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Measuring the concentration of urban population in the negative
exponential model using the Lorenz curve, Gini coefficient, Hoover

dissimilarity index, and relative entropy

Joel E. Cohen1

Abstract

BACKGROUND
Stewart (1947) and Clark (1951) proposed that urban population density is a negative
exponential function of the distance from a city’s center. This model of the spatial
distribution of urban population density has been influential in urban economics,
transportation planning, and urban demography. Duncan (1957) suggested characterizing
the inequality in the distribution of urban population density in this model by using
standard economic measures of concentration or unevenness: the Lorenz curve, the Gini
coefficient, and the Hoover dissimilarity index. Batty (1974) advocated measuring
concentration using relative entropy.
OBJECTIVE
We execute Duncan’s (1957) and Batty’s (1974) suggestions using mathematical
analysis, not simulations.
METHODS
We modify the negative exponential model to recognize that any city has a finite radius.

RESULTS
Mathematical analysis reveals that all four measures of concentration depend sensitively
on the finite radius of the city in the negative exponential model. We give a numerical
example of the sensitivity of the concentration measures to the boundary radius.

CONTRIBUTION
In empirical applications of the negative exponential model of urban population density,
it is important to have clear, consistent standards for defining urban boundaries.
Otherwise, differences between cities or over time within the same city in these four and
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perhaps other measures of concentration could be due at least in part to differences in
defining the radius or other boundaries of the city.

1. Introduction

The purpose of this note is to analyze mathematically the concentration of the spatial
distribution of people in the negative exponential model of urban population density
(Stewart 1947; Clark 1951) using three measures suggested by Duncan (1957) (the
Lorenz curve, the Gini coefficient, and the Hoover index) and the relative entropy
suggested by Batty (1974). Calculating these measures numerically in any particular
instance is straightforward but yields no general insight. Mathematical analysis of these
measures of concentration in the negative exponential model may not have been reported
previously and yields some unexpected insight.

Stewart (1947: 180) analyzed the 60 “leading cities” in the 1940 US Census for
which the distribution of population by census tracts was available. He concluded, “There
is strong evidence for the following standard internal pattern, as a first approximation:
The normal city, regardless of size, has roughly the same density of population at its
edges, averaging there about 3 people per acre or 2,000 per square mile [≈ 770/km2].
From edge to center, the density tends to increase exponentially with the distance,
reaching a peak density in some inner census tract which usually is adjacent to others
having densities nearly as great. The peak density tends to increase with the size of the
city.”

Without reference to Stewart (1947), Clark (1951) proposed “two generalizations
the validity of which is now universally recognized: 1. In every large city, excluding the
central business zone, which has few resident inhabitants, we have districts of dense
population in the interior, with density falling off progressively as we proceed to the outer
suburbs. 2. In most (but not all) cities, as time goes on, density tends to fall in the most
populous inner suburbs, and to rise in the outer suburbs, and the whole city tends to
‘spread itself out.’ The evidence assembled below appears to be sufficient to show that,
in practically every case, the falling off of density, as we proceed to the outer suburbs,
follows a simple mathematical equation of exponential decline.” Stewart (1953)
published a generous report of Clark (1951).

Duncan (1957: 27) summarized “the major techniques of describing and measuring
population distribution, indicating some unresolved problems of method that might well
be the focus of further research.” He presented the Lorenz curve, the Gini “concentration
ratio” or Gini coefficient G, and an “index of concentration” or “index of dissimilarity”
H, sometimes called the dissimilarity index, Hoover index, Robin Hood index, or Schutz
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index. After mentioning Clark (1951), Amos Hawley, and Donald J. Bogue, but not
Stewart (1947, 1953), as prior authors who “have studied density gradients according to
distance from centres,” Duncan (1957: 44) remarked, “It is also possible to generalize the
Lorenz curve and concentration ratio technique for use in this connection.”

Clark (1951) has been cited at least 1,509 times, Duncan (1957) at least 145 times,
and Stewart (1947) 107 times (Google Scholar, 2021-01-13). Clark (1951) has been much
more influential than Stewart (1947), even though Stewart specified a crucial boundary
condition (where does the city end?) that Clark neglected. The difference in impact could
have at least three causes: Clark (1951), unlike Stewart (1947), included detailed graphics
and statistical tables for multiple cities at multiple points in time; Clark published in a
journal more likely to be seen by urban economists, geographers, and demographers; and
Stewart cloaked his findings in the language of “social physics.”

It is virtually impossible to be sure that the mathematical analysis that Duncan
(1957) suggested has not already been carried out, but there is no indication of such
mathematical analysis in at least three classic reviews (Massey and Denton 1988;
McDonald 1989; Smith 1997).

Focusing on measures of segregation of ethnic or cultural groups, Massey and
Denton (1988) collected 20 quantitative indices and proposed to classify them as
measuring five dimensions of the spatial variation of a population: unevenness, exposure,
clustering, concentration, and centralization. Massey and Denton (1988) computed the
values of the 20 indices for comparisons of the spatial distributions of the census-defined
Hispanics, Blacks, and Asians (one group at a time) with the census-defined non-
Hispanic white population in 60 Standard Metropolitan Statistical Areas (SMSAs; the US
Census Bureau used this term from 1959 to 1983) in the 1980 US Census. The 60 SMSAs
were the 50 with the largest populations plus 10 others with many census-defined
Hispanics. To uncover the underlying principal dimensions of variation of the 20 indices,
Massey and Denton (1988) did two kinds of principal components analysis: one with five
orthogonal (uncorrelated) dimensions and one allowing correlations among the five
principal dimensions.

