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models
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Hans Visser2

Abstract

BACKGROUND
Long-term projections of mobility are key inputs to sub-national population projections.
These long-term projections are based on extrapolations of long-term trends. In cases of
strong, potentially temporal, fluctuations it is informative to analyse the short- to medium-
term dynamics of mobility, using data of monthly frequency.

OBJECTIVE
We develop two univariate models to forecast short- to medium-term mobility in the
Netherlands. We apply a recent turning point in the time series of mobility to demonstrate
how short- to medium-term forecasts can provide early warning signals about possible
changes in the annual trend.

METHODS
The models we apply are Dynamic Linear Models (DLMs) which belong to the state
space family of models. The two models developed in the paper incorporate trend, sea-
sonal and autoregressive components but differ in the representation of the long-term
trend. Posterior sampling allows for calculation of consistent prediction intervals for
both monthly and annual data.

CONCLUSION
Forecast accuracy is evaluated using time series cross-validation. Point forecast errors
and calibration of prediction intervals are compared to those of several other popular
univariate forecasting models. One of our DLM models is more accurate than the models
included as comparison.

1 PBL Netherlands Environmental Assessment Agency, the Hague, the Netherlands.
Email: trond.husby@pbl.nl.
2 PBL Netherlands Environmental Assessment Agency, the Hague, the Netherlands.

http://www.demographic-research.org 871

mailto:trond.husby@pbl.nl
http://www.demographic-research.org


Husby & Visser: Short- to medium-run forecasting of mobility with dynamic linear models

CONTRIBUTION
The paper shows how short- to medium-term forecasts of mobility can be used to inform
long-term projections based on annual data. This will be a challenging task for statistical
offices generating post-COVID-19 demographic projections.

1. Introduction

Long-term demographic projections based on the cohort-component model require trend
extrapolation of growth components (Smith, Tayman, and Swanson 2013). This entails
isolating a long-term trend in historical data, using a variety of smoothing- and filtering-
methods. It is often useful to complement this exercise with a short- to medium-run
forecast. Trend extrapolation is problematic if short- to medium-run fluctuations stretch
into the long run, or if the most recent data points in the time series represent the top or the
bottom of a cycle (Canova 1998; Hamilton 2018). One of the problems with annual time
series is that they are released once a year, and the top of a cycle may lie somewhere in the
middle of that year. This may be a real challenge facing statistical offices working with
post-COVID-19 demographic projections. In this paper we develop methods for short- to
medium-term forecasting, evaluating the accuracy of point forecasts and the calibration
of intervals, on a time series of monthly mobility in the Netherlands. We use a recent
turning point in the time series of mobility to demonstrate how an analysis of the short-
to medium-term dynamics can provide early warning signals about possible changes in
the annual trend.

As is the case in most developed countries, one of the main drivers of regional-level
population change in the Netherlands is mobility. Extrapolations of mobility therefore
play a key role in regional population projection (te Riele et al. 2019). Due to the close
relationship between mobility decisions and labour- and housing-market conditions, time
series of mobility often follows the macroeconomic cycle. However, disentangling the
effects of macroeconomic drivers on mobility is not straight forward. Recent research
argues that the relationship between internal migration and labour market conditions has
changed over time (Kaplan and Schulhofer-Wohl 2017). Moreover, other factors than
economic considerations may, at least in the long run, be just as important in explaining
migration. For example, family considerations are important determinants of mobility on
an individual level, which means that mobility decisions are affected by changes to family
composition and aging (Mulder 2018). In order to forecast such time series, relatively
simple univariate methods can be of great value (Zietz and Traian 2014).

Univariate forecasting often involves decomposing a time series into elements such
as trend, cycle and seasonality, where these basic time series patterns are used to form a
forecast. One model type frequently used for such analyses is the Dynamic Linear Model
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(DLM), which belongs to the family of state space models (Petris, Petrone, and Campag-
noli 2009; Durbin and Koopman 2012). DLMs are linear models with a Gaussian error
structure, where the relevant inferences are carried out using the Kalman filter algorithm.
One advantage of these models is that their representation as stochastic systems allows
for efficient sampling of the posterior distribution of estimated model parameters. An-
other advantage is that the models are easily extended: time series components can easily
be added to or removed from a model if deemed necessary.

The demographic literature contains a number of applications of state space models
based on the Kalman filter. In a similar vein as our paper, de Beer (1988) applies a struc-
tural time series model to forecast the growth components of a cohort-component model.
Rueda and Rodrı́guez (2010) introduce multivariate state space models for estimating and
forecasting fertility rates. Furthermore, the Kalman filter has been used for other purposes
than forecasting. Ordorica-Mellado and Garcı́a-Guerrero (2016) develop a method, based
on the Kalman filter, for dynamic small area estimation of the population. Lee and An-
derson (2002) examine the macro-level causes and consequences of population change,
setting up a Malthusian system on a state space form where the relevant parameters are
estimated with the Kalman filter. Building on the Gaussian state space formulation of the
Lee–Carter model, Li et al. (2019) model the evolution of Chinese mortality over time,
using the Kalman filter to handle missing data points.

