge et al.
2014), we construct confidence intervals of mortality rates via simulation techniques.
This involves generating 1,000 simulations of the survival probability for each age group
– neonatal and under-5 – assuming a Binomial distribution, 𝐵(𝑝,𝑛). 7 The survival
probability is computed as 1− MR, and the sample size 𝑛 is derived from the standard
errors of rates (i.e., 𝑠𝑒 = ඥMR(1− MR) 𝑛⁄ ), where MR is the mortality rate (i.e.,
NMR/1000 and U5MR/1000, respectively). Finally, the 90% confidence intervals are
obtained from the 5th and 95th percentiles of the simulations.

The R code of our approach is publicly available and downloadable (Ezbakhe and
Pérez-Foguet 2019), and uses the packages Compositions (van den Boogaart, Tolosana-
Delgado, and Bren 2018) and Gam (Hastie 2018).

3.2 Child mortality data

In our analysis, we only consider data from censuses and household survey series, and
those series deemed of good quality by the UN IGME. For data with unreported sampling
standard errors we impute an error of 2.5% for census observations and 10% for
household surveys, as done by Alkema and New (2014). On the other hand, since we
consider data as 3-part compositions, only year series with observations for both rates,
NMR and U5RM, are included in the analysis, which significantly impacts the amount
of data incorporated into our modelling procedure. There is notably less data available
for NMR than U5MR (i.e., 247 year series with 2,293 observations for U5MR versus 823
series with 10,180 for NMR).

The number of compositional data points considered for each of the 48 countries of
sub-Saharan Africa are shown in Table 2. On average, only 18% of the observations
include both NMR and U5MR. A clear example of this is Senegal: from the 44 and 73
time series for NMR and U5MR, respectively, only 34 include information for both rates
(resulting in 41 observations instead of the 186 available for U5MR). Furthermore, there
are 9 countries with less than 4 observations for both NMR and U5MR – Central African
Republic, Comoros, Djibouti, Equatorial Guinea, Gabon, Gambia, Seychelles, Sierra
Leone, and South Sudan – that we exclude from the analysis because of their lack of
sufficient data.

7 We use a Binomial distribution to model child mortality because it is the preferred distribution for dealing
with counts (in this case, the number of child deaths).
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Table 2: Data availability for neonatal (NMR) and under-5 (U5MR) mortality
rates from household surveys and censuses in sub-Saharan African
countries (from the UN IGME public database, extracted on 28 May
2019)

