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Research Article

Smoothing migration intensities with P-TOPALS

Sigurd Dyrting1

Abstract

BACKGROUND
Age-specific migration intensities often display irregularities that need to be removed by
graduation, but two current methods for doing so, parametric model migration schedules
and non-parametric kernel regression, have their limitations.

OBJECTIVE
This paper introduces P-TOPALS, a relational method for smoothing migration data that
combines both parametric and non-parametric approaches.

METHODS
I adapt de Beer’s TOPALS framework to migration data and combine it with penalised
splines to give a method that frees the user from choosing the optimal number and po-
sition of knots and that can be solved using linear techniques. I compare this method
to smoothing by model migration schedules and kernel regression using one-year and
five-year migration probabilities calculated from Australian census data.

RESULTS
I find that P-TOPALS combines the strengths of both student model migration schedules
and kernel regression to allow a good estimation of the high-curvature portion of the curve
at young adult ages as well as a sensitive modelling of intensities beyond the labour force
peak.

CONCLUSIONS
P-TOPALS is a useful framework for incorporating non-parametric elements to improve
a model migration schedule fit. It is flexible enough to capture the variety of profiles seen
for both interstate and regional migration flows and is naturally suited to small popula-
tions where observed probabilities can be highly irregular from one age to the next.

CONTRIBUTION
I demonstrate a new method for migration graduation that brings together the strengths of
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both parametric and non-parametric approaches to give a good general-purpose smoother.
An implementation of the method is available as an Excel add-in.

1. Introduction

Researchers working on migration and population projections have long been interested
in generating smooth curves of age-specific migration intensities using graduation. The
desire of policy makers, health and education administrators, utility providers, and town
planners for population projections at ever finer spatial scales has meant that practitioners
must estimate migration rates for increasingly small populations, using smoothing to gen-
erate stable age-specific probabilities from highly irregular observations (Wilson 2010).
Smoothing is also an important tool for extrapolating rates to advanced ages or more
generally for generating a complete curve from sparse data (Rogers, Little, and Raymer
2010). For comparative research, demographers require smooth schedules to locate key
features, such as the age at which migration intensity reaches its maximum value (Bell
et al. 2002; Rees et al. 2002).

Age-specific migration intensity follows a persistent pattern related to major life
course events (Bernard, Bell, and Charles-Edwards 2014): intensities are high in the first
years of life, decreasing steadily with age in a manner that reflects the mobility of a child’s
parents. At early adult ages they increase rapidly in response to movements related to
work opportunities, reaching a peak in the 20s and thereafter declining as careers and
families are established, with an occasional secondary peak at retirement ages. This
profile was first given a mathematical form by Rogers, Raquillet, and Castro (1978),
who assigned exponential functions to childhood, labour force, and retirement peaks and
a constant curve to account for migration independent of age, calling the result a Model
Migration schedule (MMS). A fourth exponential component was added by Rogers and
Castro (1981) and Rogers and Watkins (1987) to capture the occasional sustained increase
in migration intensity with age after retirement associated with movements to access aged
care, and a fifth component was added by Wilson (2010) to account for the highly age-
concentrated migration of young adults entering tertiary education.

Since their introduction, model migration schedules have been used in a range of
contexts, with results confirming both the regular features of the age profile of migration
and the usefulness of model migration schedules for fitting them (see Raymer and Rogers
(2008) and references therein). Fitting an MMS is not an automatic process. Users need
to choose which components to include, set good initial values for each parameter, and de-
vise strategies for ensuring they converge to a sensible solution. Bernard and Bell (2015)
compared model schedules with two non-parametric smoothing methods using five-year
transition data and found that when correctly specified and fitted, model schedules per-
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formed better, but otherwise kernel regression and cubic splines were more reliable. In
particular, kernel regression had low variance for small populations and low bias for large
populations. Even if an MMS is correctly specified and fitted, it does constrain the shape
of the components. This can be a strength when trying to infer schedules from incom-
plete or noisy observations but becomes a drawback when the objective is to investigate
deviations from the paradigm. Congdon (2008) investigated Bayesian approaches to mi-
gration graduation and concluded that non-parametric models could detect features in the
migration data that MMS could not.

In this article I use interstate migration data at three spatial levels to illustrate the
changing requirements of smoothing methods as the population at risk of migrating de-
creases. Data for all interstate moves displays a low level of noise, and the main require-
ment of a smoothing method is to accurately fit the observed schedule. State-specific
migration profiles can show deviations from the MMS paradigm and an increased level
of noise. In this case smoothing methods need to be flexible in the range of profiles they
can model and be able to account for the age-dependent size of sample error, particularly
for advanced ages. Data for sub-state regions can display very high levels of noise, so
that, as the population decreases, it becomes progressively difficult to resolve any feature
of the schedule other than its overall level. In this case it is not difficult for a smoothing
method to fit observed intensities within the limits set by sample noise. Instead there is
more emphasis on the plausibility of the smoothed profile.

MMS and kernel regression methods have their strengths, but we will see that each
also has inherent limitations. MMS is good at fitting the highly age-concentrated fea-
tures seen in one-year curves but lacks a sensitive treatment of probabilities beyond the
labour force peak. Kernel regression works well when the distribution is well approxi-
mated by a polynomial, as it usually is for five-year probabilities, but not over regions of
high curvature, which is often seen in one-year probabilities, or when observed probabil-
ities are unstable across ages, as they often are for small populations or advanced ages.
The aim of this paper is to propose a new method that combines the strengths of both
parametric and non-parametric approaches and that can serve as an additional tool for
migration graduation. My approach is to combine de Beer’s (2011) relational Tool for
Population Analysis using Linear Splines (TOPALS) with Eilers and Marx’s (1996) pe-
nalised B-splines (P-splines) to estimate a complete curve of migration probabilities and
to show how the resultant nonlinear smoothing equations can be solved using only linear
techniques.

In the next section, I summarise the smoothing problem, including a review of
transition-style migration data. In Section 3, I introduce the P-TOPALS method and
demonstrate its solution by iterated linear regressions. In Section 4, I consider the prob-
lem of graduating interstate out-migration as an example of a case where sample noise
is small, comparing P-TOPALS with kernel regression and MMS and showing how it
can be used to correct a parametric fit and incorporate non-polynomial elements into the
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age profile. In Section 5, I illustrate how it can be used to smooth state-level in- and out-
migration, with emphasis on its flexibility in fitting a range of profile shapes. In Sections 6
and 7, I illustrate how it can be used to smooth interstate and intrastate migration profiles
at the sub-state level, with emphasis on its performance under conditions of increasing
levels of noise.