Although the connection is not always acknowledged in the literature, both the
Kalman filter itself and the state space formulation clearly draw on Bayesian methods
(West and Harrison 2006). As such, this paper relates to a growing literature using
Bayesian methods for demographic projections (Bijak and Bryant 2016). See, for ex-
ample, Bijak (2010) for an overview of Bayesian methods for forecasting international
migration. In a series of papers, Raftery and colleagues propose generic models for prob-
abilistic forecasts of the world population (Raftery et al. 2012; Azose and Raftery 2015;
Azose, Ševčı́ková, and Raftery 2016; Azose and Raftery 2019). Wiśniowski et al. (2015)
develop dynamic Bayesian models to forecast population, where Lee-Carter models are
used to forecast age-patterns of components. In terms of general mobility, one example
is Congdon (2000), who uses a Bayesian version of the Gravity Model to forecast patient
flows to hospitals.

The theme of our paper – namely forecasting mobility – relates to a broader liter-
ature on measuring and comparing internal migration and mobility. One challenge for
time series of migration and mobility is that moving is, by definition, a spatial process
(Fotheringham and O’Kelly 1989). There are several fundamental issues with measuring
migration across time and space (Bell et al. 2002). One problem is related to the granu-
larity of the spatial units: changing granularity changes the observed intensity of mobility
– the so-called modifiable areal unit problem (Fotheringham and Wong 1991). A related
problem with long time series is changes to administrative borders, where adjustments
have to be made to achieve consistency (Husby et al. 2014). Bijak et al. (2019) carry
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out an empirical comparison of methods for forecasting (international) migration. They
recommend a three-step process for migration modelling: (1) understand the features of
the particular migration flow; (2) assess the available data; and (3) select a modelling
approach appropriate for the type of migration and the available data.

In this paper we develop two DLMs for a short- to medium-term forecast of mobility,
where short- to medium-term is understood as a time horizon up to two years. In partic-
ular, we are interested in whether these models provide reasonable short- to medium-
term forecasts around a turning point in a time series. We also illustrate how both point
forecasts and intervals of monthly series can be aggregated to annual frequencies. As a
robustness check we compare the forecasting performance of our model with that of six
other popular models for univariate time-series forecasting. These models are all esti-
mated using automatic routines available in R. As a byproduct of the evaluation exercise,
we evaluate the merits of our manual model selection compared to the automatic model
selection in easy-to-use software packages.

The structure of the paper is as follows: Section 2 discusses the data and presents
the model; Section 3 shows the estimated parameters and results from basic inference
with the Kalman filter; Section 4 presents results from an out-of-sample evaluation and
illustrates how forecasts of monthly mobility can inform forecasts on an annual scale; and
Section 5 summarises the findings and concludes the paper.

2. Data and modelling

2.1 Monthly time series of mobility

The national mobility rate is a key variable to the cohort-component model used for the
regional population projections of Netherlands Environmental Assessment Agency (PBL)
and Statistics Netherlands (CBS), namely the Projecting population Events At Regional
Level (PEARL, see de Jong et al. 2005). In terms of internal migration, PEARL is a
bottom-up model with an explicit representation of origin-destination flows between mu-
nicipalities and within-municipality moves. Trend extrapolation of the national mobility
rate is used to ensure consistency between the municipality- and national-level of mobil-
ity. As such, the national mobility rate has an important controlling mechanism in the
overall model. Since the national population hardly changes in the short- to medium-run,
the short- to medium-term dynamics in the mobility rate stem almost entirely from fluc-
tuations in mobility counts. For this reason, we focus on time series of mobility counts
rather than rates.

The time series applied in this paper is the national level of mobility in the Nether-
lands, which is an aggregate of recorded address changes in the population register of the
CBS. The data can be classified as ’events’ (Bell et al. 2002), including both inter- and
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intramunicipal moves. Since we use national aggregates of mobility counts, the data are
not prone to the modifiable areal unit problem. As stressed by Bijak et al. (2019), the
variability of migration data can be a major source of uncertainty in migration forecasts.
In the context of mobility there could be biases for certain groups, such as students who
stay registered at their parents’ home. However, since the data covers the entire popu-
lation, this is unlikely to be a serious concern. Furthermore, the data used for the time
series in the paper has been subject to ex-post corrections by the CBS.

Using open data from the CBS, we obtain a monthly time series of moves from
January 1995 to December 2019, leading to a total of 300 observations. More formally,
we define the mobility in time period (year and month) t, mt, as the sum of inter and
intramunicipality moves between the first and the last day of the month in t. Figure
1 shows the time series from January 1995 to December 2019 as well as the seasonal
differences, defined as mt −mt−12.