Country
NMR U5MR BOTH

Years Points Years Points Years Points

AGO Angola 5 5 23 24 5 5

BEN Benin 15 25 65 105 14 21

BWA Botswana 9 9 28 28 4 4

BFA Burkina Faso 17 23 67 110 15 19

BDI Burundi 15 15 49 50 5 5

CPV Cape Verde 8 8 16 16 5 5

CMR Cameroon 25 30 68 92 19 20

CAF Central African Republic 5 5 32 32 3 3

TCD Chad 12 15 49 57 8 8

COM Comoros 5 5 10 10 0 0

COG Congo 13 13 28 28 6 6

CIV Ivory Coast 25 25 68 83 14 14

COD Democratic Republic of
Congo 10 10 28 28 10 10

DJI Djibouti 6 6 16 16 1 1

GNQ Equatorial Guinea 3 3 10 10 3 3

ERI Eritrea 13 13 30 34 4 4

ETH Ethiopia 12 20 47 77 6 10

GAB Gabon 6 6 8 8 2 2

GMB Gambia 0 0 27 28 0 0

GHA Ghana 26 43 88 115 11 12

GIN Guinea 21 21 58 78 10 10

GNB Guinea-Bissau 10 10 18 18 10 10

KEN Kenya 19 35 87 127 13 21

LSO Lesotho 12 20 55 58 5 5

LBR Liberia 15 20 57 63 4 4

MDG Madagascar 12 20 49 68 7 10

MWI Malawi 28 35 82 164 24 25

MLI Mali 16 20 41 94 16 20

MRT Mauritania 17 20 52 71 12 12

MOZ Mozambique 11 15 44 76 10 14

NAM Namibia 20 20 26 29 5 5

NER Niger 23 25 45 88 20 20

NGA Nigeria 16 25 45 75 7 15

RWA Rwanda 21 29 60 108 17 23

STP Sao Tome and Principe 10 10 24 24 10 10

SEN Senegal 44 60 73 186 34 41

SYC Seychelles 0 0 10 10 0 0

SLE Sierra Leone 5 5 68 69 3 3

SOM Somalia 5 5 10 10 5 5
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Table 2: (Continued)

Country
NMR U5MR BOTH

Years Points Years Points Years Points

ZAF South Africa 10 10 24 24 7 7

SSD South Sudan 1 1 13 13 1 1

SDN Sudan 17 17 88 93 6 6

SWZ Swaziland 15 15 34 36 8 8

TGO Togo 10 15 58 70 5 7

UGA Uganda 23 35 68 126 13 19

Note: “Years” = the number of year series; “Points” = the number of data observations.

4. Results and discussion

4.1 Comparative analysis 1: LOGIT vs. ILR data transformations

Figures 1 and 2 show the comparison of the child mortality estimates obtained with the
two data transformations, LOGIT and ILR, for Malawi and Mauritania.

The LOGIT data transformation provides three univariate coordinates, each
representing separately the log-odds of the mortalities and survival probabilities. In the
case of Malawi, the log-odds for mortality under 1 month old (𝑧1) and mortality from
ages 1 to 5 (𝑧2) display decreasing values (between 1970 and 2018, 𝑧1 and 𝑧2 declined
by 1.3 and 1.9 points, respectively); whereas log-odds for survival beyond age 5 (𝑧3)
increase by 1.9 points. These figures indicate both a reduction in child mortality and
improved life expectancy over time. Mauritania presents a different trend in the LOGIT
coordinates: 𝑧1 first increases between 1968 and 1975 (by 0.4 points) and then decreases
until 2018 (by 0.5 points) and 𝑧2 starts with a decline of 0.7 points from 1968 to 1989
and increases 0.8 points afterwards, while 𝑧3 shows an acceleration of 0.4 points between
1968 and 1992 and stabilizes until 2018. These smaller changes in all 𝑧1, 𝑧2, and 𝑧3
translate into weaker progress in child mortality reduction.
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Figure 1: Mortality estimates for Malawi, with (a) logit and (b) isometric log-
ratio transformations

Notes: The regression results in the coordinates are In black: the three univariate coordinates for LOGIT (in a2.1, a2.2 and a2.3) and
the two multivariate coordinates for ILR (in b2.1 and b2.2). In colour (a1 and b1), the regression results in the original scale: in red,
mortality under 1 month (x1); in blue, mortality between 1 month and 5 years (x2); in green, survival beyond 5 years (x3). The shaded
areas represent the 90% confidence intervals.
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Figure 2: Mortality estimates for Mauritania, with (a) logit and (b) isometric
log-ratio transformations