Massey, White, and Phua (1996) executed a similar analysis on 58 of the 60 SMSAs
that Massey and Denton studied in 1988 and then extended the analysis to 318
Metropolitan Statistical Areas (MSAs) in the 1990 US Census. Massey, White, and Phua
(1996) reached similar but not identical conclusions: The first four principal components
were more important and the fifth principal component played only a small role. Massey
and Denton (1998) corrected an error of Massey and Denton (1988) while confirming the
earlier conclusions. In Massey’s (2012) retrospective summary, “We obtained a factor
pattern matrix that yielded a robust interpretation across different rotation and extraction
methods, one that confirmed the conceptual structure we had hypothesized.”
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Rugh and Massey (2014) and Massey and Tannen (2015) improved on previous
analyses of Massey and colleagues by using commercially developed data sets with
temporally consistent boundaries of 287 metropolitan areas from 1970 to 2010. Rugh and
Massey (2014: 211) distinguished metropolitan inhabitants from “urban residents (living
in census tracts with greater than 1,000 persons per square mile).” This threshold differs
from Stewart’s (1947) urban boundary estimate for 1940 by a factor of 2. These analyses
eliminated any contribution that changes in boundaries over time or place may have made
to variation over time or place in measures of segregation, including some of the measures
analyzed here.

Smith (1997) reviewed many theoretical models and empirical analyses of what she
called “monocentric urban density,” not including any works by J.Q. Stewart. She
surveyed models of the intensity of land use around a center from the 1826 agricultural
economic model of Johann Heinrich von Thünen (1783–1850) to the models of Clark
(1951), Newling (1969), Bussière and Snickars (1970), Batty (1974), and many others in
the second half of the twentieth century. She reported, “During the decade following
Clark’s [1951] assertion, researchers tested nearly one hundred cities in the developed
and developing world, covering over 150 years. The results were consistent with Clark’s
negative exponential density function” (Smith 1997: 118).

In Stewart’s (1947) and Clark’s (1951) negative exponential model, the logarithm
of population density is a linearly decreasing function of distance from the city’s center.
Newling (1969) modeled the logarithm of population density as a quadratic function of
distance from the city’s center, with a reduced density at the center, a peak density at
some intermediate distance from the center, and progressively decreasing density at
further distances from the center. Following earlier suggestions of Clark (1951) and
Newling (1969), Smith (1997: 119) suggested “a dynamic interpretation – the [Stewart–]
Clark model reflects the North American city in its early stages and the Newling model
portrays the city in a later developmental stage. The central density becomes less over
time and the peak density shifts outward from the city center.”

Bertaud and Malpezzi (2014: 16) analyzed the spatial distribution of population in
57 mostly large, metropolitan areas from 1990 to 2009 in “rich countries (e.g., France,
Germany, the United States), poor countries (e.g., Vietnam, Afghanistan, Ethiopia), and
emerging markets (e.g., China, Brazil, Mexico) [27 countries in all]. All continents are
represented: 21 in Asia, 17 in Europe, 10 in North America (including Mexico), 5 in
Africa, and 4 in Latin America.” Bertaud and Malpezzi (2014) did not specify how they
established the boundaries of cities. “The first important finding is that in many cities –
perhaps a surprisingly large number, to some – the negative exponential density gradient
implied by the standard urban model fits the data quite well. On the other hand, in a
number of cities, population density departs a lot from the standard model” (Bertaud and
Malpezzi 2014: 34; italics in original).
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Bussière and Snickars (1970) derived a negative exponential model of urban
population density by maximizing the continuous entropy of the probability density
function of population density subject to constraints of total population size and costs of
traveling to the center of the city, which they assumed proportional to the radial distance
to the center. Continuous entropy is highly problematic as a measure of concentration or
inequality. Several problems with it will be mentioned when the preferable concept of
relative entropy is defined below.

The four measures of population concentration analyzed here for the negative
exponential model of urban population density are a small proportion of the measures
that have been proposed and used, and the negative exponential model is only one of
many monocentric density models. The scarcity of mathematical analysis of many of
these measures and models leaves ample room for this note to illustrate by example how
such mathematical analysis might proceed and what insight such analysis might yield.

This note measures the concentration of urban population density in the negative
exponential model by calculating analytically the Lorenz curve, Gini coefficient G, and
Hoover index H, as Duncan (1957) suggested, and the relative entropy, as Batty (1974)
suggested. The model and these measures are defined below. A numerical example
follows this analysis.

2. The negative exponential model of urban population density

We summarize the negative exponential model of urban population density using metric
units of measurement. The model assumes a city with a single center. Let r be the radial
distance in kilometers from the city’s center and 𝐷(𝑟) be the population density of
resident population at radius r. Then, except possibly in the central business district,

(1) 𝐷(𝑟) = 𝑎𝑒−𝑏𝑟 ,𝑎 > 0, 𝑏 > 0, 0 ≤ 𝑟 ≤ 𝑅 ≤ ∞.

The dimension of 𝐷(𝑟) and a is number/km2, of b is 1/km, and of r is km. Thus br
is a dimensionless pure number independent of the unit in which distance is measured.
According to Clark (1951: 490–491), “That the falling off [of] density is an exponential
function, as in the above equation, appears to be true for all times and all places studied,
from 1801 to the present day, and from Los Angeles to Budapest.” Further studies did
not support this claim of universality but did confirm that the model is widely useful
(McDonald 1989; Bertaud and Malpezzi 2014).