2. Smoothing migration probabilities

Migration data of transition type consists of observations

nM =

 nM0
...

nMω

 and N =

 N0

...
Nω

 (1)

of nMx movers of age x + n out of an initial population Nx of age x. Migration prob-
abilities conditional on survival in the country (hereafter just probability) are calculated
by taking the ratio

nm̃ =
nM

N
, (2)

where here and in the following all matrix operations and functions act elementwise un-
less stated otherwise. The problem we consider here is where nm̃ is reported in single-
year age groups and our objective is to find a vector

nm =

 nm0
...

nmω

 (3)

that in some sense fits nm̃ and is smooth. Conceptually we regard the vector nm̃ as con-
sisting of persistent components nm which we seek to extract and transient features we
want to remove. Within a model of migration as a random event occurring to a population
exposed to the risk of moving, the transient features have their origin in sampling noise,
which becomes relatively less important as the population increases and which shows
itself as uncorrelated fitting errors from one age to the next.
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3. P-TOPALS

De Beer (2011, 2012) first introduced TOPALS as a tool for fitting and projecting fertility
and mortality schedules. The approach is motivated by the observation that by expressing
age-specific rates as a product of a standard and a spline, spline weights are stabilised,
leading to more realistic projections, and the relationship between target and standard is
allowed to be more flexible, leading to better fits.

At the national level, where observed rates show the least amount of noise, de Beer
(2011, 2012) showed how the spline weights could be solved in a simple and straightfor-
ward way by imposing the condition that the fitted curve equals the observed curve at the
spline knots. For graduating death rates at the subnational level, Gonzaga and Schmert-
mann (2016) showed how to determine the spline weights, taking into account potentially
high levels of irregularity, by minimising a Poisson log likelihood function. One common
criticism of spline models is that their weights are difficult to interpret because they are
not directly related to the value of the fitted curve. Gonzaga and Schmertmann (2016)
showed how this could be overcome using linear B-splines (de Boor 2001), which have
weights that equal the level at the knot.

Choosing the optimal number and position of knots for a spline fit is not straight-
forward. Typically, a relatively fine grid is used in regions where the function changes
rapidly and a coarse grid is used where it changes slowly (de Beer 2011, 2012; Gonzaga
and Schmertmann 2016). An alternative is the P-spline approach (Eilers and Marx 1996),
where knots form a fine grid and smoothing is controlled by adding a term to the log like-
lihood function proportional to a measure of roughness. In this paper I combine TOPALS
with P-splines to give a method, P-TOPALS, where smoothing is controlled by a single
number, the roughness penalty parameter.

In order to apply P-TOPALS to smooth migration intensities, we need a framework
that is independent of the interval n. This is achieved by expressing nm in terms of
probabilities at one-year intervals mk

nmx = 1−
∏

x≤k<x+n

(1−mk). (4)

For intervals greater than one year (n > 1) quantities mk are to be understood as implied
one-year probabilities differing from actual probabilities to the extent that there has been
either significant change in migration intensities over the n years preceding the census
or significant return/repeat migration and mortality over the same period (Rees 1977). In
the TOPALS approach we represent m relative to a standard migration curve m̂

logm = log m̂+B · θ, (5)
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where m̂ is an (ω + 1) × 1 vector, B is an (ω + 1) × l matrix of B-spline functions
arrayed columnwise, θ is an l × 1 vector of spline weights, and A · B denotes matrix
multiplication. The number of B-splines, l is determined by the number of knots (de Boor
2001). Standard TOPALS uses linear splines but higher-order polynomials can also be
used.

Following Gonzaga and Schmertmann (2016) I determine spline weights θ by max-
imising the function

L(θ) = N ′ · y − λ

2
θ′ ·D′k ·Dk · θ, (6)

where

y = nm̃ log nm− nm (7)

and Dk is the k-order (l− k)× l difference matrix. Here A′ is the transpose of matrix A.
The first term in Equation (6) is the log likelihood of observing nMx movers assuming
Poisson counts with mean nmxNx. The second term introduces a penalty proportional to
the square of the kth order finite difference of θ.

Gonzaga and Schmertmann (2016) chose λ = 2 and k = 1 and used the second term
to stabilise mortality estimates for very small populations. To find a smooth mortality
profile they used a small number of knots (ages 0, 1, 10, 20, 40, 70, and 100), which makes
solving Equation (6) feasible using standard nonlinear optimisers. Following Eilers and
Marx (1996), I handle the question of the optimal position and number of spline knots by
assuming a relatively large number and using the penalty as a means of controlling the
smoothness of the fit.

With a large number of knots it is no longer feasible to solve Equation (6) using a
multidimensional optimiser. Therefore, an alternative solution method is needed. Max-
imisation of L leads to a system of nonlinear equations for θ, which can be solved by
iterative linear regressions. Given an approximation θ̄, the updated value θ is calculated
by solving the linear equation

Q(θ̄) · θ = b(θ̄), (8)

where

Q(θ) = G′(θ) ·W (θ) ·G(θ) + λD′k ·Dk (9)
b(θ) = G′(θ) · V · (nm̃− nm) +G′(θ) ·W (θ) ·G(θ) · θ (10)
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and

W (θ) = diag(nmN) (11)
V = diag(N). (12)

The derivation of this iteration and the expression for G(θ) are given in Appendix A. I
start the iteration with the constant vector

θ = log

(
1

n

∑
x nm̃x∑
x m̂x

)
. (13)

3.1 Choosing the penalty

There are a number of criteria for choosing the penalty λ that gives the optimal smooth-
ness (Eilers and Marx 1996). One popular method is Schwarz’s (1978) Bayesian infor-
mation criterion (BIC): λ is found by minimising the function

BIC(λ) = −2N ′ · y + dim(θ,λ)× log(1 + ω), (14)

where the first term is the deviance of the fit (plus a constant) and

dim(θ,λ) = tr(H) (15)

is the effective dimension of θ calculated using the trace of the hat matrix of the linearised
problem

H = (G′ ·W ·G+ λD′k ·Dk)
−1 ·G′ ·W ·G (16)

and A−1 denotes the matrix inverse of A. Occasionally BIC can give a penalty that is too
large, in which case a good alternative is Akaike’s (1974) information criterion (AIC): λ
is found by minimising the function

AIC(λ) = −2N ′ · y + 2 dim(θ,λ). (17)

Criteria such as Equations (14) and (17) seek to find the optimal trade-off between
a small deviance and a small dimension. If λ is zero, the deviance will be at its smallest
value but the effective dimension will equal its greatest value (the number of knots). As λ
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increases, the effective dimension decreases to its minimum value k but the deviance will
increase to its maximum value because there are fewer fitting parameters. As a function
of the population N , we can say that, all else being equal, the optimal λ will tend to 0 as
N increases and will become large as N decreases.

3.2 The role of the P-spline

One of the strengths of model migration schedules is that properly calibrated, they are
guaranteed to give sensible age profiles. One of their weaknesses is their parametric
nature, which imposes limits on their fidelity. The P-TOPALS framework can be used
as a means of improving a fit by including non-parametric elements. To illustrate this,
consider the special case of one-year probabilities (n = 1). Let m̂ be an MMS fit to
an observed migration profile. The quality of the fit can be judged by examining the
residuals

r = log m̃− log m̂ (18)

for structure. For example, when they used standard MMS to fit Chilean inter-provincial
and inter-municipal migration probabilities, Bernard and Bell (2015) found that residuals
had a persistent and strong age profile and positive auto-correlation. Our objective is then
to find an improved fit m such that the new errors

ε = log m̃− logm (19)

are uncorrelated. Substituting Equation (18) and Equation (19) into Equation (5) and
rearranging gives the relation

r = B · θ + ε, (20)

which shows that the role of the P-spline is to fit the residuals. Equation (6) tells us that
using P-TOPALS will never lead to a worse fit in the sense that the weights θ will only
be non-zero if m gives a greater log likelihood than m̂.