Notes: The regression results in the coordinates are in black: the three univariate coordinates for LOGIT (in a2.1, a2.2 and a2.3) and
the two multivariate coordinates for ILR (in b2.1 and b2.2). The regression results in the original scale are in colour (a1 and b1): mortality
under 1 month (x1) in red; mortality between 1 month and 5 years (x2) in blue; survival beyond 5 years (x3) in green. The shaded areas
represent the 90% confidence intervals.
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On the other hand, the ILR data transformation results in two multivariate
coordinates: 𝑧1 captures information about the survival rate, while 𝑧2 captures the
relationship between the mortalities under 1 month and from ages 1 month to 5 years.
Again, the patterns in 𝑧1 and 𝑧2 differ in the two countries. In Malawi, 𝑧1 declines almost
steadily from ‒1.2 in 1970 to ‒2.7 in 2018, while in 𝑧2 there is no change in the first 23
years but it starts to increase by 0.4 points from 1993 onwards. These values indicate a
decline not only in child mortality over the years but specifically in the rates of mortalities
under 1 month and between 1 month and 5 years from 1993. In Mauritania, 𝑧1 shows
three different phases: from 1968 to 1976 it increases slightly (by 0.1 points), between
1976 and 1991 it falls (by 0.3 points), and from then until 2018 it remains practically
unchanged. 𝑧2 first increases by 0.6 points between 1968 and 1989 and then declines until
reaching ‒0.82 in 2018. These results explain the inconspicuous change in child mortality
in Mauritania from 1989 and the slight setback in the survival of children aged between
1 month and 5 years.

For both data transformations, the resulting components (i.e., 𝑥1, 𝑥2, and 𝑥3) are
substantially the same (Table 3). For instance, in Malawi the estimates for neonatal
mortality (𝑥1) obtained with the LOGIT transformation are 46.5, 37.4, 28.0, and 23.3 per
mil for 1990, 2000, 2010, and 2018, respectively; with ILR these estimates are 46.5, 37.5,
27.9, and 22.9. In Mauritania the results are also practically the same as in 𝑥2: 70.8, 82.3,
92.2, and 99.8 with LOGIT versus 70.8, 82.3, 92.2, and 99.7 with ILR.
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Table 3: Mortality estimates, expressed per mil (𝟏𝟎−𝟑), for the years 1990,
2000, 2010, and 2018, in Malawi and Mauritania, obtained with
LOGIT and ILR transformations

Country Approach Component 1990 2000 2010 2018

M
al

aw
i

LOGIT

x1
46.5

(43.4‒49.2)
37.4

(35.0‒39.6)
28.0

(23.6‒32.5)
23.3

(16.9‒31.1)

x2
170.4

(161.4‒178.2)
119.4

(113.6‒124.7)
68.8

(59.9‒77.8)
47.9

(36.4‒61.2)

x3
782.8

(775.3‒790.7)
842.4

(837.9‒847.5)
903.4

(895.3‒911.6)
930.2

(918.5‒941)

ILR

x1
46.5

(43.4‒49.2)
37.5

(35.1‒39.7)
27.9

(23.5‒32.3)
22.9

(16.6‒30.3)

x2
170.5

(161.5‒178.3)
119.5

(113.8‒124.8)
68.7

(59.9‒77.7)
47.7

(36.3‒61)

x3
783.1

(776.0‒791.5)
842.9

(838.5‒848.3)
903.4

(895.4‒911.7)
929.4

(918.1‒939.7)

M
au

rit
an

ia

LOGIT

x1
45.5

(41.6‒49.1)
41.2

(35.7‒46.7)
34.9

(23.4‒51.1)
31.0

(16.8‒55.6)

x2
70.8

(59‒81.1)
82.3

(65.8‒97.8)
92.2

(50.4‒160.8)
99.8

(39.5‒224.3)

x3
882.6

(872.7‒893.2)
876.6

(861‒892.1)
874.9

(823.6‒914.3)
873.8

(785.7‒928.6)

ILR

x1
45.6

(41.8‒49.3)
41.2

(35.7‒46.7)
34.8

(22.9‒51)
30.9

(16.1‒54.8)

x2
70.8

(58.9‒81.1)
82.3

(65.8‒97.9)
92.2

(50.4‒160.2)
99.7

(39.5‒223.1)

x3
883.6

(874.1‒895.1)
876.5

(861.1‒892.4)
873.0

(811‒911.5)
869.5

(751.0‒922.8)

Note: Component x1 is the mortality under 1 month; x2 the mortality between 1 month and 5 years; and x3 the survival beyond 5 years.