McDonald (1989: 363) pointed out that (1) refers to gross population density,
defined as the ratio of resident population to land area, including “land in all uses, not
just residential use. Net density refers to population per unit land in residential use.”
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McDonald (1989: 364, his reference [43], which is apparently unpublished gray literature
by C. Kramer in 1955) reported “that the standard negative exponential function fits net
density patterns better than it fits gross density patterns.” Our subsequent analysis will
not distinguish gross from net density because it is applicable to both.

Clark interpreted a as the hypothetical maximal population density that would be
observed at the center of the city if the central business district had no reduction in the
exponential trend of the population density of the districts close to the center, and b as
the rate of decrease in population density per unit of increasing distance from the center.
Clark pointed out that the exponential formula (1) allows neither for the reduction of
residences in the city’s central business zone nor for water bodies, parks, and other areas
not available for residences.

No city has infinite radius. Beyond some finite radius 𝑅, 0 < 𝑅 < ∞, it is not
plausible to consider the population as connected to the central city, as Stewart (1947)
noted. All of Clark’s (1951) empirical examples had finite radii determined by some
standard Clark did not specify. Clark (1951) did not formally recognize this constraint of
finite size. Newling (1969: 245, 249) defined the radius of an urbanized area as the
distance from the center at which the population density (in his quadratic exponential
model) falls to some specified minimum value. Batty (1974: 7) introduced a maximal
radius R into the negative exponential model and determined R as the radius required to
reduce the difference between the entropy of a hypothetical city of infinite radius and the
entropy of a city of radius R (with both such cities obeying the negative exponential
distribution of population density with the same central density a and same exponent b)
to an arbitrarily prespecified threshold such as 5%. Our analysis follows Stewart (1947),
Newling (1969), and Batty (1974) in assuming a finite boundary radius R. We focus on
the sensitivity to R of four measures of urban population concentration.

3. Analysis

The analysis of the negative exponential model (1) proceeds in three steps, dealing with
area, population, and measures of concentration. The analysis assumes that the outer
boundary of the city lies at some finite radius R from the central city.

3.1 Area

A circle at exactly radius x from the city center has circumference 2𝜋𝑥. Hence the
cumulative area 𝐴(𝑟) (in square kilometers) within radius r (in kilometers) from the city
center is
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(2) 𝐴(𝑟) = ∫ (2𝜋𝑥)𝑑𝑥𝑟
0 = 𝜋𝑟2, 0 ≤ 𝑟 ≤ 𝑅 < ∞.

So the fraction 𝐹𝐴(𝑟) of the city’s total area 𝐴(𝑅) = 𝜋𝑅2 within distance r from the
center, 0 ≤ 𝑟 ≤ 𝑅, or equivalently the cumulative distribution function (cdf) of area
𝐹𝐴(𝑟) within each radius 𝑟, 0 ≤ 𝑟 ≤ 𝑅, from the city’s center is

(3) 𝐹𝐴(𝑟) = 𝜋𝑟2

𝜋𝑅2
= 𝑟2

𝑅2
, 0 ≤ 𝑟 ≤ 𝑅, 0 ≤ 𝐹𝐴(𝑟) ≤ 1,𝐹𝐴(0) = 0,𝐹𝐴(𝑅) = 1.

𝐹𝐴(𝑟) does not depend on the scale on which distance is measured. That is, 𝐹𝐴(𝑟)
does not change if r and R are measured in miles, inches, or any other constant multiple
of kilometers.

The probability density function of area at distance r from the center is

(4) 𝑓𝐴(𝑟) = 𝑑𝐹𝐴(𝑟)
𝑑𝑟

= 2𝑟
𝑅2

, 0 ≤ 𝑟 ≤ 𝑅, with ∫ 𝑓𝐴(𝑟)𝑑𝑟𝑅
0 = ∫ 2𝑟

𝑅2
𝑑𝑟𝑅

0 = 1.

The distance 𝑟𝐴 from the city center that includes any cumulative fraction

(5) 𝑝𝐴 ≔ 𝐹𝐴(𝑟𝐴),          0 ≤ 𝑝𝐴 ≤ 1,

of the total urban area is given by the inverse function of 𝐹𝐴, which solves 𝑝𝐴 = 𝑟2/𝑅2
for 𝑟, namely

(6) 𝑟𝐴 ≔ 𝐹𝐴−1(𝑝𝐴) = 𝑅ඥ𝑝𝐴 = 𝑅ඥ𝐹𝐴(𝑟𝐴).

3.2 Population

Clark (1951) observed that the exponential model of density (1) implies that the
cumulative population 𝑃(𝑟) (in thousands) within radius r (in kilometers) from the city
center is

(7) 𝑃(𝑟) = ∫ 𝐷(𝑥) 𝑑𝐴(𝑥)
𝑑𝑥

𝑑𝑥𝑟
0 = ∫ 𝑎𝑒−𝑏𝑥(2𝜋𝑥)𝑑𝑥𝑟

0 = 2𝜋𝑎
𝑏2

{1 − 𝑒−𝑏𝑟(1 + 𝑏𝑟)}.