3.3 The role of the standard

Expressing m in the form Equation (5) is convenient for projecting rates because conver-
gence to a standard can be modelled by letting θ → 0 over time (de Beer 2011, 2012),
but it is also useful for reducing the number of knots necessary to fit a schedule. The
reason is that polynomial approximations struggle in regions close to either a vertical
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http://www.demographic-research.org


Demographic Research: Volume 43, Article 55

asymptote (the first year of life for mortality) or a horizontal asymptote (near age 15 or
50 for fertility). Expressing m in the form Equation (5) allows us to effectively remove
these elements from the problem by packing them into the standard m̂. This is also the
reason why for smoothing purposes the choice of the standard is not that important when
the population is reasonably large (provided it includes the non-polynomial parts of the
schedule), as has been observed by both de Beer (2011) and Gonzaga and Schmertmann
(2016).

The role of the standard can be made more precise by considering the two limits of a
small and large penalty. When the optimal penalty is chosen using one of the information-
based criteria of Section 3.1, these two cases correspond to the large N and small N
limits. When λ is small, the case used by both de Beer (2011, 2012) (λ = 0) and Gonzaga
and Schmertmann (2016) (λ = 2), the first term on the right-hand side of Equation (6)
dominates. In this case two standards m̂1 and m̂2 that differ precisely by a B-spline

log m̂1 = log m̂2 +B · φ12 (21)

will give identical fitted curves m with spline weights related by

θ1 = θ2 − φ12. (22)

In other words, B-spline deformations applied to the standard will have no effect on the
fitted curve. A corollary to this result is that for smoothing in the presence of a small
penalty, the role of the standard is to model those portions of the age distribution that are
not well represented by a B-spline – that is, those parts that are not locally polynomial.
We will see that for one-year migration probabilities, these are ages where the change in
level is effectively discontinuous, and for multi-year probabilities, these are ages where
the change in slope is discontinuous.

When λ is large, the second term on the right-hand side of Equation (6) will domi-
nate. For the case k = 1, this leads to the solution

θ = ιθ0, (23)

where θ0 is a free parameter and ι is a vector of ones. Since B-splines form a partition of
unity, that is B · ι = 1, it follows that

m = m̂eθ0 , (24)

which shows that in this case, the role of the standard is to determine the entire profile
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of migration probabilities up to a multiplicative constant. We will see that this property
works to stabilise fits to data from small populations.

4. Application to interstate migration

Interstate migration probability is a measure of national internal mobility obtained by
dividing the number of people who have moved interstate over a specified period by the
total population, movers and non-movers. It is an ideal test case for graduation methods
because it samples the entire population and is therefore most free of the confounding
effect of noisy data.

Migration data by state and single year of age over one- and five-year intervals was
obtained from the Australian Bureau of Statistics (ABS) 2016 Census of Population and
Housing and used to calculate raw interstate migration probabilities out to age ω = 90 .
The results are shown in Figure 1, together with curves obtained using kernel regression
and MMS. For the kernel regression fit I chose local linear polynomials and a Gaussian
kernel (Fan and Gijbels 1996). The kernel bandwidth was calculated using Ruppert,
Sheather, and Wand’s (1995) rule-of-thumb plug-in bandwidth selector. For the MMS fit
I chose Wilson’s (2010) 16-parameter student model

mx = a1 exp(−α1x) (childhood)
+a2 exp

(
−α2(x− µ2)− e−λ2(x−µ2)

)
(labour force)

+a3 exp

(
−
(

(x−µ3)
σ3

)2
)

(retirement)

+a4 exp (α4x) (elderly)
+a5 exp

(
−α5(x− µ5)− e−λ5(x−µ5)

)
(student)

+c (constant)

(25)

because Australian interstate migration over a one-year interval has a well-defined student
migration peak. I set the elderly component to zero because the data does not exhibit a
post-retirement increase in migration intensity. An initial guess for the remaining 14
parameters was refined using the sequential method described in Wilson (2010) and then
a final polishing of the values was done by minimising the sum of squared errors using a
nonlinear optimiser.

The top panel of Figure 1 shows fits to one-year data. We see that MMS performs
better than kernel regression over the 15–25 age range. It captures the sudden jump from
age 16 to 17 and the minor peak at age 18, whereas kernel regression gives a more grad-
ual increase from age 14 and a monotonic increase in level that peaks at age 24. Kernel
regression is a bad fit for these ages mainly because it assumes migration is well approxi-
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mated locally by a polynomial function of age when in fact the change in probability from
16 to 17 is effectively discontinuous. A second reason is that the rule-of-thumb bandwidth
selector calculates a constant bandwidth that is applied to all ages. Automatic variable
bandwidth selectors have been proposed (Fan and Gijbels 1996), but implementations are
not widely available at this time.

What is perhaps not so clear is that after age 30, kernel regression provides a better
fit than MMS. This can be seen in Figure 3, which plots the cumulative sum of squared
errors from age 30 in the top panel and age-specific standardised residuals in the bottom
panel.1 Comparing the slopes of the cumulative sum of squared error curves and the
amplitudes of the standardised residuals we see that for MMS errors are accumulated at
a rate greater than for kernel regression. The relatively poor performance of MMS, over
this age range is probably due to limitations imposed by a parametric profile. Thus we
see that for one-year interstate migration, neither method can be preferred over the entire
age range. As discussed in Section 3.2, P-TOPALS can be used to improve an MMS
fit. In this case I take as the standard m̂ the student MMS fit, given in the top panel of
Figure 1. For the P-TOPALS fit I used linear basis splines with knots spaced three years
apart from ages 0 to 90 and a linear penalty (k = 1) with the penalty determined by
the BIC condition. The top panel in Figure 2 shows the P-TOPALS fit. The fit to student
peak has been preserved and as Figure 3 shows, after age 30 the amplitude of standardised
errors has been reduced and the cumulative sum of squared errors grows at the same rate
as for kernel regression.

The bottom panel of Figure 1 shows fits to five-year data. Comparing one- and five-
year data we see that the five-year age profile is smoother. In particular the increase in
migration intensity leading to the labour force peak is more gradual than for one-year
migration intensities. As a result, the kernel regression fit has improved over these ages.
Figure 4 shows the cumulative sum of squared errors, in the top panel and standardised
residuals in the bottom panel. We see that near age 12, both kernel regression and MMS
have a large spike in standardised residual and a consequent jump in cumulative sum of
squared errors but the size is smaller for kernel regression. Beyond age 30, comparing
the slopes of the cumulative sum of squared error curves and the amplitudes of the stan-
dardised residuals we see that for MMS, errors are accumulated at a rate greater than for
kernel regression.

