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Born once, die once: Life table relationships for fertility

Annette Baudisch1

Jesús-Adrián Alvarez2

Abstract

BACKGROUND
Everyone dies, and only once. This basic truth underlies all formal mortality research.
Similarly, everyone is born, and only once. This basic truth has not been fully exploited
to benefit formal fertility research. An advance has recently been made by Baudisch and
Stott (2019), who conceive a population of unborn children awaiting the event of their
own birth. This approach introduces a novel survivorship concept for birth.

RESULTS
Formalizing the idea of “birth survival,” here we define the underlying random variable
and derive the central triplet of survival analysis functions – hazard, density, and survival.
We demonstrate that using a “born once, die once” analogy results in a
straightforward framework to capture age-specific patterns of birth, analogous to classical
life table functions. Based on a single variable (age-specific birth counts), we construct a
“birth table” and, from there, meaningful summary measures such as “birth expectancy”
and associated measures of spread.

CONTRIBUTION
We advance a new framework to enrich the toolbox of fertility research. The relationships
developed here serve to compare birth schedules across populations and reveal macro-
level patterns and constraints. The triplet of birth functions and the birth table set the
stage to transfer methods from mortality to fertility research. They offer a starting point
to study birth and death within the same framework and for the same focal individual.
With analogous formal methods, studies of the intertwined relationships between birth
and death become possible. This, we envision, will open an entirely unexplored line
of research.
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1. Relationship

Much of formal mortality research relies on the basic observation that everyone will die
once. Much of formal fertility research is limited by the uncertainty of childbearing, as
women may give birth once or many times, or forego reproduction altogether. Here we
demonstrate how this limitation can be resolved. For a woman, fertility is hard to foretell,
but for a child, its own birth is certain, just as certain as its eventual death. A “born once,
die once” paradigm allows one to formally exploit the analogy between birth and death
and thereby to define a new research framework.

A classic and central framework in demographic research is survival analysis. It per-
vades demographic studies, not just for death but also for many other decrement pro-
cesses, such as marriage, divorce, menopause, entry to and exit from the labor market, in-
carceration, and much more (Preston, Heuveline, and Guillot 2000). Birth as a decrement
process is typically studied for a population of women who successively become moth-
ers of different parity. Here we take an unusual view of the decrement process of birth,
which recently has been suggested by Baudisch and Stott (2019). Rather than women be-
coming mothers, we consider the children who – conceptually – wait to be born, starting
from the onset age of childbearing. Children persist in the unborn state until their event
of birth. They constitute a to-be-born offspring population. This offspring population
is decremented by the birth of children to mothers of certain ages. We define this off-
spring population retrospectively for a cohort of women with completed childbirth. This
approach does not account for which specific child belongs to which specific woman. It
therefore does not need to distinguish between normal, twin, or multiple births. It also
does not account for a woman’s survival, because survival is necessarily implied by the
observed birth of her child. For such a defined offspring population, we derive the (i)
survival, (ii) hazard, and (iii) probability density functions that describe waiting time to
one’s own birth. We follow classic survival analysis and its notation conventions.

Babies are born to women of different ages. Some babies are born to younger
women; they await (survive) the event of birth for only a short time. Other babies are
born to older women; they await the event of birth for a long time. Hence, we define
the continuous random variable X as waiting time of a child to the event of its own birth
from the onset age of the reproductive life span, α.

We define b(x) as the number of babies born to women of age x, and B(x) as the
cumulative number of babies born to women up to age x as

(1) B(x) =

∫ x

α

b(a) da

over the full age range of childbearing, from a minimum age of α up to a maximum age of
β, with B(α) = 0 and B(β) = B for an offspring population of total size B. A survival
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function S(x) then captures the proportion of unborn children to women up to age x,

(2) S(x) = 1 − B(x)

B
.

It holds that S(α) = 1 and S(β) = 0.
With this definition of survivorship we derive a triplet of functions that fulfills the

fundamental relationship of survival analysis between survival S(x), hazard h(x), and
density function f(x) such that

(3) h(x) ≡ f(x)

S(x)
= −

dS(x)
dx

S(x)
= −d ln(S(x))

dx
,

which implies that

(4) S(x) = e−
∫ x
α
h(a) da.