As the city boundary recedes to infinity, Clark (1951) observed that a city’s total
population approaches a finite limit,

(8) 𝑃(∞) = lim
𝑅→∞

𝑃(𝑅) = 2𝜋𝑎
𝑏2

.
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𝑃(𝑟) and 𝑎/𝑏2 are dimensionless pure numbers. Because 1 + 𝑥 < 𝑒𝑥 for any 𝑥 >
0, we have 0 < 𝑃(𝑟) < 𝑃(𝑅) < ∞ for any 𝑎 > 0, 𝑏 > 0, 0 < 𝑟 < 𝑅 ≤ ∞.

If the city has finite radius 𝑅 < ∞, then the total population 𝑃(𝑅) of the city is, from (7):

(9) 𝑃(𝑅) = 2𝜋𝑎
𝑏2

{1 − 𝑒−𝑏𝑅(1 + 𝑏𝑅)}.

So the cumulative fraction 𝐹𝑃(𝑟) of the city’s population within radial distance 𝑟,
0 ≤ 𝑟 ≤ 𝑅 < ∞, from its center, or equivalently the cdf of population 𝐹𝑃(𝑟) within radius
𝑟, 0 ≤ 𝑟 ≤ 𝑅 < ∞, from the city’s center is

(10) 𝐹𝑃(𝑟) =
2𝜋𝑎
𝑏2

൛1−𝑒−𝑏𝑟(1+𝑏𝑟)ൟ
2𝜋𝑎
𝑏2

൛1−𝑒−𝑏𝑅(1+𝑏𝑅)ൟ
= 1−𝑒−𝑏𝑟(1+𝑏𝑟)

1−𝑒−𝑏𝑅(1+𝑏𝑅)
, 0 ≤ 𝑟 ≤ 𝑅 < ∞, 0 ≤ 𝐹𝑃(𝑟) ≤ 1,

with probability density function of the population (number of people, not the population
density) at radius r equal to

(11) 𝑓𝑃(𝑟) = 𝑑𝐹𝑃(𝑟)
𝑑𝑟

= 𝑏2𝑟𝑒−𝑏𝑟

1−𝑒−𝑏𝑅(1+𝑏𝑅)
, 0 ≤ 𝑟 ≤ 𝑅 < ∞, ∫ 𝑓𝑃(𝑟)𝑑𝑟𝑅

0 = 1.

𝐹𝑃(𝑟) does not depend on the scale on which distance is measured, but 𝑓𝑃(𝑟) has the
dimension of b, namely, 1/kilometers (in general, 1/distance).

3.3 Lorenz curve

The Lorenz curve, being a function and not a single number, is not among the 20 indices
studied by Massey and Denton (1988). The scalar indices G and H can be calculated from
the Lorenz curve. The Gini coefficient G is the second “measure of evenness” in the
classification of Massey and Denton (1988: 285). The Hoover index H as defined by
Duncan (1957: 30, denoted Δ) equals the “dissimilarity index” D of Massey and Denton
(1988: 284, their (1)) when D is applied to comparing a population’s distribution with the
distribution of land area. D is their first and preferred “measure of evenness” (Massey
and Denton 1988: 308). The Hoover index H (Duncan’s Δ) is identical to the index of
spatial concentration DEL of Massey and Denton (1988: 289, their (10)). Hence two
measures analyzed here, G and H, correspond to three measures analyzed by Massey and
Denton (1988); Massey, White, and Phua (1996); Massey and Denton (1998); Rugh and
Massey (2014); Massey and Tannen (2015); and many other students of population
concentration and segregation.
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Both cdfs of area 𝐹𝐴 and of population 𝐹𝑃 are functions of the radius r. Both are
independent of the units in which distance is measured. The Lorenz curve 𝐿(𝑝𝐴)
expresses the cdf 𝐹𝑃 of population, not as a function of r directly but indirectly as a
function of the cdf of area 𝑝𝐴 ≔ 𝐹𝐴(𝑟𝐴), 0 ≤ 𝑝𝐴 ≤ 1, without explicit reference to the
radius r. Given any fraction 𝑝𝐴, 0 ≤ 𝑝𝐴 ≤ 1, we find the corresponding 𝑟𝐴 = 𝑅ඥ𝑝𝐴 from
(6), compute the corresponding value of 𝐹𝑃 evaluated at 𝑟𝐴 from (10), and set the Lorenz
curve 𝐿(𝑝𝐴) to equal

(12) 𝐿(𝑝𝐴) ≔ 𝐹𝑃(𝑟𝐴) = 1−𝑒−𝑏𝑅ඥ𝑝𝐴൫1+𝑏𝑅ඥ𝑝𝐴൯
1−𝑒−𝑏𝑅(1+𝑏𝑅)

, 0 ≤ 𝑝𝐴 ≤ 1, 0 ≤ 𝐿(𝑝𝐴) ≤ 1.

The Lorenz curve is dimensionless, i.e., independent of the units in which distance
is measured, and satisfies 𝐿(0) = 0, 𝐿(1) = 1. Because the negative exponential model
assumes that population density decreases from the center outward as the cumulative area
increases, the highest population densities come first with increasing cumulative area.
Therefore the Lorenz curve lies above the line of equality that would hold if population
density were constant at every radius r up to R. This location of the Lorenz curve above
the diagonal line is common in urban transportation studies. In the hypothetical case of
constant density, the cumulative population would be directly proportional to the
cumulative area starting from the center and the Lorenz curve would be a diagonal
straight line of slope 1 passing through the origin.