A closer analysis of the differences between LOGIT and ILR estimates for all
countries (Figure 3) reveals that the average difference is 0.9 points per mil, which is
negligible for all practical purposes. The maximum differences are found in Liberia,
reaching 5.28 and 6.03 per mil for the NMR and U5MR, respectively. Furthermore,
although somewhat difficult to decipher from Figure 3, the differences in U5MR are
slightly higher than in NMR. This is because U5MR is obtained from the sum of 𝑥1 and
𝑥2 estimates, while NMR is directly 𝑥1. Moreover, the differences between ILR and
LOGIT are nearly zero for years with available data, since estimates are close to the
observed mortality rates.
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Figure 3: Differences, in absolute value, between estimates obtained with logit
and isometric log-ratio transformations for (a) neonatal (NMR) and
(b) under-5 (U5MR) mortality rates

Note: Notice that the countries with the greatest differences (i.e., more than 2 points per mil in 2018) are Liberia (LBR), Botswana
(BWA), Lesotho (LSO), and Guinea (GIN).
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However, although both LOGIT and ILR transformations yield similar mortality
estimates, only the ILR estimates strictly fulfil the unit-sum constraint (Figure 4). In the
majority of countries, the sum of mortality estimates with LOGIT is higher than 1. In
Lesotho, Botswana, Somalia, and Liberia, for instance, it reaches 1.0951, 1.0584, 1.0305,
and 1.0113, respectively (i.e., 95.1, 58.4, 30.5, and 11.3 deaths per 1,000 live births).

This non-unit sum is even more significant for the 90% confidence intervals (Figure
5). For example, in 2018 the 90% confidence intervals of the sum of mortality estimates
in these four countries were (1.0015‒1.3463) in Lesotho, (1.0060‒1.2003) in Botswana,
(0.9745‒1.5971) in Somalia, and (1.0015‒1.1987) in Liberia. By contrast, the sum of the
estimates based on ILR-transformed data adds up to 1 in all cases.

Therefore, on theoretical grounds, the LOGIT transformation is not appropriate for
child mortality data since it is not consistent with its compositional nature. Indeed, a
univariate analysis for each part of the D-part compositions implies merging all
remaining parts (i.e., 𝑥𝑖 1 − 𝑥𝑖⁄ ), and such amalgamation does not preserve Aitchison
distances in the simplex. As Egozcue and Pawlowsky-Glahn (2005) explain, “distances
of amalgamated compositions have a complicated, non-monotonic behaviour with
respect to original distances”. The change of monotony of distances affects simple
operations, such as centring and scaling, and leads to an inconsistent geometric and
algebraic representation of compositions. On the contrary, by using 𝐷 − 1 multivariate
log-ratios that form an orthonormal basis, the ILR transformation can conserve the metric
properties of compositions, and thus their unit-sum constraint. The only case in which
LOGIT is valid is when we are dealing with a two-part composition, where the two parts
are exclusively associated with each other (i.e., 𝑥1 𝑥2⁄ = 𝑥1 (1− 𝑥1)⁄  and 𝑥2 𝑥1⁄ =
𝑥2 (1 − 𝑥2)⁄ ). Indeed, the ILR can be considered a generalization of the LOGIT
transformation when compositions have more than two parts (Lloyd, Pawlowsky-Glahn,
and Egozcue 2012).

On a practical level, although child mortality estimates are equivalent across the two
transformations, this only happens because the data is homogenously balanced: i.e., none
of the NMR and U5MR rates approach the boundary values of 0 or 1,000 deaths. As
countries continue to reduce their child mortality rates and move closer to 0, the use of
the LOGIT transformation will also become more problematic from a practical
perspective: child mortality estimates can be misleading at best, and uninterpretable at
worst.
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Figure 4: Sum of mortality estimates with (a) logit and (b) isometric log-ratio
transformations