We find that the instantanous hazard h(x) to be born to a woman of age x can be
expressed as

(5) h(x) =
b(x)

B −B(x)
.

This function calculates the number of babies born to women of age x as a fraction of
those not yet born to women up to age x. The associated probability density function
f(x) is given by

(6) f(x) =
b(x)

B
.

This function calculates the number of babies born to women of age x as a fraction of the
total offspring population.
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2. Proof

The derivative of survivorship (2) is

(7)
dS(x)

dx
= − 1

B

dB(x)

dx
.

By the fundamental theorem of calculus, the derivative of cumulative reproduction (1)
with respect to age equals

(8)
dB(x)

dx
= b(x).

With (8), the negative ratio of (7) and (2) defines the hazard function as

(9) h(x) = −
dS(x)
dx

S(x)
=

b(x)
B

B−B(x)
B

=
b(x)

B − B(x)
,

which proves (5).
Due to the relationship (3) between survival, hazard, and density, the probability

density function can be calculated from equations (2) and (5) as

(10) f(x) = h(x)S(x) =
b(x)

B
,

which proves (6) and thereby completes the central triplet of birth functions.

3. Related results and extensions

The survivorship concept for birth suggested above invites one to formulate a life table
concept for birth. We unravel a full “birth table,” using standard life table notation (Pre-
ston, Heuveline, and Guillot 2000) for analogous and intuitive translation.

We define `(x) as the number of children left to be born to women age x and above,
which is

(11) `(x) =

∫ β

x

b(a) da.
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These “survivors” are the unborn children in the offspring population who still await the
event of being born. In this context, survival means that children have not yet experienced
the event of their own birth. Function (11) complements the definition of cumulative
reproduction function B(x) in (1) through the relationship

(12) B = `(x) + B(x).

The number of children B(x) born up to age x together with the number of children `(x)
to be born after age x add up to the total size B of the offspring population. Further, (12)
implies that B(α) = `(β) = 0 and B(β) = `(α) = B.

Birth exposure at a focal age is given by the population of children at risk of being
born to women in the age group x to x + n. By definition, these are the children not yet
born until age x, i.e. `(x). Birth occurrence is given by nbx, which denotes the children
born to women in the age group x to x + n. Therefore, the probability of being born
between ages x and x+ n is given by

(13) nqx =
nbx
`(x)

.

The retrospectively defined offspring population is a closed population. The only
change in population size comes from births of the members of the population. Therefore
we can express the number of children born within a focal age group as the difference
in the number of unborn babies between successive ages, nbx = `(x) − `(x + n) with
`(x) ≥ `(x+ n) for all ages x ∈ [α,β]. Inserting into the equation above we arrive at an
expression for the probability that a child is born to a woman within the focal age group:

(14) nqx =
`(x) − `(x+ n)

l(x)
= 1 − `(x+ n)

`(x)
.

Consequently, the probability that a child is not born within the focal age group of
women is given by

(15) npx =
`(x+ n)

`(x)
.
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As the cohort of women ages, each potential child either gets born or not. There is
no other alternative, such that

(16) nqx + npx = 1.

Depending on whether a child is born or not during an age interval, it contributes
an amount of person-years of exposure time to the risk of birth. Analogous to classic
life table calculation, the number of person-years spent in the unborn state, nLx, between
ages x and x+ n is given by the area under the survivorship curve `(x),

(17) nLx =

∫ x+n

x

`(a) da.

The number of remaining person-years spent in the unborn state above age x is given by

(18) Tx = β−xLx =

∫ β

x

`(a) da.

These measures of person-years are essential to calculate key summary measures from
the birth table.

First, (18) helps determine “birth expectancy” as the expected number of years to be
spent in the unborn state,

(19) e(α) =
Tα
l(α)

=

∫ β
α
`(a) da

`(α)
,

with `(α) = B. In other words, it captures the mean waiting time of a child to be born,
starting from the onset age of the reproductive life span α. Analogously, remaining birth
expectancy at any age x within the reproductive life span is given by

(20) e(x) =
Tx
`(x)

=

∫ β
x
`(a) da

`(x)
.