An unexpected result of this analysis is that even though 𝐿(0) = 0,

(13) lim
𝑏𝑅→∞

𝐿(𝑝𝐴) = 1 for every 0 < 𝑝𝐴 ≤ 1 and for every 0 < 𝑏 < ∞.

This limit arises because min(𝑏,𝑅) > 0 and for any 𝑝 > 0, lim
𝑥→∞

𝑒−𝑥𝑝(1 + 𝑥𝑝) = 0.
Hence the numerator and denominator of the right side of (12) both approach 1. Thus for
a very rapid decline in density from the center (large b) or for a very large radius of the
city (large R) or both, the Lorenz curve approaches 1 for any positive proportion of area
𝑝𝐴 > 0 (but 𝐿(0) = 0).

3.4 Gini coefficient G

The Gini coefficient G is defined as

(14) 𝐺 ≔ ∫ |𝐿(𝑝𝐴)−𝑝𝐴|𝑑𝑝𝐴
1
0

1
2

.
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Because 𝐹𝑃(𝑟) ≥ 𝐹𝐴(𝑟), 0 ≤ 𝑟 ≤ 𝑅, and hence 𝐿(𝑝𝐴) ≥ 𝑝𝐴, 0 ≤ 𝑝𝐴 ≤ 1, we have
|𝐿(𝑝𝐴) − 𝑝𝐴| = 𝐿(𝑝𝐴) − 𝑝𝐴. (If population were described in areas of increasing density,
the Lorenz curve would fall below the diagonal line of constant density, and then we
would have |𝐿(𝑝𝐴) − 𝑝𝐴| = 𝑝𝐴 − 𝐿(𝑝𝐴).) Thus

𝐺 = 2 න (𝐿(𝑝𝐴) − 𝑝𝐴)𝑑𝑝𝐴

1

𝑝𝐴=0

= 2න𝐿(𝑝𝐴)𝑑𝑝𝐴

1

0

− 2න𝑝𝐴𝑑𝑝𝐴

1

0

=
2

1 − 𝑒−𝑏𝑅(1 + 𝑏𝑅)න[1 − 𝑒−𝑏𝑅√𝑝𝐴൫1 + 𝑏𝑅ඥ𝑝𝐴൯]𝑑𝑝𝐴

1

0

− 1

(15) = 2 6൫𝑏𝑅−𝑒+𝑏𝑅+1൯+𝑏2𝑅2(𝑒+𝑏𝑅+2)
𝑏2𝑅2(𝑒+𝑏𝑅−𝑏𝑅−1)

− 1.

G is a dimensionless number between 0 and 1, inclusive. For fixed 𝑅 > 0,

(16) lim
𝑏→0

𝐺 = 0.

When 𝑏 → 0, population density becomes constant at every radius and G shows that
the distribution of population density is as even as possible. Since min(𝑏,𝑅) > 0 and the
dominant term in both the numerator and denominator in the fraction in (15) is 𝑏2𝑅2𝑒+𝑏𝑅,
it follows that

(17) lim
𝑏𝑅→∞

𝐺 = 1.

This unexpected finding shows that, for fixed 𝑏 > 0, G depends on (in fact, increases
with) the outer radius R of the city. G is not invariant with respect to where the city is
defined to end, even when the parameters 𝑎, 𝑏 remain constant.

3.5 Hoover index H

The Hoover index H is defined as

(18) 𝐻 ≔ sup{𝐹𝑃(𝑟) − 𝐹𝐴(𝑟) ∶ 0 ≤ 𝑟 ≤ 𝑅} = sup{𝐿(𝑝𝐴) − 𝑝𝐴 ∶ 0 ≤ 𝑝𝐴 ≤ 1}.

H is a dimensionless number between 0 and 1, inclusive. The supremum is attained
when the slope of 𝐿(𝑝𝐴) equals the slope of 𝑝𝐴 as a function of 𝑝𝐴, namely, when
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(19) 𝐿′(𝑝𝐴) ≔ 𝑑𝐿(𝑝𝐴)
𝑑𝑡

= 1.

Differentiating 𝐿(𝑝𝐴) from (12) gives condition (19) explicitly as

(20) 𝐿′(𝑝𝐴) = 𝑏2𝑅2 exp(−𝑏𝑅ඥ𝑝𝐴)
2(1−exp(−𝑏𝑅)(𝑏𝑅+1))

= 1.

Solving this condition for 𝑝𝐴 gives 𝑝𝐴∗  as the value of 𝑝𝐴 at which 𝐿(𝑝𝐴) − 𝑝𝐴 is
maximal:

(21) 𝑝𝐴∗ = ቆ 1
𝑏𝑅

logቆ
2ቀ1−𝑒−𝑏𝑅(𝑏𝑅+1)ቁ

(𝑏𝑅)2
ቇቇ

2

.

Then

(22) 𝐻 = 𝐿(𝑝𝐴∗) − 𝑝𝐴∗ .

To obtain an explicit formula for H, we substitute (12) for 𝐿(𝑝𝐴) in (22) and then
replace 𝑝𝐴 by 𝑝𝐴∗  from (21). The resulting formula is opaque and not worth reproducing
here.