Figure 1: Mobility (upper panel) and seasonal differences (lower panel)

The upper panel shows that there are between 110,000 and 170,000 moves per
month, which corresponds to between 7 and 11 moves per 1,000 inhabitants per month.
The plot suggests that the mobility is cyclical with an uneven period length. It is clearly
seen from the plot that the time series is nonstationary, which is also confirmed by a
Dickey Fuller test. The financial crisis, which hit the Dutch housing market hard, can be
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seen in the dip from 2008 onward, with the recovery from the crisis set in during the year
2014.

From the bottom panel, which shows the seasonal differences, we see that the year-
to-year changes are negative from January 2009 with a recovery in 2012 and a new dip
in 2013 before a real recovery from 2014. Interestingly, the lower panel reveals that the
year-to-year changes become negative from mid 2017. This turning point reflects an end
of the increasing trend from 2014.

Summing up, the decomposition of the time series suggests that there is no linear
trend, rather a cycle with peaks roughly every ten years. Furthermore, there are strong
seasonal effects with variations between the years, indicating a noisy seasonality compo-
nent. In addition, the seasonality and the trend-cycle lead to autocorrelation.

2.2 Model description

State space models are a representation of a dynamic system, where observed values are
a linear function of an unobserved process (the state) and noise. The state space for-
mulation is a necessary condition to carry out inferences by the Kalman filter algorithm
(Kalman 1960). The filter is computational recursive, allowing for estimates of the state
in a way that minimizes the mean of the squared one-step-ahead prediction errors or inno-
vation. The filter supports estimates of past, present, and even future states. As mentioned
above, DLMs form a special case of state space models where errors are normally and
independently distributed.

Let the time series yt denote the logarithm of mobility. In state space formulation,
yt is a linear function of a latent underlying vector of states θt. Furthermore, yt are
conditionally independent given the state θt, and the state is a latent Markov process,
meaning that the probability of moving to the next state depends only on the previous
state. We can write this DLM as:

yt = Fθt + vt vt ∼ N(0,Vt) (1)
θt = Gθt−1 + wt wt ∼ N(0,Wt) (2)
θ0 ∼ N(m0,C0). (3)

The first equation is called the observation equation and the second the state equa-
tion. vt and wt are uncorrelated Gaussian errors, where the observation variances are
gathered in the matrix Vt and system variances in the matrix Wt. F and G are known
system matrices. We use noninformative priors for θ0, with meanm0 and variance matrix
C0.

Elements of the state vector θt should be chosen so that they reflect the characteris-
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tics of the time series. As noted in the previous section, periods of growth were followed
by periods of decline, meaning there were piecewise or local linear trends. One model
that can capture such patterns is the linear growth or local linear trend model, where the
yt are noisy observations of a level µt which varies over time with slope βt. The dynam-
ics of the slope itself is modelled as a random walk. We can write the local linear trend
model as follows:

yt = µt + vt vt ∼ N(0,σ2
v) (4)

µt = µt−1 + βt−1 + wt,1 wt,1 ∼ N(0,σ2
µ) (5)

βt = βt−1 + wt,2 wt,2 ∼ N(0,σ2
β). (6)

Seasonality is dealt with by the inclusion of a trigonometric seasonal components
with a fixed periodicity of 12 months. One advantage with the trigonometric specification,
relative to simpler seasonal dummies, is that we allow autocorrelation to last through more
lags, resulting in a smooth seasonal pattern. In this way we filter out some of the noise
seen in the figures in the previous section. By including non-zero variances the seasonal
pattern is allowed to change over time. For the jth harmonic we can write the evolution
of the seasonal effects as:

Sj,t+1 = Sj,t cosωj + S∗
j,t sinωj (7)

S∗
j,t+1 = −Sj,t sinωj + S∗

j,t cosωj . (8)

with the Fourier frequencies ωj = 2πtj
s . We include two harmonics.

The two components discussed thus far, trend and seasonal, remove much of the
autocorrelation. However, a Ljung–Box test confirmed that the residuals of such a model
are still not white noise. One way of dealing with residual autocorrelation is to include
autoregressive elements (AR) into the state space model.

In order to determine the order of the AR elements, we proceed in a similar way
as that of a seasonal ARIMA model, namely by examining the autocorrelation function
(ACF) and the partial autocorrelation function (PACF) of the time series data. This pro-
cedure is described in Box and Jenkins (1976), who provide both a theoretical framework
and practical rules for determining appropriate number of lags. The ACF and PACF, as
well as an examination of the resulting model residuals, suggest an AR (12) where only
four of the estimated parameters take non-zero values; namely the parameters of lags 1,
2, 7, and 12. The full procedure is described in detail in Appendix A. Figure B-1 in
Appendix B shows the resulting ACF of the standardised residuals, suggesting that the
residuals in the first year are essentially white noise. Note that the standard routine for
creating autoregressive terms in the dlm package does not allow for ‘gaps’ in the included
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lags. In order to estimate the model, we use the system matrices of an AR (12) where the
parameter of lags not included in the model are set to zero.