Second, the measure of exposure, (17), is vital to calculate the birth rate, nmx,

(21) nmx =
nbx

nLx
.
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The birth rate nmx measures the ratio of births to potential births within the focal age
range.

Note that the discrete birth table framework developed in this section converges to
the continuous relationships initially proven. In the limit, the birth rate nmx defines a
child’s age-specific hazard of birth h(x) as

(22) h(x) = lim
n→0

nmx = lim
n→0

nbx

nLx
=

b(x)

`(x)
=

b(x)

B − B(x)
,

which is consistent with (5).
Similarly, the density and survival functions mark the limit of the discrete birth table

functions as

(23) f(x) = lim
n→0

nbx
B

=
b(x)

B
,

consistent with (6), and

(24) S(x) = lim
n→0

nLx
B

=
`(x)

B
=

B − B(x)

B
,

consistent with (2).
The framework developed here is directly analogous to the life table and survival

analysis functions in mortality research (Preston, Heuveline, and Guillot 2000). It uses
standard demographic tools and invites a range of further extensions. A natural next
step, for example, is to define measures of variation within our framework. Given the
definitions of e(α) and density function f(x), the variance in waiting time of an infant to
be born is:

(25) σ2 =

∫ β

α

((a − α) − e(α))2 f(a) da,

such that a ≥ α. From (25), the standard deviation σ =
√
σ2 and coefficient of variation

CV = σ
e(α) immediately follow. These measures describe how wide (in absolute and

relative terms) a set of births is spread around their mean e(α). Analysis of other mea-
sures of spread as well as perturbation analysis and comparative research based on mean
and (relative) spread are interesting perspectives for future research (Baudisch 2011; van
Raalte and Caswell 2013; Wrycza, Missov, and Baudisch 2015; Aburto et al. 2019, 2020).
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4. Applications

The code and data to reproduce the results and graphs presented in this section are pub-
licly available through the repository https://github.com/jssalvrz/Born-Once-Die-Once.

4.1 Illustration of the relationship

The triplet of birth functions h(x), f(x), and S(x) enables macro-level comparisons be-
tween countries. Depending on the research question, these comparisons would require
deeper analysis, but for illustrative purposes, Figure 1 depicts the age pattern in the birth
hazard and its associated density and survivorship functions, here illustrated for the 1960
cohort in Denmark, Germany, and the United States.

The hazard of birth increases steeply upon the onset of reproductive ages. It damp-
ens soon thereafter but continues to rise throughout the reproductive age range. At the last
ages, birth for the remaining few children over the remaining small age window implies
irregularities at the level of the highest hazard, which in the limit would approach infinity.

The density function follows a hump-shaped pattern of human age-specific repro-
duction but differs from the age-specific maternity function conceptually. Rather than the
number of children per mother, it captures the percentage of children born over the age
range.

Survival falls steeply throughout and levels off at later reproductive ages as the per-
centage of babies left to be born approaches zero.

Together, these functions offer a condensed view of the process of age-specific re-
production, which can be analyzed by algebraic operations that are directly analogous to
the analysis of mortality patterns.

Figure 1: Hazard, density, and survivorship functions of birth for Denmark,
Germany, and the United States, Cohort 1960
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Table 1 shows an example of a birth table calculated for the Danish birth cohort of
women born in 1960. The first column defines the age of a mother at the birth of a child.
The following columns are directly analogous to standard life table analysis (Preston,
Heuveline, and Guillot 2000): lx, children left to be born; nbx, number of children born;
nqx, probability of being born; npx, probability of not being born; nLx, person-years
spent in the unborn state; Tx, remaining person-years above age x; ex, birth expectancy;
and nmx, age-specific birth rate.

Figure 2 exemplifies age-specific patterns of nqx and ex over age for Denmark, Ger-
many, and the United States. The probability of being born rises steadily up to a certain
age (around age 40–50, depending on the population), then it slightly declines. By the
end of the reproductive life span, the last remaining child has to be born and nqx equals 1.
Birth expectancy, on the other hand, goes down with age. The bulge at older ages might
be related to the decrease in the probability of being born, as is visible in the left panel.
The source of such a pattern is a question for further research.

