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Preparing local area population forecasts using a bi-regional
cohort-component model without the need for local migration data

Tom Wilson1

Abstract

BACKGROUND
Cohort-component models incorporating directional migration are conceptually robust
demographic models which are widely employed to forecast the populations of large
subnational regions. However, they are difficult to apply at the local area scale. Simpler
models, such as the Hamilton–Perry model, have modest input data requirements and are
much quicker, cheaper, and easier to implement, but they offer less output detail, suffer
from some conceptual and practical limitations, and can be less accurate.

OBJECTIVE
The aim of this paper is to describe and evaluate the synthetic migration cohort-
component model – an approach to implementing the bi-regional model for local area
population forecasts without the need for any locally specific migration data.

METHODS
The new approach is evaluated by creating several sets of ‘forecasts’ for local areas of
Australia over past periods. For comparison, forecasts from two types of Hamilton–Perry
model are also evaluated. Error is measured primarily with an alternative Absolute
Percentage Error measure for total population which takes into account how well or
poorly the population age–sex structure is forecast.

RESULTS
In the evaluation for Australian local areas, the synthetic migration model generated more
accurate forecasts that the two Hamilton–Perry models in terms of median, mean, and
90th percentile Absolute Percentage Errors.

CONTRIBUTION
The synthetic migration model combines the conceptual and practical advantages of the
bi-regional cohort-component model with the light data requirements and ease of
calculation of simpler cohort models. It allows the bi-regional model to be applied in
circumstances where local area migration data are unavailable or unreliable.
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1. Introduction

Local area population forecasts regularly inform planning for future service provision
and infrastructure development, such as kindergarten demand, school building and
staffing, water supply, health services, local leisure facilities, and public transport. They
are also used for commercial market assessment and site selection (Baker, Swanson, and
Tayman 2021), and in some countries they are required for the revision of electoral
district boundaries (e.g., AEC 2021). Forecasts help answer questions such as: Does
forecast demographic change justify the construction of a new primary school, a new
nursing home, or a new supermarket in the local area? Because many uses of forecasts
are limited to specific age groups, age-specific population forecasts must be prepared.

The ‘gold standard’ for forecasting the populations of large subnational regions by
age and sex is the multiregional cohort-component model in which internal migration is
modelled between each origin and destination (Rees and Wilson 1977; Rogers 1995).
However, at the local area scale, this is a very demanding model to implement. In many
countries the necessary input migration data is simply unavailable. Even where it is
possible to acquire the data, the size and sparsity of an origin–destination–age–sex
migration matrix which includes hundreds or thousands of local areas is very challenging.
Considerable time and effort have to be spent on data collation, estimating suppressed or
missing cells and smoothing, assumption-setting, programming, and input and output
data checking, all of which involves substantial staff time and cost. One option is to
switch to the reduced-form bi-regional version of the model in which internal in- and out-
migration is modelled between each local area and the rest of the country (Isserman 1993;
Rogers 1976). It requires much less migration data but produces forecasts similar to that
of the fully multiregional model (Rogers 1976; Wilson and Bell 2004). Both these types
of directional-migration model have many strengths. They offer considerable flexibility
of assumption-setting, detailed migration outputs, and, by modelling separate internal and
international inward and outward migration flows, they faithfully represent actual
demographic processes. Assumed future changes to migration rates are therefore likely
to yield sensible population change outcomes. From a practical standpoint, directional-
migration models tend to produce plausible forecasts, and applied demography textbooks
recommend their use where possible (e.g., Pittenger 1976; Smith, Tayman, and Swanson
2013). However, even the reduced-form bi-regional version still requires a considerable
amount of migration data and data preparation.

Alternative, simpler, cohort-component models can be used to prepare age–sex
population forecasts where local area internal and/or international migration data are
unavailable, unreliable, or when the application of a multiregional or bi-regional model
is impractical (Wilson et al. 2021). Some cohort-component models incorporate
migration through net migration, either as net migration numbers (Rowland 2003), net
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migration rates (Smith 1986), or a mixture of rates (for negative net migration) and
numbers (positive net migration) (Wilson 2016). Net migration may be treated as a single
variable, or divided into internal and international components. The advantages of net
migration cohort-component models include their low data requirements and easy
calculation. However, they are vulnerable to some practical limitations. Net migration
rates applied to rapidly growing areas can produce implausibly high projected population
growth. Adjusting age patterns of net migration to be consistent with higher or lower net
migration assumptions is challenging (Pittenger 1976, 1978), and models which use net
migration numbers can, in some circumstances, generate negative populations for age
groups where assumed net migration is negative. In addition, from a conceptual
perspective, modelling net migration is less satisfactory than directional migration
because net migration is not a demographic process itself, but the net result of migration
streams flowing in opposite directions.