However, the limiting behavior of H as 𝑏𝑅 → ∞ is easy to determine. As 𝑏𝑅 → ∞,
in (21) we have 1/(𝑏𝑅) → 0 and 2൫1 − 𝑒−𝑏𝑅(𝑏𝑅 + 1)൯(𝑏𝑅)−2 → 0 and 𝑝𝐴∗ → 0 (since
lim
𝑥↓0

𝑥 log𝑥 = 0). For any 𝑝𝐴∗ > 0, (13) implies that 𝐿(𝑝𝐴∗) → 1. Thus as 𝑏𝑅 → ∞, (22)
implies that

(23) lim
𝑏𝑅→∞

𝐻 = 1,

even though 𝐿(𝑝) − 𝑝 = 0 when 𝑝 = 0. This unexpected finding shows that for fixed
𝑏 > 0, the Hoover index H depends on the outer radius R of the city and approaches 1
regardless of 𝑏 > 0 as R gets large. Like the Lorenz curve and the Gini coefficient, the
Hoover index depends on where the city is defined to end.

3.6 Relative entropy

Batty (1974) proposed several measures, related to information-theoretic entropy, of the
evenness of the spatial distribution of urban population. The continuous entropy function
(Bussières and Snickars 1970: 297, eq. (18); Batty 1974: 50, eq. (19)) is problematic
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conceptually because it is not invariant under change of coordinates, may fail to be
nonnegative, and lacks other desired attributes of a measure of evenness (Marsh 2013:
16). The relative entropy, also known as the Kullback–Leibler divergence (Batty 1974:
42–43, eqs. (2)–(4)), avoids these problems. It measures how one probability density
function differs from a second probability density function. It is not a metric on the space
of probability density functions because it is not symmetric and does not obey the triangle
inequality.

Here we calculate the (continuous) relative entropy 𝐷𝐾𝐿(𝑃||𝐴) of the probability
density of population (absolute numbers of people, not population density per unit of
area) with respect to the probability density of area in the negative exponential model
with a finite urban radius. Obviously, zero areas contain zero people (or, in mathematical
jargon, the distribution of people is absolutely continuous with respect to the distribution
of area). If 𝐷𝐾𝐿(𝑃||𝐴) = 0, then equal fractions of the urban area have equal fractions of
the urban population, or population is proportional to area. That is, population density is
constant everywhere in the city. The more concentrated people are with respect to area,
or the less evenly people are distributed in space, the larger the relative entropy of
population with respect to area.

The probability density function 𝑓𝑃(𝑟) of population at radius 𝑟 ∈ [0,𝑅] from the
center is given by (11). The probability density function 𝑓𝐴(𝑟) of area at radius 𝑟 ∈ [0,𝑅]
from the center is given by (4). The relative entropy of population with respect to area is

(24) 𝐷𝐾𝐿(𝑃||𝐴) ≔ ∫ 𝑓𝑃(𝑟)𝑅
0 log ቀ𝑓𝑃(𝑟)

𝑓𝐴(𝑟)ቁ𝑑𝑟 = ∫ 𝑏2𝑟𝑒𝑏(𝑅−𝑟)

𝑒𝑏𝑅−(1+𝑏𝑅)
𝑅
0 log൭

𝑏2𝑟𝑒𝑏(𝑅−𝑟)

𝑒𝑏𝑅−(1+𝑏𝑅)
2𝑟
𝑅2

൱𝑑𝑟

=
𝑏2𝑒𝑏𝑅

𝑒𝑏𝑅 − (1 + 𝑏𝑅)න 𝑟𝑒−𝑏𝑟 ቈlogቆ
𝑏2𝑟𝑒𝑏(𝑅−𝑟)

2𝑟 ⋅
𝑅2

𝑒𝑏𝑅 − (1 + 𝑏𝑅)ቇ 𝑑𝑟
𝑅

0

=
𝑏2𝑒𝑏𝑅

𝑒𝑏𝑅 − (1 + 𝑏𝑅)න 𝑟𝑒−𝑏𝑟 ቈ𝑏(𝑅 − 𝑟) + logቆ
(𝑏𝑅)2𝑒𝑏𝑅

2[𝑒𝑏𝑅 − (1 + 𝑏𝑅)]ቇ 𝑑𝑟
𝑅

0

=
𝑏2𝑒𝑏𝑅

𝑒𝑏𝑅 − (1 + 𝑏𝑅) ቈ
2(𝑒−𝑅𝑏 − 1) + 𝑅𝑏(𝑒−𝑅𝑏 + 1)

𝑏2 + logቆ
(𝑏𝑅)2

2[1 − 𝑒−𝑏𝑅(1 + 𝑏𝑅)]ቇ

=
ቀ2(𝑒−𝑅𝑏 − 1) + 𝑏𝑅(𝑒−𝑅𝑏 + 1)ቁ

1 − 𝑒−𝑏𝑅(1 + 𝑏𝑅)

+
𝑏2

1 − 𝑒−𝑏𝑅(1 + 𝑏𝑅) (2 log(𝑏𝑅) − log 2 − log[1 − 𝑒−𝑏𝑅(1 + 𝑏𝑅)]).

As 𝑏𝑅 → ∞, the first term on the right is asymptotic to 𝑏𝑅 and the second term
is asymptotic to 2𝑏2 log(𝑏𝑅), both of which go to infinity as 𝑏𝑅 → ∞. Hence
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(25) lim
𝑏𝑅→∞

𝐷𝐾𝐿(𝑃||𝐴) = ∞.