Figure 2: Age-specific probability of being born and remaining birth
expectancy at age x, Denmark, Germany, and the United States,
Cohort 1960
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Table 1: Birth table pertaining to Denmark, Cohort 1960

Age Number
of
children
left to be
born
at age x

Children
born
between
ages x
and x + n

Probability
that a child
is born
between
ages x
and x + n

Probability
that a child
is not born
between
ages x
and x + n

Person-years
spent in the
unborn state
between
ages x
and x + n 1

Remaining
person-years
above
age x

Birth
expectancy

Birth rate

x l(x) nbx nqx = nbx
l (x) npx nLx Tx e(x) nmx = nbx

nLx

12 70,590 1 1
70,590 1− 1

70,590 70,590 1,098,241 15.56 1
70,590

13 70,589 13 13
70,589 1− 13

70,589 70,583 1,027,652 14.56 13
70,583

14 70,577 61 61
70,577 1− 61

70,577 70,546 957,069 13.56 61
70,546

15 70,516 186 186
70,516 1− 186

70,516 70,423 886,523 12.57 186
70,423

16 70,330 485 0.01 0.99 70,087 816,100 11.60 0.01
17 69,844 1,021 0.01 0.99 69,334 746,013 10.68 0.01
18 68,824 1,683 0.02 0.98 67,982 676,679 9.83 0.02
19 67,141 2,415 0.04 0.96 65,933 608,697 9.07 0.04
20 64,726 2,771 0.04 0.96 63,340 542,764 8.39 0.04
21 61,955 3,128 0.05 0.95 60,391 479,423 7.74 0.05
22 58,827 3,525 0.06 0.94 57,064 419,033 7.12 0.06
23 55,302 4,087 0.07 0.93 53,258 361,968 6.55 0.08
24 51,215 4,502 0.09 0.91 48,963 308,710 6.03 0.09
25 46,712 4,791 0.10 0.90 44,317 259,746 5.56 0.11
26 41,921 4,898 0.12 0.88 39,472 215,430 5.14 0.12
27 37,023 4,897 0.13 0.87 34,575 175,958 4.75 0.14
28 32,127 4,854 0.15 0.85 29,700 141,383 4.40 0.16
29 27,273 4,369 0.16 0.84 25,088 111,683 4.10 0.17
30 22,904 4,110 0.18 0.82 20,849 86,595 3.78 0.20
31 18,794 3,637 0.19 0.81 16,976 65,746 3.50 0.21
32 15,157 3,250 0.21 0.79 13,532 48,770 3.22 0.24
33 11,907 2,911 0.24 0.76 10,452 35,238 2.96 0.28
34 8,996 2,323 0.26 0.74 7,835 24,786 2.76 0.30
35 6,673 1,855 0.28 0.72 5,746 16,951 2.54 0.32
36 4,818 1,477 0.31 0.69 4,079 11,206 2.33 0.36
37 3,341 1,111 0.33 0.67 2,785 7,126 2.13 0.40
38 2,230 817 0.37 0.63 1,821 4,341 1.95 0.45
39 1,413 574 0.41 0.59 1,126 2,520 1.78 0.51
40 838 377 0.45 0.55 650 1,394 1.66 0.58
41 461 216 0.47 0.53 353 744 1.61 0.61
42 245 117 0.48 0.52 186 391 1.59 0.63
43 128 60 0.47 0.53 98 205 1.60 0.61
44 68 33 0.49 0.51 51 107 1.58 0.65
45 35 14 0.40 0.60 28 56 1.60 0.50
46 21 8 0.37 0.63 17 28 1.34 0.47
47 13 9 0.67 0.33 9 11 0.83 1.00
48 4 4 1.00 0.00 2 2 0.50 2.00

Birth counts retrieved from the Human Fertility Database (2020).
1To calculate nLx we assume that births occur in the middle of the age interval. Thus, nLx = (n/2)(lx + lx+n).
This approach is common in calculation of life tables (Preston, Heuveline, and Guillot 2000).
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4.2 Illustration of summary measures