The Hamilton–Perry model avoids dealing with net migration and simplifies the
calculations further (Baker et al. 2017; Hamilton and Perry 1962; Smith, Tayman, and
Swanson 2013). Population is projected by multiplying the start-of-interval population
by a Cohort Change Ratio, defined as the ratio of a cohort’s population at one point in
time to its population size at an earlier time (often 5 years earlier) when (5 years) younger.
The greatest strength of the model is the ability to create age–sex population forecasts
very easily and with minimal data requirements: it only requires population estimates by
age and sex at two points in time to estimate Cohort Change Ratios. Populations in the
0–4 age group are often forecast by multiplying Child/Woman Ratios by the female
population aged 15–49. Limitations include the lack of demographic components (births,
deaths, and migration) in the modelling process, and therefore the inability to formulate
projection assumptions for fertility, mortality, and migration, and the absence of forecast
outputs of these components. It is also difficult to adjust the age profile of Cohort Change
Ratios in a sensible way to reflect assumed changes in overall population growth. Rapid
population growth from the development of a new suburb, for example, would usually
result in most growth being concentrated in the peak migratory age groups – the young
adult and young childhood ages. Over the last decade or so, the Hamilton–Perry model
has enjoyed a resurgence in popularity for local area forecasts in the US, with various
extensions and improvements proposed (e.g., Baker et al. 2017; Baker, Swanson, and
Tayman 2021; Hauer 2019; Inoue 2017; Swanson, Schlottmann, and Schmidt 2010;
Tayman, Swanson, and Baker 2021). Several studies have shown that constraining to
independent local area total populations substantially improves accuracy (Baker,
Swanson, and Tayman 2021; Tayman, Swanson, and Baker 2021; Wilson 2016). A recent
evaluation of various types of Hamilton–Perry model revealed that the lowest errors and
the smallest bias were obtained from a version employing Cohort Change Ratios when a
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cohort population is decreasing and Cohort Change Differences when it is increasing
(Wilson and Grossman 2022).

One might expect that more complex models (e.g., multiregional or bi-regional)
would generate more accurate forecasts than simpler models (e.g., net migration cohort-
component or Hamilton–Perry) but the evidence to date is not clear cut. In empirical tests,
Smith and Tayman (2003) found little difference in the accuracy of Hamilton–Perry and
cohort-component models for producing age–sex forecasts for the counties of Florida.
Wilson (2016) obtained greater accuracy from the bi-regional cohort-component model
than the Hamilton–Perry model in an evaluation of forecasts for local government areas
in New South Wales, Australia. However, when the outputs of both models were
constrained to independent total population forecasts, much of the difference disappeared
and the Hamilton–Perry model came close in accuracy to the bi-regional model (except
at the older ages). Several other studies have confirmed the benefits of constraining age–
sex forecasts to independent forecasts of total population (e.g., Baker, Swanson, and
Tayman 2021; Reinhold and Thomsen 2015; Tayman, Swanson, and Baker 2021). The
recent evaluation of Hamilton–Perry models by Wilson and Grossman (2022) revealed
reasonable accuracy in forecasting local age–sex populations overall, though larger errors
occurred for new suburbs with rapid population growth and inner city locations with
approximately static age distributions dominated by young adults.

Given the widespread use of local area forecasts for planning, budgeting, and
investment decisions, it is important to produce forecasts with as much accuracy as
possible. Preferably, the forecasts would be generated by a conceptually strong model to
reduce the risk of implausible outputs. At the same time, it would be useful if the forecast
preparation process was as simple, data-light, quick, and easy as the Hamilton–Perry
models. Ideally, the projection model would incorporate directional migration in local
area cohort-component calculations without the need for detailed local area migration
data.