3. Results

Before we apply the Kalman filter for estimation and forecasting, we estimate the un-
known variances and the parameters in the autoregressive component using maximum
likelihood (see Petris, Petrone, and Campagnoli 2009: Ch. 4). With the estimated pa-
rameters we can estimate the remaining parts of the model using the Kalman filter. One
important inferential task is to estimate θt with data up to t: y1, y2, ..., yt. This is referred
to as filtering. A second task is smoothing, which entails estimating θt with all available
data: y1, y2, ..., yt, ..., ys. This section presents the parameter estimates and the resulting
filtering and smoothing estimates of mobility.

3.1 Parameter estimates

As shown in the previous section, there are 10 potentially non-zero parameters that need
to be estimated before running the Kalman algorithm: σ2

v , σ2
µ, σ2

β , σ2
S1

, σ2
S2

, and σ2
u, as

well as the autoregressive parameters φ1, φ2, φ7, and φ12. Note that φ1, φ2, φ7, and φ12
are estimated subject to stationarity restrictions (Monahan 1984). Initial analyses revealed
that the value of σ2

S1
hardly had any discernible impacts on model results, therefore this

parameter is set to zero.
The first two parameters in W , σ2

µ and σ2
β , represent the variances for the trend-

cycle component; one for the level and one for the slope. Initial runs revealed that two
special cases of the model fit the data better than that with both variances larger than zero.
The first special case, sometimes referred to as the integrated random walk or the smooth
trend model (Young et al. 1991), is obtained by setting σ2

µ = 0. In this specification,
all noise patterns are shifted from the level component to the slope, meaning that the
trend-cycle component of the state vector becomes smooth (hence the name). In the
remaining parts of the paper we will refer to this model as DLM1. A second special case
is a model in which σ2

β = 0, where all stochasticity is removed from the dynamics of
the slope. Here the estimated βt reflect the long-run slope of the time series rather than
the local slope, essentially reducing to what is sometimes called the random walk with
drift (Koopman and Ooms 2011). Due to the inclusion of the autoregressive elements,
the short-run forecasts can diverge from long-term growth. More specifically, a one-step-
ahead prediction ŷt+1 reflects up to 12 lagged values of the time series yt and not only
the long-term trend. We will refer to this model as DLM2.

Estimated parameter values are shown in Table 1, along with standard errors calcu-
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lated using the Delta method. The observation variance σ2
v is, for all practical purposes

zero, indicating a high level of precision of the observations. The estimated parameters
of the autoregressive parts are very similar between the two models, except for the pa-
rameter of the second lag which takes positive values for DLM1 and negative values for
DLM2. The variance of the seasonal component, σ2

S2
, is larger than zero for both models,

allowing seasonality to change over time.

Table 1: Estimated parameters and standard errors

DLM1 DlM2
Parameter Estimate SE Estimate SE

σ2
v 0.00000002 0.000 0.00000002 0.000

σ2
µ 0.0001 0.00003

σ2
β 0.000002 0.000001

σ2
S2

0.000008 0.000004 0.000008 0.000004

σ2
u 0.0013 0.0001 0.0010 0.0001

φ1 −0.637 0.2356 −0.6904 0.2311

φ2 0.0308 0.1221 −0.0537 0.1274

φ7 −0.4415 22.0938 −0.4879 0.0953

φ12 0.4486 0.0623 0.4349 0.0616

3.2 Filtering and smoothing estimates of mobility

With the Kalman filter we obtain the filtered distribution of states conditional on the ob-
served series up to t, θt|y1, y2, ..., yt. Forecasts of the next observation yt+1 based on
observations up to t, are produced by first computing the state vector θt+1 and then pre-
dicting ŷt+1. Similarly, an n-step ahead forecast yt+n is based on calculating the n-step
ahead state vector θt+n. We can write the forecast function as ft = E(yt+n|y1, y2, ....yt).
Besides the filtering distribution, we also estimate a smoothing distribution, representing
the states conditional on the observed values of the entire time series θt|y1, y2, ..., ys,
where s ≥ t.

The one-step ahead predictions, or filtering estimates, from both of the models are
displayed in Figure 2 together with the Mean Absolute Percentage Error (MAPE). Due
to the recursive nature of the Kalman algorithm, there is a large discrepancy between
the filtered values and the observed values in the first periods. We therefore discard the
three first years when calculating the MAPE. The MAPE suggests that DLM2 fits the
data somewhat better than DLM1, though differences are not dramatic. A residual check
showed that the normality assumption of DLM2 is justified (see Appendix B).
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Figure 2: One-step-ahead forecast (solid line), observed data (dotted line)
and MAPE (calculated from January 1998)

Figure 3 shows the one-step ahead Kalman filter forecasts along with 80% prediction
intervals of DLM1 and DLM2 for the months between January 2010 and December 2018.
The figure also reports on the interval coverage probability, calculated as the share of
predicted values falling within the interval. The interval is calculated using the standard
deviation of the filtered values (Petris, Petrone, and Campagnoli 2009: Ch. 3). Although
the mean forecasts of the two models are in general quite similar, we see that DLM1
systematically predicts a higher mobility than DLM2 from 2014 to about 2017.