Beyond age-specific fertility functions, our birth table provides the necessary informa-
tion to construct summary measures that describe the distribution of births, such as birth
expectancy, standard deviation, and the coefficient of variation. For the example given in
Table 1, at the onset age of the reproductive life span (α = 12), birth expectancy for the
Danish cohort of 1960 is 15.56 years, that is – to-be-born children wait on average about
16 years from the age of first birth in the female population and are born to women of an
average age of 28. The standard deviation and the coefficient of variation for the same
cohort are 5.45 years and 0.35, respectively. Summary measures like this can be used
to study trends over time. For example, Figure 3 illustrates the relationship between life
expectancy and measures of variation (standard deviation in the left panel and the coeffi-
cient of variation in the right panel) for all the countries available in the Human Fertility
Database (2020). This diagram condenses much of the fertility experience of a population
and thus is an explicit macro-level tool to detect patterns across populations. Its analysis
is useful to show constraints and connections across populations with low versus high
birth expectancy, and with fertility concentrated or spread throughout reproductive life.
Formal analysis of the relationships depicted in Figure 3 requires application of rigorous
statistical tests and scrutiny under meaningful mathematical frameworks, similar to the
ones developed for mortality research (Baudisch 2011; Wrycza, Missov, and Baudisch
2015; Aburto et al. 2020; Colchero et al. 2016).

Figure 3: Relationship between birth expectancy and two alternative
measures of dispersion in the number of births over the
reproductive life span for all the countries included in the Human
Fertility Database (2020), Cohorts 1940–1960
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5. Discussion

The fact that individuals are born only once is heavily exploited in this paper. We show
that shifting the perspective from women to children results in a simple and straight-
forward framework to calculate the central triplet of survival analysis functions describing
age-specific birth patterns. These functions help in comparing birth schedules across
populations to probe the underlying mechanisms that drive the dynamics of fertility over
time. In general, our approach complements traditional methods in fertility research and
can be applied depending on the available data and research question.

We introduce the idea of a birth table that depicts how a to-be-born offspring pop-
ulation is decremented by birth. This concept is different from – but closely linked to –
the concept of a life table in fertility research (Hoem 1970; Feeney 1983; Oechsli 1975;
Golbeck 1986; Chiang and Van Den Berg 1982). The Human Fertility Database (2020)
offers cohort and period fertility tables for a range of countries. Cohort fertility tables
model the process of becoming a mother by age and, if data are available, by parity. For
each cohort, life table functions, analogous to those found in mortality research (Preston,
Heuveline, and Guillot 2000), are computed from fertility rates, which relate birth by age
of the mother and child’s birth order to the entire female population at a given age (Jasil-
ioniene et al. 2016). Cohort fertility tables, therefore, require information on age-specific
birth counts and the female population exposed to the risk of childbearing.

In comparison, our “born once, die once” approach allows computation of birth ta-
bles and construction of meaningful summary measures such as birth expectancy and its
standard deviation by solely using age-specific birth counts. This provides an advantage
over calculating the closely related mean age at birth, which requires additional informa-
tion about the female population exposed to childbearing.

A limiting factor of our approach is its disconnection between specific women and
specific children, which does not allow one to distinguish parity at birth or calculate other
measures such as parity-specific fertility rates. Fertility tables based on parity rather than
age have previously been developed (Hoem 1970; Feeney 1983; Golbeck 1986). These
unconventional fertility tables rely on transition probabilities between stages to calculate
average waiting times between birth orders and emphasize the importance of mother’s
stage rather than age (Caswell et al. 2018). Stage-based fertility tables are related to our
approach with respect to calculating waiting times, but differ as they stay within the per-
spective of an average mother rather than that of a child. Accepting a decrease in sample
size, parity-specific results can still be obtained with our approach by limiting the off-
spring population to children born with a specific parity only.

Another limitation of our approach is that it requires knowledge about completed
cohort fertility. Therefore, as it stands, it cannot be used to directly elucidate current
fertility trends; nor can it be used to study populations that lack full cohort information.
However, similar limitations hold for cohort studies in mortality research. Development
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of a synthetic cohort concept for fertility would resolve this limitation and thus would be
a strong motivation for future research.