In this paper, I suggest and evaluate an approach which attempts to achieve this. The
‘synthetic migration cohort-component model’ uses directional inward and outward
migration estimated for each local area from a single model migration age schedule
adjusted to fit the local area’s age–sex net migration pattern for a recent period. The
details of the modelling approach are set out in the next section of the paper. The model
was evaluated empirically by applying it to create population ‘forecasts’ for local areas
of Australia over several past periods, which were then evaluated against actual
population estimates. Errors from the new model’s forecasts were also compared to those
from two other ‘competitor’ models which similarly do not use local area migration input
data. The third main section of the paper describes the input data and error metrics used.
The results of the evaluation are presented in the next section, which includes sensitivity
analyses of the forecasts to some of the simplifying assumptions. The final section
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summarises the key strengths and limitations of the model, explains why it works
reasonably well, and sets out some avenues for further research.

2. The synthetic migration cohort-component model

The synthetic migration cohort-component model combines the strengths of directional
migration cohort-component modelling and local area net migration patterns, whilst
minimising input data requirements, preparation time, and costs. The model is presented
in two versions, one which deals with a single area of interest, and the other which
includes all local areas within a country or state/province. These versions match the most
common likely uses of the model. The term ‘model’ here is used to cover the full set of
projection calculations, including the cohort-component model, the associated ways of
preparing simplified fertility, mortality, and migration inputs, and constraining to
separate forecasts of local area total populations. The model calculations of the single
area synthetic migration model are explained first, followed by a description of how the
input data are prepared. Then the multiple area version of the model is presented.

2.1 Single area version

The synthetic migration cohort-component model incorporates directional migration, but
in the simplest way possible. Migration flows consist of inward migration (immigration
from other countries plus internal in-migration) and outward migration (emigration to
other countries plus internal out-migration). It is therefore a bi-regional model comprising
the region of interest and a rest-of-the-world ‘region’. The accounting basis of the model
is movement population accounts in which the migration data consists of migration
events rather than transitions (Rees 1984, 1985). To keep the modelling simple, it uses 5-
year age groups and 5-year time intervals. The population accounting equation is written
as:

𝑃𝑠,𝑎+5
𝑖 (𝑡 + 5) = 𝑃𝑠,𝑎

𝑖 (𝑡) − 𝐷𝑠,𝑎→𝑎+5
𝑖 (𝑡, 𝑡 + 5) − 𝑂𝑠,𝑎→𝑎+5

𝑖 (𝑡, 𝑡 + 5) + 𝐼𝑠,𝑎→𝑎+5
𝑖 (𝑡, 𝑡 + 5)  (1)

where:

𝑃 = population
𝐷 = deaths
𝑂 = outward migration
𝐼 = inward migration
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𝑖 = local area
𝑠 = sex
𝑡 = point in time
𝑡, 𝑡 + 5 = the projection interval between 𝑡 and 5 years after 𝑡
𝑎 = age group
𝑎 → 𝑎 + 5 = the change in a cohort’s age from 𝑎 to 𝑎 + 5 during the 𝑡 to 𝑡 + 5
projection interval. It refers to the parallelogram-shaped period-cohort space in a
Lexis diagram (Bell and Rees 2006).

For the newly born infant cohort, the initial population in Equation 1 is replaced by
births. Births are projected in the conventional way by multiplying age-specific fertility
rates by age-specific female populations-at-risk, with disaggregation by sex via the sex
ratio at birth. Deaths and outward migration are projected using occurrence/exposure
rates multiplied by the area’s population-at-risk. However, inward migration is handled
as flows rather than rates because the population-at-risk is less clear cut than for outward
migration, and it keeps the modelling simpler than if rates and a rest-of-the-world
population-at-risk were used. The projection equation may be summarised as:

𝑃𝑠,𝑎+5
𝑖 (𝑡 + 5) =

൫1 − 5
2𝑑𝑠,𝑎→𝑎+5

𝑖 − 5
2𝑜𝑠,𝑎→𝑎+5

𝑖 ൯
൫1 + 5

2𝑑𝑠,𝑎→𝑎+5
𝑖 + 5

2𝑜𝑠,𝑎→𝑎+5
𝑖 ൯

𝑃𝑠,𝑎(𝑡)

+ 1

ቀ1+52𝑑𝑠,𝑎→𝑎+5
𝑖 +52 𝑜𝑠,𝑎→𝑎+5

𝑖 ቁ
𝐼𝑠,𝑎→𝑎+5
𝑖 (2)

where:

𝑑 = death rate
𝑜 = outward migration rate.