The smoothing estimates for the trend-cycle component and seasonal effects are
shown in Figure 4. From the left panels we can pinpoint the recent peak in the trend-
cycle to March 2017. There is a visible difference between DLM1 and DLM2, where the
former model produces a much smoother trend cycle. The right panels show how the sea-
sonal effects vary over time; at the start of the time series the within-year cycle exhibits
one pronounced maximum (July) and one minimum (March). However, from around the
middle of the series, there is gradually another local maximum within each year (Jan-
uary). This means that the seasonal patterns in the model captures the development of the
seasonal factors from the raw data well.
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Figure 3: Filtering estimate and 80% prediction intervals

Figure 4: Smoothing estimates of the trend-cycle (left) and seasonality (right)
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4. Discussion

In this section we evaluate the forecasting accuracy of the models described in the pre-
vious sections. We evaluate out-of-sample point forecasts and interval coverage using
standard metrics, comparing the accuracy to that of several other univariate forecasting
models. In particular we focus on a turning point in the time series, evaluating how fore-
casting errors vary as a function of the length of the forecast horizon.

4.1 Model assessment

Model evaluations on cross sectional data are often carried out by estimating the model
on a training data set and evaluating it on an independent test data set. In order to con-
trol for effects arising from the composition of the training data, it is common to repeat
this procedure for varying training and test data sets. This procedure is called k-fold
cross validation (Hastie, Tibshirani, and Friedman 2009). In the time series literature,
the test data generally do not contain observations occurring prior to the observations in
the training data (Bergmeir and Benı́tez 2012). Recent literature suggests that standard
cross-validation can be applied to certain time series models (Bergmeir, Hyndman, and
Koo 2018). However, due the Markov assumption embedded in the Kalman filtering al-
gorithm, we expect that standard cross-validation is not appropriate for the DLMs in this
paper.

We follow the conventional approach for evaluating forecast errors, namely evalu-
ation over a rolling origin (Tashman 2000), where the training data are successively ex-
tended in k iterations. The last point of the training data in each iteration is referred to as
the origin T , meaning that the training data consists of observations between t = 1, ...,T
and forecasts are generated for time periods T + 1, T + 2, . . . , T + N . This procedure
is illustrated in Figure 5. The movement along the x-axis shows how the origins (vertical
dotted line) ‘roll’ forward in time. The model is estimated on the training data (black
solid line) and forecast performance is evaluated by averaging the forecast errors over
different horizons (dotted horizontal lines).

We evaluate forecasting performance over three time horizons: N = 6, N = 12
and N = 18. This means that there are three versions of each error measure: one for a
half year forecast, one for a year, and one for one and a half years. We are interested in
assessing the performance around the change point in March 2017 (see Figure 4). In order
to evaluate the performance of the models on both sides of the change point, we include
origins within 12 months before and after March 2017. Including the change point itself,
we arrive at a total of 25 forecast origins: T = March 2016, February 2016, . . . , and June
2017.
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Figure 5: Illustration of rolling origin: training data (solid black line), origin
(vertical dark grey line), forecast horizon (dotted horizontal lines),
and test data (grey line)

Point predictions are evaluated using MAPE and the Mean Absolute Scaled Errors
(MASE), both averaged over forecast origins. MAPE is included as it is widely used
and easily interpreted. However, MAPE has a number of potential drawbacks, includ-
ing putting a heavier penalty to negative than to positive forecast errors (Hyndman and
Koehler 2006). MASE overcomes some of the issues of MAPE and has a simple inter-
pretation. The seasonal MASE is defined as the mean absolute forecast error divided by
the mean absolute (within-sample) error of the one-step-ahead seasonal naı̈ve forecast.
Consequently, a MASE below 1 indicates smaller forecast errors than a one-step-ahead
naı̈ve forecast.

The calibration of both 80% and 95% prediction intervals is assessed with interval
coverage probabilities – a standard measure of model error within stochastic population
forecasting (Bijak et al. 2019). The coverage probability of the intervals is calculated as
the proportion of the observations between March 2016 and June 2017 that fell within
their prediction intervals (PI). In well-calibrated models it is expected that the empirical
frequencies are close to the nominal coverage probabilities.
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4.2 Models used for comparison

The forecasting accuracy of the DLMs is compared to the accuracy of six other popular
models. The first of these is a naı̈ve seasonal model (Naı̈ve), where the forecast of a
specific month is simply the value of the same month of the previous year. Despite its
simplicity, this model often performs very well, especially for short-term forecasts of
economic and financial time series.

The next model is the Holt–Winters method with multiplicative seasonality (Holt
2004; Winters 1960). This model is an extension of the simple exponential smoothing
model, allowing for forecasts with seasonality. Using the function HoltWinters() in
base R, the smoothing parameters of the model are selected automatically, for each origin,
with the default initial values. This model type performs particularly well on data with a
clear trend, and we therefore expect it to forecast accurately before the change point and
increasingly worse around and after it.