Notes: Only the ILR transformation fulfils the unit-sum constraint, whereas the LOGIT transformation results in sums higher than 1,
especially in Lesotho (LSO), Botswana (BWA), Somalia (SOM) and Liberia (LBR).
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Figure 5: Sum of mortality estimates with logit and isometric log-ratio
transformations in: (a) Lesotho, (b) Botswana, (c) Somalia,
and (d) Liberia

Notes: The LOGIT estimates are in red; the ILR estimates are in blue. The shaded areas represent the 90% confidence intervals. Only
the ILR transformation (in blue) fulfils the unit-sum constraint for both observed and simulated data. In years with data the LOGIT
transformation (in red) provides estimates closer to the unit sum (hence the narrower confidence intervals).
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4.2 Comparative analysis 2: ILR vs. UN IGME estimates

Figure 6 shows the comparison of the NMR and U5MR obtained with ILR and those
provided by UN IGME for Malawi, Mauritania, Lesotho, and Liberia. As expected,
estimates differ significantly between the two approaches, especially regarding the trends
and their confidence intervals.

However, the comparison between ILR and UN IGME estimates is not direct, for
three main reasons. First, the UN IGME employs a Bayesian penalized spline regression
with B-splines, in which information on spline coefficients is exchanged across countries
and time periods. This information exchange allows for a better assessment of child
mortality trends in countries or periods with limited data. We, on the other hand, fit a
simple generalized additive model (GAM) to each country separately. Second, unlike us,
the UN IGME’s B3 model adjusts for biases due to HIV/AIDS-related mortality,8 which
can confound trend analysis.

Third and foremost, ILR and UN IGME estimates rely on different input data. As
detailed in Section 3.2, our regressions only consider year series with observations for
both NMR and U5MR (i.e., those that for a given year include information on both
mortality rates). In the case of Malawi, for example, our estimates are based on 25 data
points, whereas the UN IGME regression model uses all 164 and 35 observations
available for the estimation of NMR and U5MR, respectively. This mismatch in the input
data becomes more evident in countries like Lesotho and Liberia, where ILR estimates
are constructed with merely 5 and 4 observations for each mortality rate, resulting in
utterly different NMR and U5MR trends. For instance, in Lesotho, ILR estimates show a
substantial increase in U5MR from 2000 onwards (by nearly 170 deaths per 1,000 live
births), mainly because the latest observations are excluded from the analysis. These
fewer data also lead to wider confidence intervals, especially in later years. In the case of
Liberia, our estimates in 2018 are 40.4 for NMR and 84.8 for U5MR, with 90%
confidence intervals of (5.5‒192.4) and (19.7‒534.2).  This translates into interval widths
of 187.0 and 514.5 deaths per 1,000 live births for NMR and U5MR, respectively. On the
contrary, the widths of the UN IGME’s confidence intervals are only 25.3 and 51.3 deaths
per 1,000 live births for NMR and U5MR, respectively.

8 In populations severely affected by HIV/AIDS (i.e., those where the prevalence reaches 5% of the adult
population), there is a correlation between the mortality risk of mothers and their children: HIV-positive
children are more likely to die than other children, and are less likely to be reported, since their mothers are
more likely to die also. Therefore, child mortality estimates are biased downwards. That is why the UN IGME
adjusts for bias due to AIDS in child mortality estimation.



Demographic Research: Volume 43, Article 43

https://www.demographic-research.org 1285

Figure 6: Neonatal (NMR) and under-5 (U5MR) mortality rates for:
(a) Malawi, (b) Mauritania, (c) Lesotho and (d) Liberia