1Residuals are standardised by dividing by the Poisson standard deviation
√

nm/N .
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Figure 1: Australian interstate migration probabilities 2016, two smoothing
methods
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Figure 2: Australian interstate migration probabilities 2016, smoothing with
P-TOPALS
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Figure 3: Australian interstate migration 2015–2016, smoothing errors from
age 30
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For multi-year probabilities, life course events are imprinted not only on the level of
the age profile but also on its slope. For example, raw five-year probabilities in Figure 1
display a sudden change in slope at age 12 which suggests the existence of a student peak
in the implied one-year probabilities. This can be seen by expanding Equation (4) to
terms first order in mk and taking the difference to get

∆nmx = nmx+1 − nmx ≈ mx+n −mx, (26)

which shows that a sudden increase in the slope of the five-year probability at age 12,
indicates a jump in the implied one-year probability at age 17. Both kernel regression
and MMS are over-smoothing near age 12, which is clearly demonstrated in Figure 4
by the sudden increase in the cumulative sum of squared errors and the large spike in
standardised residual that both methods display at this age. This is to be expected for
kernel regression because of its local polynomial assumption. In the case of MMS, this
is occurring because the choice of the square of absolute errors as a fitting metric tends
to favour fitting for ages where migration probability is highest, whereas the feature we
are trying to fit occurs over a small number of points at a low level. There are options for
improving the MMS fit over the student years. Changing the error metric from absolute to
relative errors worked for the 2006 census data but not for 2011. Increasing the weighting
of this part of the objective function relative to other ages gave good results, although the
fit after the labour peak became worse.

Section 3.3 showed how P-TOPALS can be used to add non-polynomial elements to
a fit. In this case I take as the standard m̂ the one-year P-TOPALS fit in the upper panel
of Figure 2, which has a jump in migration intensity at age 17. The bottom panel shows
the P-TOPALS fit to five-year data. We see that P-TOPALS is able to capture the sudden
change in slope, and as a result, Figure 4 shows a reduction in the spike in standardised
residuals at age 12 and a more gradual increase in the sum of squared errors over, ages
10 to 20. For ages 30 and over, the size of the standardised residuals and the slope of the
cumulative sum squared errors are very close to kernel regression.
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Figure 4: Australian interstate migration 2011–2016, smoothing errors
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Note: Age is in completed years at the beginning of the migration interval.
Source: Based on ABS data.

1622 http://www.demographic-research.org

http://www.demographic-research.org


Demographic Research: Volume 43, Article 55

5. Application to individual states

State in- and out-migration probabilities are measures of sub-national mobility obtained
by dividing the number of people who have moved to and from a state by the population
outside and within the state, respectively.

Data from the 2016 Australian Census of Population and Housing was used to cal-
culate raw age-specific in-migration and out-migration schedules for each of Australia’s
six states and two mainland territories over a one-year interval. The observed profiles for
Tasmania are shown in Figure 5, together with smoothed curves obtained using kernel
regression, student MMS, and P-TOPALS. Also shown is the 95% confidence interval
for observed intensities based on the P-TOPALS fit. For reasons of space, figures for the
other seven states and territories are given in Appendix B. Since one state’s departure is
another’s arrival, it follows that interstate migration is a weighted average of in-migration
or out-migration, where the weights are the population outside (in-migration) or within
(out-migration) a state as a fraction of the total. However, comparing the top panel of
Figure 1 with Figures 5, and B-1 to B-7, we see that there can be considerable deviation
from this average.

Table 1: Summary statistics for three smoothing methods applied to
Australian state and territory out- and in-migration probabilities,
2015–2016

State Out/In dev0 dev30 Notes Fig.
K M P K M P K M P

NSW Out 837 219 91 31 105 36 S L B-1
In 237 116 92 43 84 65 S

VIC Out 237 108 108 46 86 64 S B-2
In 529 111 104 61 76 73 S

QLD Out 299 125 97 55 92 72 S B-3
In 425 159 116 66 106 72 S L

WA Out 265 149 141 66 97 87 S B-4
In 129 207 154 71 125 88 L

SA Out 221 191 112 67 153 78 S L B-5
In 174 139 129 74 104 92 S

TAS Out 174 126 95 55 99 73 S L 5
In 150 145 163 75 108 105 S,E S

ACT Out 263 152 159 99 118 123 S B-6
In 926 212 181 105 149 120 S L

NT Out 188 146 139 78 97 98 S,E B-7
In 97 182 144 71 139 109 L

Note: Goodness-of-fit measures dev0 and dev30 are Poisson deviances for ages greater than or equal to a = 0
and a = 30, respectively, given by Equation (27). K, kernel regression; M, student model migration schedule for
all flows except WA and NT in-migration, which use the standard model migration schedule, Equation (B-1); P, P-
TOPALS. The ”Notes” column gives the author’s assessment of a fit’s deficiencies, if any: S, over-smoothing the
student peak; L, over-smoothing the profile after the labour peak; E, under-smoothing advanced ages.
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Figure 5: Tasmania one-year migration probabilities 2015–2016 by age,
three smoothing methods
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Source: Based on ABS data.
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Appendix B summarises the strategies used to fit the observed probabilities with our
three methods. Table 1 gives two summary statistics of fidelity of each fit: a measure of
the global fit, dev0, and a measure of the fit after the labour force peak, dev30, where the
variable deva, given by the expression

deva = 2
∑
x≥a

Nx [nm̃x log (nm̃x/nmx)− (nm̃x − nmx)] , (27)

is the Poisson deviance of the fit for ages a and over. Of the 16 schedules fitted, kernel re-
gression had the lowest value for dev0 for two cases (in-migration for Western Australian
and the Northern Territory), MMS had the lowest value for three cases (out-migration for
Victoria and the ACT, and in-migration for Tasmania), and P-TOPALS had the lowest
value for 12 cases. For each of the 16 schedules, kernel regression had the lowest dev30,
and except for Northern Territory out-migration, MMS had the highest dev30.

In Table 1 I also give my assessment of each fit’s deficiencies, if any, focussing on
three types: over-smoothing of the student peak, over-smoothing of the profile after the
labour force peak, and, for kernel regression, under-smoothing of the profile at ages 80
and over. Assessment was first made graphically and then checked against the measures
of global fit dev0 and post-labour force fit dev30.

Over-smoothing of the student peak or post-labour peak corresponded to large values
of dev0 and dev30, respectively. In general we see that student MMS provides a good fit
before the labour force peak but not always after it (see out-migration in Figures 5, B-1
and B-5, and in-migration in Figures B-3, B-4, B-6, and B-7). Kernel regression over-
smooths the student peak whenever it is present (see out-migration in Figures 5 and B-1
to B-7 and in-migration in Figures 5, B-1 to B-3, B-5, and B-6) but in general provides
good fits after it, with the smallest values of dev30. P-TOPALS gives good fits after the
labour force peak, showing remarkably similar age profiles to kernel regression despite
the two methods being based on different algorithms (see out-migration in Figures 5,
B-1, and B-5 and in-migration in Figures B-3, B-4, B-6, and B-7). The quality of the
P-TOPALS fit before the labour force peak depends on whether a student peak is present
and if so the choice of the standard. In its fit to Tasmania in-migration (Figure 5) we
see that the method is over-smoothing the student peak. In this case the standard was the
student MMS fit to in-migration aggregated over 2006, 2011, and 2016 censuses, which
had a less pronounced peak at age 18 than the 2016 curve.