Furthermore, we include general exponential smoothing models on state space form,
referred to as Error, Trend, Seasonal (ETS). The state space formulation allows all combi-
nations of trend-, seasonal and error components to be modelled (Hyndman et al. 2002).
The automatic model selection is carried out using the ets() function with default values
for all arguments, and model selection is based on the corrected Akaike’s Information
Criterion (AIC).

We also include a basic variant of the Structural Time Series model described in
Harvey (1990). The function StructTS() available in base R can be used to estimate
some simple variants of this model type. We use this function to estimate a local linear
growth model with monthly dummies to control for seasonality.

Another widely used model, the so-called Trigonometric seasonality, Box-Cox
transformation, ARMA errors, Trend, and Seasonal (TBATS) components model, ex-
tends the ETS model by allowing for multiple seasonalities (De Livera, Hyndman, and
Snyder 2011). This model is also implemented as a state space model, and its components
are automatically selected using a similar routine as that of the ETS model. One reason
for including this model is that the trigonometric seasonality, also used in the DLMs,
filters out some of the noise in the time series.

Finally, we include a seasonal ARIMA model in the comparison. Identification of
the model is carried out using the auto.arima() function on the whole sample (Hyndman
and Khandakar 2008), and results in a model of the form ARIMA (2,1,5) (2,1,1). This is
a model with double differences, with yearly and monthly MA (2), and yearly AR (5) and
monthly AR (2). For each origin, we re-estimate the model parameters on the respective
training data. We also tried the automatic selection for each origin with virtually identical
results.
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4.3 Empirical results

Figure 6 shows the overall forecast accuracy across origins. From the figure we see that
the point forecasts of DLM2 outperform DLM1 for all forecast horizons, and especially
for 18 months forecast. For the forecast horizon of 6 months, the MASE below 1 suggests
that DLM2 outperforms the one-step-ahead Naı̈ve model. Compared to all other models,
the point forecasts of DLM2 are very accurate, both in terms of MAPE and MASE. The
relative performance of the models is practically the same across the error measures,
suggesting that MAPE is a valid accuracy measure in this context.

Not surprisingly, the forecast accuracy of DLM2 deteriorates as N increases but,
compared to the other models, the decrease in accuracy is limited: the mean MAPE for N
= 6 is around 3.5%, compared to around 5% for N = 18. The limited decrease in forecast
accuracy is not shared with DLM1, the ARIMA, and Holt–Winters models, which all
see substantial increases in forecasting errors as the forecast horizon increases. The only
model that shares this feature with DLM2 is the ETS model, which has slightly larger
forecast errors for all horizons. Both MAPE and MASE indicate that the DLM2 and
ETS models are fairly competitive, with a slight advantage to DLM2, across all forecast
horizons. The figure also suggests that DLM1 is among the models with the worst forecast
accuracy (with errors increasing with the forecast horizon).

In terms of coverage probability, we see that the empirical forecast distribution of
DLM2 matches the theoretical 80% prediction interval closely. The coverage probability
of the 95% interval lies in the range between 0.91 and 0.97, depending on the forecast
horizon. The empirical 80% intervals of the ETS match the theoretical counterpart fairly
well for the shorter forecast horizons. However, its 95% intervals are too conservative for
the 18 month forecast horizon, meaning that more than 95% of the observations fall within
the theoretical interval. Note that coverage probability of the Naı̈ve and the Holt–Winters
models are excluded due to numerical problems with calculating prediction intervals.
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Figure 6: MAPE and MASE of forecasts, coverage probability of forecast
intervals

Figure 7 delves further into the variation in forecast performance across origins,
showing the MAPE per origin and model for the three forecast horizons. In the interval
between December 2016 and December 2017, DLM2 is the best performing model for
all forecast horizon, with the exception of origins right after March 2017 where the Naive
model performs best. We see that the ARIMA, Holt–Winters, and the ETS models all
perform better than the DLMs on the part of the time series, where there is a clear trend
in the training data that at least partially extends into the test data (until December 2016).
As Figure 6 showed, the higher forecast accuracy of the ETS model, relative to the DLMs,
occurs primarily for a short forecast horizon. This is caused by the relatively high MAPE
for the DLMs prior to December 2016.
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Figure 7: MAPE by origin and forecast horizon

4.4 Forecast values from all origins

In addition to general evaluations of forecast performance, we are also interested in the
value of some specific forecasts – namely those around the change point. Figure 8 com-
pares the forecasts of all models in the period January 2017 to December 2018. The grey
dots represent forecasts from different origins, the black line represents the average value
of the forecasts across all origins and the dark grey line is the data. The figure shows
clearly the divergence in forecasting performance between the DLMs and the ARIMA
and Holt–Winters models. The Holt–Winters model systematically overpredicts mobil-
ity already from June 2017, meaning that the forecast mobility exceeds the data for all
origins. This occurs for the ARIMA model from October 2017 onward. In the case of
DLM2, the last forecast point with a value lower than that of the data occurs in May 2018.
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Figure 8: Forecast of mobility (light grey dots), forecasts averaged over
origins (black line), and observed data (dark grey line)