Notes: Estimates obtained with the isometric log-ratio transformation are in blue; those provided by the UN IGME are in red. The
shaded areas represent the 90% confidence intervals. The solid dots represent the data points used by both ILR and the UN IGME’s
model, while the hollow dots represent those used only by the UN IGME’s model.
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The UN IGME’s B3 model is thus more sophisticated and complete than the one we
employ. However, it suffers from one key drawback: it employs LOG and LOGIT
transformations to child mortality rates, which, as demonstrated in the previous section
(4.1), do not guarantee consistent distances and statistical analysis when working with
compositional data. This inconsistency might go unnoticed in the current child mortality
estimates provided by the UN IGME, where survival rates beyond 5 years are not reported
and hence the unit-sum constraint cannot be checked. Yet this remains an important issue
to be addressed, especially from a theoretical standpoint. Moreover, as countries continue
to witness a decline in child mortality and estimates move towards values closer to zero,
the issue of compositional incoherence can further exacerbate spurious correlations and
misleading inferences.

A compositional approach circumvents this pitfall, but at the expense of data
availability. As we have seen, to undertake a compositional analysis of child mortality
we must exclude time series with incomplete data from the regression. This has a
substantial impact on the number of observations considered, since merely 18% of the
time-series from the UN IGME database include observations for both NMR and U5MR
in sub-Saharan Africa. The reason why there is less data available for NMR than for
U5MR is simple: neonatal mortality cannot be indirectly estimated from summary birth
histories, as is done for under-5 child mortality (Burstein et al. 2018).  In extreme cases
such as Gambia, where there is no complete time series, the country is omitted altogether
from the analysis. In other cases, the limited data available for NMR means that
regressions are based on very few observations. Thus, ILR-based trends should be taken
with caution, especially when comparing them to those provided by the UN IGME.

Given the scarcity of complete data for most developing countries, the critical
question is therefore whether we should prioritize more conceptually sound mortality
estimates, even if this entails significantly fewer observations in the regression analysis
and hence less interpretable trends. The answer to this question is not that straightforward.
On the one hand, theoretically inconsistent estimates can result in a misleading overview
of the health situation and child mortality trends, especially when the data are close to
their range limits (0 or 1,000 deaths). On the other hand, trend analysis based on few
observations must be interpreted with care, as the risks of getting nonsensical results are
relatively high.

The ideal solution to this intricate problem lies in increasing the amount of complete
data available for both NMR and U5MR. However, due to the prohibitive and time-
consuming nature of household surveys, the most cost-effective option requires better
utilization of existing data. This may be done in two ways. First, missing values of NMR
or U5MR can be filled by imputation techniques (both parametric and nonparametric),
but using replacement strategies that do not distort the covariance structure of the
involved parts (Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn 2003; Quispe-
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Coica and Pérez-Foguet 2020). Second, data availability for neonatal mortality – which
is the indicator with the fewest observations – can be improved by developing and
validating new indirect estimation methods that derive rates from summary birth
histories, as is currently done for under-5 mortality. As Burstein et al. (2018) highlight,
“[the] use of such methods allows research to utilize a massive amount of SBH data for
the estimation of trends in neonatal mortality” and consequently “further improve the
evidence base for monitoring of trends and inequalities”.

4.3 Geographical analysis: Patterns in sub-Saharan Africa

The 1990‒2018 evolution of the neonatal (NMR) and under-5 (U5MR) mortality rates of
sub-Saharan African countries based on our ILR compositional approach are shown in
Figure 7. Child mortality rates show a substantial decline in the last 30 years in all sub-
Saharan African countries except for Botswana, Somalia, and Sudan in the case of NMR,
and Lesotho, and Togo in the case of U5MR. However, much of this rise in child
mortality is due to the very few data points used in the regression. In Botswana, for
instance, only 4 data points are included in the model, the most recent being in 2005.
Furthermore, in nearly half of the countries, the analysis is done with less than 10
observations (as seen in Table 2), which hinders the reliability of mortality estimates.
Consequently, in countries with limited data, patterns in child mortality should be taken
with caution.