There is an increase in the level of irregularity in observed migration rates as pop-
ulation N decreases from the larger states (see Figures B-1 to B-3) to the midsize (see
Figures B-4 and B-5) and the smaller ones (see Figures 5, B-6, and B-7). Student MMS
and P-TOPALS are robust but kernel regression can have problems smoothing for ad-
vanced ages where the population at risk of migrating is small and observed intensities
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are highly irregular. A symptom of this is the appearance of oscillations in the fitted age
profile for ages over 60 (see out-migration in Figure B-7 and in-migration in Figure 5),
with both cases corresponding to low values of dev30 when student MMS and P-TOPALS
values are close.

As discussed in Section 3.3, when N is sufficiently large, the P-TOPALS standard
will not be required for smoothing if the age-specific migration intensities do not exhibit
non-polynomial features. As an illustration of this I have used a flat standard m̂ = 1 in the
P-TOPALS fit to Western Australian and Northern Territory in-migration, which neither
have a strong student peak nor show excessive levels of sample noise (Figures B-4 and B-
7). In these two cases we see that the P-TOPALS fit is similar to the kernel regression
profile.

6. Application at the sub-state level

Interstate out-migration at the sub-state level is obtained by dividing the number of people
from a sub-state area who have moved interstate by the population in the area. Data from
the 2016 Australian Census of Population and Housing was used to calculate raw age-
specific interstate out-migration schedules for four areas within the Northern Territory
spanning three sub-state geographic divisions (Australian Bureau of Statistics 2016):
Darwin (SA4), Darwin Suburbs (SA3), Nightcliff (SA2), and Moil (SA2). From the
observed profiles for one-year and five-year intervals shown in Figures 6 to 9 we see that
methods for smoothing migration probabilities for populations at the sub-state level must
adapt to an increasing noise amplitude as the population size decreases and a changing
requirement from smoothing irregularities to imposing regularities (Rogers, Little, and
Raymer 2010).

The ABS, like other national statistical offices, provides a platform for the cus-
tomised tabulation of census data by remote server as part of a program to increase the ac-
cess and use of official statistics (Australian Bureau of Statistics 2019). The requirement
that publicly available data be non-disclosive means that irregularities in sub-state migra-
tion probabilities derived from such tables are due to two sources of noise: the random
nature of migration events and perturbations added to table cells as part of a confidential-
isation procedure (Thompson, Broadfoot, and Elazar 2013). Of the two numbers used
to calculate migration probability in Equation (2), perturbation has the greatest relative
impact on the migration flow nM because perturbation variance is a bounded function of
cell magnitude (Fraser and Wooton 2005; Wooton 2006; Australian Bureau of Statistics
2019). Neglecting the effect of perturbation on N and assuming that actual migration is a
Poisson process, it follows that the variance in estimates of migration probability derived
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from perturbed tables is given by

Var (nm̃) ≈ nm

N
+
Vp
N2

, (28)

where Vp is the perturbation variance. Equation (28) shows that perturbation noise in-
creases more rapidly than sample noise as N decreases and becomes the same order of
size as sample noise when the population per age group approaches the value

Np = 100
Vp

CMP
, (29)

where CMP is the crude migration probability (Bell et al. 2002). The value of Vp can be
estimated by comparing migration flows aggregated by five-year age groups with the sum
of migration flows by single year, from which I found that for one-year migration inter-
vals, Vp ≈ 2.3. The one-year crude interstate out-migration probability for the Northern
Territory is approximately CMP ≈ 7.8, which givesNp ≈ 30. For Nightcliff,N is below
this value for ages above 60. For Moil, N is below or close to this value for all ages. For
five-year migration intervals Vp ≈ 3.2. The five-year crude interstate out-migration prob-
ability for the Northern Territory is approximately CMP ≈ 23.0, which gives Np ≈ 14.
For Nightcliff, N is below this value for ages above 70. For Moil, N is below this value
for ages above 60.

The four sub-state areas, Darwin, Darwin Suburbs, Nightcliff, and Moil, form a
hierarchy, each enclosed by an area of higher order in the Australian Statistical Geography
Standard (NT, Darwin, and Darwin Suburbs, respectively). In the kernel regression fits I
used the same configuration as for Section 5: linear polynomials and a Gaussian kernel
with a global bandwidth calculated using the rule-of-thumb method. In the student MMS
fits I used the fitted parameter values of the enclosing area as starting values. Similarly,
for the P-TOPALS fits I used the fitted schedule of the enclosing area as the standard and
quadratic basis splines with penalty chosen using BIC. To account for perturbation noise
in the data for Nightcliff and Moil I used the adjusted exposure

N∗ =
N

1 +Np/N
, (30)

which follows from the condition that the adjusted variance nm/N∗ should approximate
the expression Equation (28).
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Figure 6: Darwin interstate out-migration probabilities 2016 by age, three
smoothing methods
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Note: Age is in completed years at the beginning of the migration interval. Grey area, 95% confidence interval for
observed intensities based on P-TOPALS fit.
Source: Based on ABS data.
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Figure 7: Darwin Suburbs interstate out-migration probabilities 2016 by
age, three smoothing methods
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Note: Age is in completed years at the beginning of the migration interval. Grey area, 95% confidence interval for
observed intensities based on P-TOPALS fit.
Source: Based on ABS data.
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Figure 8: Nightcliff interstate out-migration probabilities 2016 by age, three
smoothing methods
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Note: Age is in completed years at the beginning of the migration interval. Grey area, 95% confidence interval for
observed intensities based on P-TOPALS fit.
Source: Based on ABS data.

1630 http://www.demographic-research.org

http://www.demographic-research.org


Demographic Research: Volume 43, Article 55

Figure 9: Moil interstate out-migration probabilities 2016 by age, three
smoothing methods
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Note: Age is in completed years at the beginning of the migration interval. Grey area, 95% confidence interval for
observed intensities based on P-TOPALS fit.
Source: Based on ABS data.
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Table 2 shows the average population per single year of age N̄ as well as two sum-
mary statistics for each smoothing method: a measure of global goodness-of-fit dev0 and
a measure of plausibility-of-shape P̄ . As N̄ decreases it becomes progressively difficult
to resolve in the data any feature beyond the overall intensity of migration. Smooth-
ing methods with a fixed or large number of parameters can begin to give unrealistic
schedules as these parameters are increasingly used to fit noise. As a measure of shape
plausibility I use the percentage of a schedule’s profile that differs from a reference profile

P̄ = 100

(
1− m′ref ·m
|mref ||m|

)
, (31)

where mref is a reference schedule and |v| is the absolute value of vector v. For reference
schedules I used the P-TOPALS smoothed interstate probabilities shown in Figure 2. Also
included in Table 2 is my assessment of a fit’s deficiencies, if any.