4.5 Nowcasting and forecasting from 2017 onwards

For practical applications of our model it is relevant to know what a model forecast can
tell us about annual mobility from March 2017 onward, both in terms of point forecasts
and prediction intervals. By applying the rolling origin technique and aggregating the
monthly forecasts, we can essentially simulate the annual mobility in 2017 – a technique
known as ‘nowcasting’. We can then examine how the forecast annual mobility change
as new information becomes available. One potential challenge of this exercise is that the
prediction intervals presented in the previous subsections are based on normality assump-
tions of the residuals on a monthly frequency. The prediction intervals of the monthly
series can not be directly translated to an annual frequency. This challenge can be over-
come with state space models: by sampling from the posterior distribution of the state
vector and aggregating simulated monthly values into annual frequency, we can calculate
a Monte Carlo approximation of the intervals of annual mobility.

As suggested by the results of the previous subsections the best performing model,
next to the DLM2 model, was the ETS model, which also allows for simulation of future
sample paths. The automatic selection procedure results in an ETS (M, Ad, A): a model
with multiplicative errors, damped additive trend and additive seasonal effects.
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To begin, we simply aggregate the mean forecasts. The left panels in Figure 9 show
two-year forecasts of the monthly mobility, while the right panels show mobility on an-
nual frequencies.

Figure 9: Two-year forecast (black line) of monthly (left) and annual (right)
mobility and test data (dark grey line) and 95% prediction interval

At first glance, the point forecasts of the monthly frequency (left part of the figure)
are quite similar. Both models forecast mobility in 2017 accurately and they both over-
estimate mobility in 2018. As the right left panels of Figure 9 show, the annual mobility
declines between 2017 and 2018, and none of the models were able to capture this sud-
den movement. However, we see ETS is much more “positive” about (i.e., overestimates
more substantially) the annual mobility than DLM2. As we discussed earlier, both of
these models can allow a short-run forecasts to diverge from a long-run trend growth.
The figure suggests that the models produce quite similar short-run forecasts, but they
differ as the horizon increases.

Could additional monthly observations in 2017 help improve the accuracy of forecast
of annual mobility in 2018? How soon could we know that the top of the cycle had
been reached? We can investigate these questions using an approach that is similar to
the evaluation on a rolling origin. For example, using the origin of March 2017, we
can generate forecasts for the rest of the months in 2017. By aggregating the observed
(January to March) and forecast values (April to December) we can calculate the annual
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mobility in 2017. Figure 10 shows the results from this exercise for four origins (March,
June, September, and December 2017), using 3000 simulated forecasts (only the first 100
are shown in the figure) for DLM2.

Figure 10: Monte Carlo forecasts of annual mobility with DLM2 for four
different origins

Since we have identified March 2017 as the change point of the cycle, it is logical
that this origin also results in the worst mean forecast (the black line in Figure 10). Mov-
ing forward to the origin of June 2017, we can see that the mean forecasts of 2017 and
2018 are closer to the observed data. From September onward we see that the model
clearly has picked up the development from after the change point, with the annual mo-
bility declining. The 95% prediction intervals include the observations for all origins,
while the 80% prediction intervals include the observed value of 2017 for all origins, and
also that of 2018 for the origin of September 2018.

Figure 11 shows the results of the same exercise with the ETS model.
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Figure 11: Monte Carlo forecasts of annual mobility with ETS model for four
different origins

As Figure 9 already suggested, the longer-term forecasts of the ETS diverge from
those of the DLM2: the forecasts from the two earliest origins show a stronger increase
in mobility between 2017 and 2018. Consequently, the observed mobility in 2018 falls
outside the 95% intervals and in some cases even outside the 80% intervals.

5. Conclusion

In this paper we have developed two Dynamic Linear Models for short- to medium-run
univariate forecasts of monthly mobility in the Netherlands. We have shown how the state
space type of models, when interpreted in terms of Bayesian inference, allows one to
aggregate monthly point forecasts and intervals to annual frequencies. We paid particular
attention to forecast performance around a change point in the time series. In that sense
we believe the method presented in this paper can be informative to statistical offices
involved in post-COVID-19 population projections. Although our paper deals with a
component specific to subnational projections, the method presented here could equally
well be used for short- to-medium-run forecasts of components of national projections.

We compared the prediction accuracy of the DLMs to that of a number of other
models, estimated using automatic model selection routines. We showed how forecasts
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of monthly time of series can be used to generate point forecasts and prediction intervals
on an annual frequency, before the annual observations are available. Our paper therefore
provides an update to the analysis in de Beer (1988). However, our analysis considers a
wider class of models and provides more information about prediction intervals.