The “born once, die once” paradigm offers a novel view on the process of childbear-
ing and allows one to transfer methods from mortality to fertility research. We foresee
further research along these lines, where formal demographic methods are applied to our
summary measures. For example, it is of great interest to determine the sensitivity of
birth expectancy to changes in age-specific birth rates (Keyfitz 1977; Keyfitz and Caswell
2005), deriving analogous relationships to mortality (Wrycza and Baudisch 2012). Like-
wise, decomposing the change over time in birth expectancy (Vaupel and Canudas-Romo
2003) into different components is a natural extension of our framework. Forecasting
techniques applied to mortality hazard and life expectancy might also be useful in fore-
casting future birth schedules. Reviving the formal relationships from the perspective of
a child (Preston 1976; Pearson, Lee, and Bramley-Moore 1899), possibly in connection
with the present framework and inspired by novel visualization approaches (Riffe et al.
2019), could be promising. Further extensions of our framework may include a period
approach that would define a synthetic cohort of women to a focal offspring population.
This would raise a range of novel questions. For example, how to account for childless
women or potential quantum-tempo distortions (Bongaarts and Feeney 1998) to prop-
erly reflect stable population dynamics and structure in a child-centered framework? We
envision our approach as a tool for yet unexplored research directions. It should help
answer questions that are yet out of reach or out of thought within the boundaries of cur-
rent methodology. Whatever the applications, they will have to establish their utility in
the future.

6. Conclusion

Birth and death mark the cornerstones of life and, thereby, are naturally connected for
the individual. Everyone is born once, and everyone dies once. With this perspective
we contribute a common approach to construct formal demographic relationships based
on a focal individual that experiences its own unique birth and death. This connection
allows investigation of mortality and fertility within the same framework and study of
their mutual effects and interactions.
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Appendix

Differences from the approach by Baudisch and Stott (2019)

Though based on the “born once, die once” framework previously advanced by Baud-
isch and Stott (2019), this paper differs slightly in how it specifies the measures that
capture the survivorship concept. As the backbone of the survival, density, and hazard
functions, we use age-specific cohort birth counts. In contrast, Baudisch and Stott (2019)
use age-specific fertility rates as the main input for their framework, which is tailored to
aid comparative studies of birth schedules across a wide range of different species. For
species other than homo sapiens, data on birth and death are scarce (Conde et al. 2019)
and researchers infer mortality rates indirectly using Bayesian methods (Colchero and
Clark 2012). For animal and plant populations, actual counts of birth and death are not
available in public demographic databases. Comparative studies have to rely on birth and
death rates given in the form of life tables (DATLife Database 2020) or as entries in pop-
ulation projection matrices (COMADRE Animal Matrix Database 2020; COMPADRE
Plant Matrix Database 2020). Age-specific fertility rates are therefore used as a proxy
to study birth schedules across species and as basis for a survivorship concept that is
captured by a “birth delay function” in Baudisch and Stott (2019).

In comparison, human demographers can rely on rich data when studying fertility.
The Human Fertility Database (2020) provides information on age-specific birth counts
by parity, population of females at risk of childbearing, and many other indicators of
human fertility. The mathematical formulations developed in this article strive to harvest
the detailed data available specifically for the study of human fertility, and hence they
differ from the original approach by Baudisch and Stott (2019).

For researchers solely interested in human fertility, we recommend using the
approach developed in the present paper. For comparative studies that include non-
human birth schedules, we suggest using the formulations advanced in Baudisch and
Stott (2019).
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Table A-1: Glossary of terms

Notation Description

X Random variable denoting the time a child waits to the event of its own birth.
α Onset age of the reproductive life span.
β Final age of the reproductive life span.
B Total size of offspring population.
b(x) Number of babies born to women of age x .
B(x) Cumulative number of babies born to women up to age x .
S(x) Survivorship function: Percentage of unborn children to women up to age x .
h(x) Birth hazard : Instantaneous rate of being born to women of age x .
f (x) Probability density function: Fraction of babies born to women of age x .
l(x) Children left to be born to women age x and above.

nbx Children being born within age range x to x + n.

nqx Probability that a child is born within age range x to x + n.

npx Probability that a child is not born within age range x to x + n.

nLx Person-years spent in the unborn state between age x and x + n.
Tx Remaining person-years above age x .

nmx Birth rate within the focal age group.
e(α) Birth expectancy : Mean waiting time to be born.
σ Standard deviation: Spread in the waiting time to be born.
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