Table 2: Summary statistics for three smoothing methods applied to
interstate migration for four sub-state areas, 2016

Area n N̄
dev0 P̄ Notes Fig.

K M P K M P K M P

Darwin 1 1,602 107 80 73 2 1 1 S,E 6
Darwin Suburbs 1 627 128 110 116 2 2 1 S,E 7
Nightcliff 1 51 219 195 196 6 3 1 X 8
Moil 1 25 93 86 132 17 26 1 X X 9

Darwin 5 1,425 84 86 95 2 2 2 S,E 6
Darwin Suburbs 5 585 66 88 85 3 3 2 E 7
Nightcliff 5 48 89 89 99 3 3 3 8
Moil 5 25 183 185 205 6 5 2 9

Note: Quantities n and N̄ are the migration interval in years and the average population per single year of age,
respectively. Goodness-of-fit measure dev0 is the Poisson deviance for all ages given by Equation (27). Quantity P̄
measures the percentage of a schedule’s profile that differs from the interstate profile given in the top panel (n = 1)
and bottom panel (n = 5) of Figure 2. K, kernel regression; M, student model migration schedule; P, P-TOPALS.
The ”Notes” column gives the author’s assessment of a fit’s deficiencies, if any: S, over-smoothing the student peak;
E, under-smoothing advanced ages; X, implausible shape.

For Darwin and Darwin Suburbs, MMS and P-TOPALS appear to perform equally
well, with similar values for dev0 and P̄ for both one- and five-year probabilities. For
one-year probabilities kernel regression is over-smoothing the student peak and as a result
its dev0 is somewhat larger. Note that for five-year probabilities it has the smallest value
for dev0 but is clearly under-smoothing the profile for advanced ages. For Nightcliff and
Moil, one-year probabilities, kernel regression and MMS fits have increased values for P̄ ,
with both having implausible profiles for Moil despite low values for dev0. P-TOPALS
continues to give plausible shapes and low values for P̄ , which illustrates the role of the
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standard in stabilising fits for small N discussed in Section 3.3. For Nightcliff and Moil,
five-year probabilities kernel regression and MMS have similar values for dev0 and P̄ .
P-TOPALS has a higher dev0 but a low P̄ for Moil, where P̄ for kernel regression and
MMS has increased.

7. Application to intrastate migration

Intrastate migration intensity measures the movement of people between administrative
regions within a state. Like interstate migration intensity, it is obtained by dividing the
number of people who have made such moves by the relevant population-at-risk, and it
can be defined at national, state, or sub-state levels. Data from the 2016 Australian Cen-
sus of Population and Housing was used to calculate age-specific schedules for intrastate
migration between SA2 areas for Australia, the Northern Territory, and two SA2 regions,
Nightcliff and Moil, over the one-year interval 2015–2016. Observed and smoothed
schedules are shown in Figures 10 and 11 and summary statistics for each fit are given in
Table 3. For the calculation of P̄ , I used the P-TOPALS fit in the top panel of Figure 10.

Comparing the top panel of Figure 10, with interstate intensities shown in the top
panel of Figure 2 we see that the intrastate migration curve has a greater overall level, does
not have a student peak or as prominent a retirement peak, but does show an increase in
intensities after age 80 associated with accommodation-related moves to access aged care
or to live with family members (Rogers and Castro 1981; Rogers and Watkins 1987). On
average over all ages, the quality of kernel regression and student MMS fits is comparable,
with similar values for dev0. Although there is no student peak, including the student
component in Equation (25) does give MMS a better fit than kernel regression over ages
14 to 30, but kernel regression gives a better fit after age 30 and before age 14, where the
childhood migration intensities appear to show deviations from the MMS profile.

As in Section 4, P-TOPALS can be used to improve an MMS fit. In this case I used
the MMS fit as the standard, cubic basis splines with knots spaced two and a half years
apart, and a linear penalty with the penalty size determined by the BIC condition. We see
from the top panel of Figure 10 that P-TOPALS fits as well as MMS over ages 14–30 and
as well as kernel regression over all other ages and has a significantly better global fit as
measured by dev0.
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Figure 10: Australian and Northern Territory intrastate migration
probabilities between SA2 areas 2015–2016, three smoothing
methods
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Note: Age is in completed years at the beginning of the migration interval. Grey area, 95% confidence interval for
observed intensities based on P-TOPALS fit.
Source: Based on ABS data.
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Figure 11: Nightcliff and Moil intrastate out-migration probabilities
2015–2016, three smoothing methods
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Note: Age is in completed years at the beginning of the migration interval. Grey area, 95% confidence interval for
observed intensities based on P-TOPALS fit.
Source: Based on ABS data.
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Table 3: Summary statistics for three smoothing methods applied to
intrastate migration for national, state, and sub-state areas,
2015–2016

Area N̄
dev0 P̄ Notes Fig.

K M P K M P K M P

Australia 254,444 1,120 1,068 302 0 0 0 10
Northern Territory 2,683 157 197 234 2 2 1 10
Nightcliff 51 96 110 132 4 3 1 X X 11
Moil 25 201 204 219 7 6 1 X X 11

Note: Quantity N̄ is the average population per single year of age. Goodness-of-fit measure dev0 is the Poisson
deviance for all ages given by Equation (27). Quantity P̄ measures the percentage of a schedules’ profile that differs
from the intrastate profile given in the top panel of Figure 10. K, kernel regression; M, student model migration
schedule; P, P-TOPALS. The ”Notes” column gives the author’s assessment of a fit’s deficiencies, if any: S, over-
smoothing the student peak; E, under-smoothing advanced ages; X, implausible shape.

In the fits to Northern Territory intrastate migration (Figure 10) and out-migration
from Nightcliff and Moil (Figure 11) I have followed the same strategy as in Section 6:
kernel regression with linear polynomials, a Gaussian kernel, and a global bandwidth
calculated using the rule-of-thumb method; student MMS with starting parameter val-
ues taken from the fitted values of the enclosing area; P-TOPALS with standard taken
from the enclosing area, quadratic basis splines, and penalty chosen using BIC. We see
from Table 3 that for each of these areas, kernel regression gives the best global fit as
measured by dev0, although this is accompanied by the highest value for P̄ and, in my
opinion, implausible shapes for Nightcliff and Moil. For each of the areas, P-TOPALS
has the highest value dev0 but the profiles are plausible, deviations between observed and
smoothed probabilities outside the 95% confidence interval are few, and P̄ is consistently
low. In terms of dev0 and P̄ , student MMS has values between kernel regression and
P-TOPALS but also gives implausible shapes for Nightcliff and Moil.

8. Discussion and conclusion

This paper proposes a new method that enables a good estimation of the high-curvature
portion of the curve at young adult ages as well as a sensitive modelling of intensities
beyond the labour force peak. Using examples of Australian interstate migration, in- and
out-migration for its eight states and territories, and four sub-state areas, analysis has
shown that P-TOPALS can provide an accurate representation of the migration profile
and a robust treatment of sample noise for small populations. Kernel regression and
MMS also have their strengths, and there were cases in Sections 4 to 7 where P-TOPALS
did not perform better than one of these methods. It should therefore be seen as a useful
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addition to the applied demographer’s toolbox rather than a replacement for these existing
methods.