The results presented in the previous section show that one of the DLMs quite accu-
rately forecasts both monthly and annual mobility until the end of 2017, based on data up
to the end of 2016. More generally, DLM2 performs comparable or better than a number
of popular univariate forecasting in a time interval between the end of 2016 to the end of
2017. One remarkable aspect of the forecasts of DLM2 is the relatively limited deteriora-
tion in forecast accuracy as the forecast horizon increased. Comparing the two DLMs, we
saw that the specification of the local linear growth component played a crucial role. The
limited dynamics in the slope term of DLM2 ensures a certain conservatism for forecast
horizons above 12 months, thereby reducing the forecast errors. The only other model
mimicking this behaviour is the ETS model, which is itself also formulated as a state
space model.

Comparing the dynamic linear models of this paper to the Bayesian models de-
scribed in Bijak and Bryant (2016), one main difference is the use of (unique) model
parameters estimated with maximum likelihood. A full Bayesian approach would take
into account the parameter uncertainty in predictions and other inference. Whether this
matters for the model outcomes is an empirical question. However, for a practitioner
this entails some differences in the setup of the model. Although our model results were
fairly insensitive to the priors of the state vector, they were quite sensitive to the starting
values of the maximum likelihood estimation. In a full Bayesian approach, the task of
finding good starting values is replaced by the need to define good priors for the same
hyperparameters, which is itself challenging for more complex model types.

Although the time series data used in this paper represent an aggregated measure of
mobility, it is well known that migration follows highly age-specific patterns (Matthews
and Parker 2013; Raymer, Willekens, and Rogers 2019). Disaggregating the time series
into age groups (dynamic hierarchical models) may improve the forecast accuracy and
could be an interesting option for future research.
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Appendix A

In addition to the cycle, there are strong seasonal patterns that vary over time. The sea-
sonal subseries plot in Figure A-1 shows the movement per year and average per month
(lower panel), and the horizontal lines in the figure indicating the means for each month.
This plot enables us to see the underlying seasonal pattern clearly, and it also shows the
changes in seasonality over time. The figure shows that the highest frequency is, on av-
erage, in August and July while the lowest is in April. We also see there is quite some
variation between the years: the differences between the months were more pronounced
in the early part of the time series than in later years. The lower panel suggests a sinu-
soidal pattern with two peaks within one year – one peak in the summer and one at the
end of the year.

Finally, we check whether there is a linear relationship between lagged variables of
the time series (autocorrelation). Figure A-2 reveals a large and positive autocorrelation
for small lags, since observations nearby in time tend to be similar in size. We also see
that strong autocorrelation in lags that are multiples of the seasonal frequency (12, 24,
and 36), which is due to the seasonality discussed above. The slow decline is related to
the trend-cycle while the ‘scalloped’ pattern is related to the seasonality. In terms of lag
selection for an ARIMA model, the significant spikes at the first and second lag in the
partial autocorrelation plot in the lower figure suggests that we should include at least two
autoregressive terms (Hyndman and Athanasopoulos 2018).
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Figure A-1: Seasonal subseries plot of the frequency of mobility

Figure A-2: Autocorrelation function of the frequency of mobility
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Appendix B

This appendix presents relevant figures used for the estimation of the DLMs. The first
figure shows the autocorrelation functions used for determining the order of the autore-
gressive elements of DLM1 and DLM2. The second figure shows whether the residuals
of DLM are normally distributed.

Figure B-1: Autocorrelation function of the standardised residuals
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Figure B-2: Normal probability plot of standardized one-step-ahead forecast
errors of DLM2
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Appendix C

Table C-1: MAPE of cross-validation exercise: mean, standard deviation, min
and max across origins

Horizon Model Mean SD Min Max

6 ARIMA 0.0391 0.0108 0.0169 0.0611
DLM1 0.0427 0.0171 0.0103 0.0689
DLM2 0.0359 0.0105 0.0163 0.0568
ETS 0.0366 0.0107 0.0136 0.0573
Holt–Winters 0.0438 0.0186 0.0191 0.0743
Naı̈ve 0.0560 0.0216 0.0207 0.0916
StructTS 0.0410 0.0101 0.0215 0.0620
TBATS 0.0428 0.0081 0.0251 0.0599

12 ARIMA 0.0514 0.0168 0.0294 0.0833
DLM1 0.0577 0.0264 0.0233 0.1029
DLM2 0.0429 0.0096 0.0295 0.0733
ETS 0.0453 0.0162 0.0241 0.0744
Holt–Winters 0.0605 0.0271 0.0256 0.1051
Naı̈ve 0.0537 0.0143 0.0352 0.0800
StructTS 0.0534 0.0154 0.0332 0.0774
TBATS 0.0528 0.0158 0.0299 0.0911

18 ARIMA 0.0619 0.0266 0.0283 0.1113
DLM1 0.0756 0.0411 0.0340 0.1524
DLM2 0.0491 0.0096 0.0357 0.0786
ETS 0.0526 0.0226 0.0254 0.0963
Holt–Winters 0.0795 0.0376 0.0304 0.1473
Naı̈ve 0.0573 0.0149 0.0355 0.0884
StructTS 0.0663 0.0241 0.0344 0.1060
TBATS 0.0610 0.0277 0.0298 0.1362
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