For fixed 𝑏 > 0, the relative entropy 𝐷𝐾𝐿(𝑃||𝐴) depends on the outer radius R of
the city and approaches ∞ regardless of 𝑏 > 0 as 𝑅 → ∞. As with the Lorenz curve, Gini
coefficient, and Hoover index, the relative entropy depends on where the city is defined
to end.

4. Numerical example: Chicago 1900

This example illustrates the mathematics. It is not intended as an adequate empirical
analysis. For Chicago in 1900, Clark (1951: 492, 494) estimated a = 110 thousand people
per square mile and b = 0.45 per mile. He did not state a value of R. His graph of
population density as a function of radius ended around 7.5 miles from the city center.
The population density (people per square mile) at the boundary 𝑅 = 7.5 miles from the
center implied by the model (1) with these parameter values is 𝐷(7.5) =
110 exp(−0.45 × 7.5) = 3.76 thousand people per square mile. This crude estimate
differs from Stewart’s (1947) estimated population density at the boundary of US cities
in 1940 (namely, 2 thousand people per square mile) by less than a factor of 2. Clark’s
parameter estimates for Chicago in 1940 (𝑎 = 120, 𝑏 = 0.3,𝑅 = 17) imply that
𝐷(17) = 0.73 thousand people per square mile, not far from the urban population density
threshold of one thousand people per square mile used by Rugh and Massey (2014: 211).

Without converting to metric measurements, we use the numerical values a = 110,
b = 0.45, and, for simplicity, R = 10 for the following illustrations.
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Figure 1: Measures of population concentration in the negative exponential
model, based on Clark’s (1951) estimates for Chicago in 1900. See
text for detailed explanations.

Figure 1(a, left) plots, on the vertical axis, the cdf of area A (red dots) and the cdf of
population P (blue solid line) according to the negative exponential model at 101 equally
spaced distances from 0 to 10 (horizontal axis). Figure 1(b, right) plots the Lorenz curve
(blue solid line) on the vertical axis as a function of the cdf of area. In Figure 1(b), the
dashed straight red line is the diagonal with slope 1 through the origin. Its height equals
the cdf of area.

The three arrows in Figure 1(a) illustrate the construction of one point of the Lorenz
curve in Figure 1(b), the small black oval with coordinates (cdf of area = 0.25, cdf of
population = 0.7). Starting from the cumulative fraction of area = 0.25, the red arrow in
the lower left of Figure 1(a) travels to the right to intersect the distance from the center
where the cdf of area equals 0.25, which is exactly 5 miles from the center. This means
that one-quarter of the city’s total land area falls within a 5-mile radius from the center.
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Then the blue arrow in the middle of Figure 1(a) travels straight upward to intersect the
cdf of population at distance 5 miles from the center. Then the green arrow travels
horizontally to the left to intersect the vertical axis at the cumulative fraction of
population, approximately 0.70, within 5 miles from the center. The point (0.25, 0.70) on
the Lorenz curve in Figure 1(b) is the illustrative point in the small black oval. It expresses
the cdf of population as a function of the cdf of area.

The Hoover index H is the length of the thick vertical green bar in Figure 1(b). It is
the maximal distance between the Lorenz curve and the diagonal line, or equivalently the
maximal distance between the cdf of population and the cdf of area. It is located where
the radius is approximately 5.4 miles from the center, the cdf of area is approximately
0.29, and the cdf of population is approximately 0.74, so that 𝐻 ≈ 0.74 − 0.29 = 0.45.

The Gini coefficient G equals the quotient of the area between the Lorenz curve and
the diagonal line divided by the area above the diagonal line in Figure 1(b). Because the
area above the diagonal line in Figure 1(b) must be 1/2 (because the diagonal line divides
the unit square in half), G is also twice the area between the Lorenz curve and the diagonal
line. In this example 𝐺 ≈ 0.58. These values satisfy the inequalities (Duncan 1957: 31)
𝐻 ≈ 0.45 ≤ 𝐺 ≈ 0.58 ≤ 2𝐻 − 𝐻2 ≈ 0.7.

In the negative exponential model, the Lorenz curve, the Gini coefficient G, the
Hoover index H, and the relative entropy 𝐷𝐾𝐿(𝑃||𝐴) are sensitive to the boundary radius
R. For example, in Table 1, with 𝑏 = 0.45, as R increases from 5 to 25, G almost triples,
H more than triples, and the relative entropy 𝐷𝐾𝐿(𝑃||𝐴) increases by a factor of more
than 13.

Table 1: Hypothetical boundary radii 𝑹 = 𝟓,𝟏𝟎,𝟏𝟓, … miles in the negative
exponential model of population density in Chicago in 1900 using
Clark’s (1951) parameter estimates 𝒂 = 𝟏𝟏𝟎 thousand people per
square mile and decay exponent b = 0.45, boundary density 𝑫(𝑹)
thousand people per square mile, Gini coefficient G, Hoover index H,
and relative entropy 𝑫𝑲𝑳(𝑷||𝑨). The measures of population
concentration depend sensitively on the boundary radius R of the
city.