Bernard and Bell (2015) have done a thorough study of the comparative strengths
of model migration schedules, cubic splines, and kernel regression for smoothing pur-
poses and the results in this paper are consistent with their findings. Their conclusion that
kernel regression and cubic spline are preferable for most countries was based on tests
using aggregated five-year migration probabilities. I have also found that kernel regres-
sion is more accurate than MMS for five-year interstate probabilities, but for one-year
probabilities it could not capture the highly age-concentrated student migration peak.

The main strength of P-TOPALS for generating smooth curves is that it allows users
to combine parametric and non-parametric approaches and can be viewed either as a
framework for correcting a parametric fit or as means of adding non-polynomial elements
to a non-parametric one. Another one of its strengths is its ability to account for the
increase in irregularity of observed intensities as population exposed to the risk of moving
decreases with age. Ease of use is an important consideration, and P-TOPALS does
require more from the user than kernel regression but not as much as student MMS in
the sense that users do need to specify a standard curve and an exposure curve but are
not faced with the non-trivial problem of adequate starting values for parameters and
strategies for guiding them to the best-fit solution.

This paper has focused on graduating transition-type data reported by single year
of age. There are a number of paths for further investigation. First, can P-TOPALS
be generalised to handle grouped probabilities for countries that report internal mobility
using abridged ages? Second, how does the framework need to be extended to handle
destination-specific out-migration probabilities of the sort needed for the calculation of
multi-regional life tables? Third, when smoothing migration profiles for regions at the
sub-state level, what is a good method for choosing the standard? As discussed in Sec-
tion 3.3, as sample population decreases, the standard is increasingly used to impose an
age pattern. Rogers, Little, and Raymer (2010) give three methods for imposing age
structure and in their terminology the approach used in Sections 6 and 7 is an example of
the regional membership method. Are there cases where family membership or temporal
aggregation methods are more appropriate?

9. Acknowledgments

I am grateful to Dr. Tom Wilson for his helpful comments on an earlier draft of this paper.
All errors and shortcomings remain my own.

http://www.demographic-research.org 1637

http://www.demographic-research.org


Dyrting: Smoothing migration intensities with P-TOPALS

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions
on Automatic Control 19(6): 716–723. doi:10.1109/TAC.1974.1100705.

Australian Bureau of Statistics (ABS) (2016). Australian statistical geography standard
(ASGS): Volume 1 - Main structure and greater capital city statistical areas. Canberra:
ABS (cat. 1270.0.55.001).

Australian Bureau of Statistics (ABS) (2019). TableBuilder, user guide. Canberra: ABS
(cat. 1406.0.55.005).

Bell, M., Blake, M., Boyle, P., Duke-Williams, O., Rees, P., Stillwell, J., and Hugo,
G. (2002). Cross-national comparison of internal migration: Issues and measures.
Journal of the Royal Statistical Society, Series A 165(3): 435–464. doi:10.1111/1467-
985X.00247.

Bernard, A. and Bell, M. (2015). Smoothing internal migration age pro-
files for comparative research. Demographic Research 32(33): 915–948.
doi:10.4054/DemRes.2015.32.33.

Bernard, A., Bell, M., and Charles-Edwards, E. (2014). Life course transitions and the
age profile of internal migration. Population and Development Review 40(2): 213–239.
doi:10.1111/j.1728-4457.2014.00671.x.

Congdon, P. (2008). Models for migration schedules: A Bayesian perspective with appli-
cations to flows between Scotland and Wales. In: Raymer, J. and Willekens, F. (eds.).
International migration in Europe: Data, models and estimates. Chichester: John Wi-
ley and Sons: 193–205. doi:10.1002/9780470985557.ch9.

de Beer, J. (2011). A new relational method for smoothing and projecting age-
specific fertility rates: TOPALS. Demographic Research 24(18): 409–454.
doi:10.4054/DemRes.2011.24.18.

de Beer, J. (2012). Smoothing and projecting age-specific probabilities of death by
TOPALS. Demographic Research 27(20): 543–592. doi:10.4054/DemRes.2012.27.20.

de Boor, C. (2001). A practical guide to splines. New York: Springer.
doi:10.2307/2006241.

Eilers, P.H.C. and Marx, B.D. (1996). Flexible smoothing with B-splines and penalties.
Statistical Science 11(2): 89–121. doi:10.1214/ss/1038425655.

Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applications. London:
Chapman and Hall.

Fraser, B. and Wooton, J. (2005). A proposed method for confidentialising tabular output

1638 http://www.demographic-research.org

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1111/1467-985X.00247
https://doi.org/10.1111/1467-985X.00247
https://doi.org/10.4054/DemRes.2015.32.33
https://doi.org/10.1111/j.1728-4457.2014.00671.x
https://doi.org/10.1002/9780470985557.ch9
https://doi.org/10.4054/DemRes.2011.24.18
https://doi.org/10.4054/DemRes.2012.27.20
https://doi.org/10.2307/2006241
https://doi.org/10.1214/ss/1038425655
http://www.demographic-research.org


Demographic Research: Volume 43, Article 55

to protect against differencing. Paper presented at Joint UNECE/Eurostat work session
on statistical data confidentiality, Geneva, Switzerland, November 9–11, 2005.

Gonzaga, M.R. and Schmertmann, C.P. (2016). Estimating age- and sex-specific mortal-
ity rates for small areas with TOPALS regression: An application to Brazil in 2010.
Revista Brasileira de Estudos de Populacao 33(3): 629–652. doi:10.20947/S0102-
30982016c0009.

Raymer, J. and Rogers, A. (2008). Applying model migration schedules to represent
age-specific migration flows. In: Raymer, J. and Willekens, F. (eds.). International
migration in Europe: Data, models and estimates. Chichester: John Wiley and Sons:
175–192. doi:10.1002/9780470985557.ch8.

Rees, P., Bell, M., Duke-Williams, O., and Blake, M. (2002). Problems and solutions in
the measurement of migration intensities, Australia and Britain compared. Population
Studies 54(2): 207–222. doi:10.1080/713779082.

Rees, P.H. (1977). The measurement of migration, from census data and other sources.
Environment and Planning A 9(3): 247–272. doi:10.1068/a090247.

Rogers, A. and Castro, L.J. (1981). Model migration schedules. Laxenburg: International
Institute for Applied Systems (Research Report RR–81–30).

Rogers, A., Little, J., and Raymer, J. (2010). The indirect estimation of migration. New
York: Springer. doi:10.1007/978-90-481-8915-1.

Rogers, A., Raquillet, R., and Castro, L.J. (1978). Model migration schedules and their
applications. Environment and Planning A 10(5): 475–502. doi:10.1068/a100475.

Rogers, A. and Watkins, J. (1987). General versus elderly interstate migration and
population redistribution in the United States. Research on Aging 9(4): 483–529.
doi:10.1177/0164027587094002.