On the other hand, in 2018 only three countries – Eritrea, Cape Verde, and
Madagascar (7.9% of all countries) – had already met the SDG 3 target 3.2 of reducing
neonatal and under-5 mortality rates to 12 and 25 deaths per 1,000 lives births by 2030,
respectively. The distribution of NMR for the other countries is as follows: 44.7% of
them are between the target value and two-times the target value (i.e., between 12 and 24
deaths), 34.2% are between two- and three-times the target value (24 and 36 deaths), and
13.2% had rates over triple the target. For U5MR, these figures are 23.7%, 26.3%, and
42.1%, respectively, which presents a far less hopeful picture of under-5 mortality.

Furthermore, a geographical analysis of child mortality estimates shows notable
disparities between sub-Saharan African regions. Maps of both the NMR and U5MR
rates show a concentration of high mortality in the regions of Western and Central Africa.
For instance, in 2018 the average NMR in countries of Western and Central Africa is
higher than 25 per million, while the regional average in Southern and Eastern Africa
(excluding Botswana and Somalia) is less than 18.
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Figure 7: Evolution of child mortality in sub-Saharan Africa in 1990, 2000,
2010, and 2018, for (a) neonatal (NMR) and (b) under-5 (U5MR)
mortality rates, based on the estimates obtained with isometric-log
ratio transformation

Notes: Countries with mortality rates lower than the SDG 3 targets are in green. Countries with mortality rates greater than the target
values are in red. Countries with insufficient data that are excluded from the analysis are In grey, Notice that the colour ranges are
different for the NMR and U5MR maps because of the different SDG 3 targets (i.e., 12 and 25 deaths per 1,000 live births for NMR
and U5MR, respectively).
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One immediate policy implication can be drawn from this geographical analysis: to
achieve the SDG 3 targets for child mortality, policymakers should dedicate more means
to increasing access to and use of maternal and childcare services, especially in Western
and Central African countries. In turn, this requires a stronger political commitment from
the national governments along with international support.

5. Conclusion

The estimation of child mortality is challenging for the vast majority of developing
countries, where vital registration systems are often incomplete or unreliable and thus
models are required to construct neonatal (NMR) and under-5 (U5MR) mortality
estimates for years of interest. Such child mortality rates are, by definition,
compositional: the individual rates of children dying in the different age intervals (i.e., 0
to 28 days and 29 days to 5 years) and surviving the age of 5 are not independent of each
other but related by being probabilities.

In this paper, we explore the application of compositional data analysis to child
mortality estimation. In particular, we compare two data transformation approaches – the
log of the odds (LOGIT) and the isometric log-ratio (ILR) – and assess their theoretical
and practical suitability for estimating child mortality levels and trends.

Three key findings emerge from our study. First, while the LOGIT transformation
is widely used in child mortality estimation (for instance, in the UN IGME’s B3 model),
it is only theoretically valid to analyze two-part compositions. When applied to three-part
compositions such as child mortality data, LOGIT does not address the compositional
characteristics inherent in probabilities, such as the unit-sum constraint. Second, the ILR
transformation leads to more conceptually sound results, but to the detriment of data
availability. A compositional approach requires the exclusion of incomplete time series
with missing values for NMR or U5MR, which is relatively common in child mortality
data. This loss of data limits the ability to produce plausible trends for some countries.
Third, two solutions are possible to fill this critical gap in data on child mortality and
improve its trend analysis. First, missing values in the current UN IGME dataset can be
replaced through imputation techniques that preserve the compositional structure of the
data. Second, data for NMR – which is the indicator with fewer available observations –
can be improved with new indirect estimation methods that expand the potential utility
of summary birth history data.

However, it is worth noting that our proposal does not propose replacing the UN
IGME’s model with our ILR-based regression approach, but rather underscores the need
to account for the compositional nature of child mortality data. It is clear that our model
is less sophisticated than the well-established B3 model, but it contains some new features
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that can be incorporated for more theoretically robust modelling of child mortality. In
this sense, future research should explore new methods for Bayesian penalized regression
modelling of compositional data.
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