Radius R Boundary density 𝐷(𝑅) Gini G Hoover H Relative entropy 𝐷𝐾𝐿(𝑃||𝐴)

5 11.59 0.31 0.23 0.16

10 1.22 0.58 0.45 0.62

15 0.13 0.76 0.61 1.19

20 0.01 0.85 0.72 1.71

25 1.43E-03 0.91 0.78 2.15

30 1.51E-04 0.93 0.83 2.51

∞ 0 1 1 ∞
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5. Discussion and conclusions

We analyzed mathematically four measures of urban population concentration in the
negative exponential model of Stewart (1947) and Clark (1951), amended to recognize
that any city has a finite radius. This analysis revealed that the Lorenz curve, Gini
coefficient, Hoover dissimilarity index, and relative entropy of population with respect
to area depend sensitively on the finite radius of the city. For any positive area, the first
three measures approach 1 and the relative entropy diverges to infinity as the city’s radius
increases. These examples raise the disquieting possibility that, more generally,
differences among cities in time or space in these, and perhaps other, measures of
concentration could be due at least in part to differences in defining the radius or
boundary of the city. Hence in empirical applications of these indices of population
concentration, and perhaps in empirical applications of other measures that are sensitive
to the radius or boundary of the city, it is important to have clear and consistent standards
for defining urban boundaries.

This observation is related to the modifiable areal unit problem (MAUP) (Gehlke
and Biehl 1934; Buzzelli 2020; Ye and Rogerson 2021). For example, one way to define
urban boundaries, following Stewart (1947) and Newling (1969), is to estimate
empirically a minimum population density at existing urban boundaries, where the
boundaries are arrived at politically or otherwise. But estimates of population density
depend on the size of spatial units used to estimate density, such as census blocks, census
tracts, zip codes, counties, or rectangular grid cells of dimension 100 m × 100 m or 1 km
× 1 km.

An alternative measure of concentration when the negative exponential model
describes a city’s spatial distribution of population density well is the value of the model’s
parameter b, which describes the rate of decay of population density with increasing
distance from the center. If 𝑏 = 0, population density is independent of distance from the
center and is as evenly distributed as possible. The greater the positive value of b, the
more rapidly population density falls with increasing distance from the center and the
more concentrated the population density is at the center. The reciprocal 1/𝑏 is the
increase in distance from the center required to multiply population density by a factor
of 1 𝑒⁄ ≈ 0.3679. For example, with Clark’s (1951) estimate 𝑏 = 0.45/mile for Chicago
in 1900, an increase in the radial distance from the center by 1/𝑏 = 2.22 miles is
associated according to (1) with a 63% reduction in population density (0.63 ≈ 1 − 1/𝑒).
But estimates of b, like estimates of boundary densities, depend on the size of spatial
units used to estimate density. In the extreme case, if the whole city, however defined, is
treated as a single spatial unit, then the population density (total population divided by
total area) is constant, regardless of distance from the city’s putative center. Neither of
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the two above approaches to estimating urban population concentration escapes the
MAUP.

Massey and Denton (1988: 292) recognized that “the boundaries of a central city are
political rather than natural creations. Central cities that were founded early have long
been ringed by incorporated suburbs, while many newer cities continue to expand through
incorporation.” From 1977 to 1981, the SMSAs studied by Massey and Denton (1988)
were defined by the then Office of Federal Statistical Policy and Standards in the
Department of Commerce, which had overall responsibility for federal statistical policy
(US Bureau of the Census 1994, Ch. 13: 11). The Census Bureau’s definitions of “urban
areas” and “urban” and methods of delineating boundaries have varied over time (US
Bureau of the Census 1994, Ch. 12).

Massey and Denton (1988) did not investigate the consequences of the methods of
delineating boundaries of their 60 cities for their 20 indices of segregation. In attempting
to replicate results from the 1980 census using 1990 census data on 58 MSAs that were
among the 60 SMSAs Massey and Denton (1988) analyzed from the 1980 census,
Massey, White, and Phua (1996: 177) observed, “Because census tract boundaries and
metropolitan area definitions inevitably change from census to census, our data set is not
precisely comparable with the one [Massey and Denton (1988)] employed. … In a few
cases, new counties were added to metropolitan areas between 1980 and 1990; however,
by far the most common change was an intercensal adjustment of tract boundaries.”
Massey, White, and Phua (1996: 182) reported that “the 1990 solution [using 58 MSAs]
is not as clean as that observed in 1980. Factorial complexity is greater and the five axes
are not as well defined as before (i.e., indexes for conceptually distinct dimensions often
display high loadings on the same underlying factor). In addition, the factor pattern matrix
is dominated by the first factor [evenness] more in 1990 than in 1980, and the other four
factors explain relatively less of the common variance.” Moreover, “clustering is no
longer well established as an independent dimension in 1990” (Massey, White, and Phua
1996: 185). Rugh and Massey (2014) and Massey and Tannen (2015) avoided the
problems of changing boundaries by using consistently defined metropolitan boundaries
from 1970 to 2010.

Arcaute et al. (2015: 2) stated that “metropolitan statistical areas (MSAs) in the
USA, and larger urban zones (LUZs) in Europe … were designed to incorporate
urbanized and economic functional areas, but they are not necessarily consistent with one
another as no consensus exists on how cities should be defined.” Arcaute et al. (2015)
showed that alternative methods of delineating boundaries of cities in England and Wales,
which they devised, systematically affect the claimed power-law scaling of 30 urban
attributes as a function of total urban population in the 2001 census. No measures of
population concentration were included among their 30 indicators.
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It appears that a gap, a research opportunity, remains. Arcaute et al. (2015) examined
widely differing definitions of city boundaries at a given time but not their consequences
for indicators of spatial concentration of population. A question remains open: How
sensitive are measures of population concentration empirically to different methods of
delineating the boundaries and the internal spatial units of cities?
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