Ruppert, D., Sheather, S.J., and Wand, M.P. (1995). An effective bandwidth selector for
local least squares regression. Journal of the American Statistical Association 90(432):
257–1270. doi:10.1080/01621459.1995.10476630.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6(2):
461–464. doi:10.1214/aos/1176344136.

Thompson, G., Broadfoot, S.J., and Elazar, D.J. (2013). Methodology for the automatic
confidentialisation of statistical outputs from remote servers at the Australian Bureau
of Statistics. Paper presented at Joint UNECE/Eurostat work session on statistical data
confidentiality, Ottawa, Canada, October 28–30, 2013.

Wilson, T. (2010). Model migration schedules incorporating student migration peaks.
Demographic Research 23(8): 191–222. doi:10.4054/DemRes.2010.23.8.

http://www.demographic-research.org 1639

https://doi.org/10.20947/S0102-30982016c0009
https://doi.org/10.20947/S0102-30982016c0009
https://doi.org/10.1002/9780470985557.ch8
https://doi.org/10.1080/713779082
https://doi.org/10.1068/a090247
https://doi.org/10.1007/978-90-481-8915-1
https://doi.org/10.1068/a100475
https://doi.org/10.1177/0164027587094002
https://doi.org/10.1080/01621459.1995.10476630
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.4054/DemRes.2010.23.8
http://www.demographic-research.org


Dyrting: Smoothing migration intensities with P-TOPALS

Wooton, J. (2006). Measuring and correcting for information loss in confidentialised
census counts. Canberra: Australian Bureau of Statistics (ABS) (cat. 1352.0.55.083).

1640 http://www.demographic-research.org

http://www.demographic-research.org


Demographic Research: Volume 43, Article 55

Appendices

A. Maximising the penalised likelihood function

The maximum of the function Equation (6) satisfies the equation

∂L
∂θ

= 0. (A-1)

Taking the derivative gives the nonlinear system of equations

G′(θ) · V · (nm̃− nm)− λD′k ·Dk · θ = 0, (A-2)

where

G(θ) :=
1

nm

∂nm

∂θ
. (A-3)

Let Gx(θ) denote the (x+ 1)th row vector of G(θ) and Bj the (j + 1)th row vector of B.
Taking the derivatives of Equation (4) and (5) gives

Gx(θ) =
1− nmx

nmx

 ∑
x≤j<x+n

mj

1−mj
Bj

 . (A-4)

To solve Equation (A-2) I use approximations

nm(θ̄) ≈ nm+ nmG · (θ̄ − θ), (A-5)
G(θ̄) ≈ G (A-6)

which when substituted into Equation (A-2) give the linear iteration Equation (8).

B. Smoothed migration curves by state

This section summarises the methods I used to obtain the smoothed one-year migration
curves shown in Figures 5, and B-1 to B-7. For the kernel regression fits I used linear
polynomials and a Gaussian kernel with a global bandwidth calculated using Ruppert,
Sheather, and Wand’s (1995) rule-of-thumb method.

For most of the student MMS fits I followed the same procedure used in Section 4 for
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interstate migration. This procedure did not converge to a sensible solution for Australian
Capital Territory in-migration (Figure B-6), although it did for 2006 and 2011 data. In
this case I found it necessary to first fit the model to in-migration aggregated over 2006,
2011, and 2016 censuses, and then use the fitted parameters as a starting point for a
fit of all parameters to the 2016 census data. For Western Australia, South Australia,
and Queensland out-migration (Figures B-3 to B-5) all parameters were fitted except the
position of the student peak, which was held fixed at µ5 = 17.5. In-migration intensities
for Western Australia and Northern Territory did not exhibit a strong student peak, and in
these two cases I used the standard MMS (Rogers and Watkins 1987)

mx = a1 exp(−α1x) (childhood)
+a2 exp

(
−α2(x− µ2)− e−λ2(x−µ2)

)
(labor force)

+a3 exp
(
−α3(x− µ3)− e−λ3(x−µ3)

)
(retirement)

+a4 exp (α4x) (elderly)
+c (constant),

(B-1)

which differs from the student MMS in not having a student component and having a
non-symmetrical functional form for the retirement component.

For the P-TOPALS fits, I used four types of standards. Since interstate migration
is an average of both in- and out-migration, it was a natural choice as the standard for
some cases (see out-migration in Figures B-1, B-2, B-6, and B-7). For cases where the
student peak of the interstate curve was either very large or very small compared to the
state, I used the student MMS fit as the standard if it was a reasonable fit to the student
peak (see out-migration in Figures B-3 to B-5 and in-migration, in Figures B-1 to B-
3). When neither the interstate curve nor the student MMS curve gave good fits to the
student peak, I created a standard curve using time-aggregated migration data, from 2006,
2011, and 2016 censuses, first fit with student MMS and then corrected using P-TOPALS
as in Section 4 (see in-migration in Figures 5 and B-6). For Tasmania in-migration this
approach led P-TOPALS to have a worse fit than MMS for 2016 data but more realistic fits
for 2006 and 2011 data which has a less prominent student peak. For Western Australia
and Northern Territory in-migration, which did not exhibit a student peak or excessive
levels of sample noise, I used a flat standard m̂ = 1.

BIC was usually a good choice for the penalty selection criterion. Sometimes it
appeared to over-smooth, in which case I chose AIC (see out-migration in Figures 5,
B-4, and B-5 and in-migration in Figures B-1 to B-3). Linear B-splines were usually
adequate but in some cases their piece-wise linear form led to kinks at the spline knots,
and for these I used quadratic splines (see out-migration in Figures 5, B-4, and B-5 and
in-migration in Figures B-1 to B-4 and B-7).
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Figure B-1: New South Wales one-year migration probabilities 2015–2016 by
age, three smoothing methods
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Note: Age is in completed years at the beginning of the migration interval. Grey area, 95% confidence interval for
observed intensities based on P-TOPALS fit.
Source: Based on ABS data.
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Figure B-2: Victoria one-year migration probabilities 2015–2016 by age, three
smoothing methods
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Note: Age is in completed years at the beginning of the migration interval. Grey area, 95% confidence interval for
observed intensities based on P-TOPALS fit.
Source: Based on ABS data.
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Figure B-3: Queensland one-year migration probabilities 2015–2016 by age,
three smoothing methods
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observed intensities based on P-TOPALS fit.
Source: Based on ABS data.
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Figure B-4: Western Australia one-year migration probabilities 2015–2016 by
age, three smoothing methods
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Source: Based on ABS data.
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Figure B-5: South Australia one-year migration probabilities 2015–2016 by
age, three smoothing methods
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observed intensities based on P-TOPALS fit.
Source: Based on ABS data.
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Figure B-6: The Australian Capital Territory one-year migration probabilities
2015–2016 by age, three smoothing methods
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observed intensities based on P-TOPALS fit.
Source: Based on ABS data.
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Figure B-7: Northern Territory one-year migration probabilities 2015–2016 by
age, three smoothing methods
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Note: Age is in completed years at the beginning of the migration interval. Grey area, 95% confidence interval for
observed intensities based on P-TOPALS fit.
Source: Based on ABS data.
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