However, in coding the model I took a ‘deconstructed’ approach in which each
component is calculated separately in an iterative calculation scheme. This keeps the code
relatively simple and transparent, and permits any constraining to be applied easily. Thus,
deaths and outward migration are forecast as:

𝐷𝑠,𝑎→𝑎+5
𝑖 (𝑡, 𝑡 + 5) = 𝑑𝑠,𝑎→𝑎+5

𝑖 5
2 ቀ𝑃𝑠,𝑎

𝑖 (𝑡) + 𝑃𝑠,𝑎+5
𝑖 (𝑡 + 5)ቁ     (3)

𝑂𝑠,𝑎→𝑎+5
𝑖 (𝑡, 𝑡 + 5) = 𝑜𝑠,𝑎→𝑎+5

𝑖 5
2 ቀ𝑃𝑠,𝑎

𝑖 (𝑡) + 𝑃𝑠,𝑎+5
𝑖 (𝑡 + 5)ቁ

where end-of-interval populations are set to zero in the first iteration and then updated in
successive iterations. The iterative approach is taken because initial migration flows are
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adjusted to be consistent with an independent total population forecast. In the application
shown later in this paper, an average of four extrapolative models was selected to generate
this total population forecast, though other models could be used; for example, a housing-
unit model (Foss 2002), a simple extrapolative model such as a linear model (Smith,
Tayman, and Swanson 2013: chapter 8), or forecasts from a machine learning model
(Grossman et al. 2022).

The adjustment to the total population constraint consists of three steps. First, the
required volume of net migration to obtain the total population constraint is calculated
using the population accounting relationship:

𝑁𝑖 = 𝑃𝑖(𝑡 + 5) − 𝑃𝑖(𝑡) − 𝐵𝑖 + 𝐷𝑖 (4)

where:

𝑁 = total net migration
𝑃 = total population
𝐵 = total births
𝐷 = total deaths.

Second, the total amount of inward migration which is consistent with the required
total net migration is calculated simply as total outward migration plus the required total
net migration:

𝐼𝑖 = 𝑂𝑖 + 𝑁𝑖.

Third, inward migration by sex and period-cohort is scaled by the ratio of the
required inward migration total to the sum of preliminary inward migration over sex and
period-cohort:

𝐼𝑠,𝑎→𝑎+5
𝑖 [2] = 𝐼𝑠,𝑎→𝑎+5

𝑖 𝐼𝑖

∑ ∑ 𝐼𝑠,𝑎→𝑎+5
𝑖

𝑎𝑠
(5)

where [2] refers to an updated value.

The iterative calculations then continue, updating the end-of-interval populations
using Equation 1 and forecast births, deaths, and migrations until convergence is
achieved.

In theory, both outward and inward migration could be adjusted proportionally to
match the required net migration value. However, if net migration assumptions embedded
in the total population forecasts (Equation 4) were substantially lower than in the base
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period, it would result in outward migration being increased substantially and inward
migration being greatly reduced. At the local area scale, outward migration rates in some
ages are already very high. Thus, this approach would risk increasing outward migration
to the extent that negative populations would result. For practical reasons therefore, only
inward migration is adjusted.

2.2 Base period population accounts and data preparation

The outward migration rates and preliminary inward migration flows for the forecasts are
prepared from a set of base period population accounts which cover the 5-year period up
to the jump-off point of the forecasts. The method described in this section draws upon
the principles of population accounting data preparation (Rees and Wilson 1977; Rees
and Willekens 1986) and elements of the data adjustment approach of Simpson and
Snowling (2011). The data inputs required to calculate the population accounts are listed
in Table 1. At a minimum, the data preparation does not require any local fertility,
mortality, or migration data, just local area population estimates by sex and 5-year age
group for the jump-off year and 5 years earlier. Some national fertility and mortality rates
and a set of model migration rates are required.

Table 1: Data required to calculate the base period population accounts

Variable Summary

Populations Local area population estimates by sex and 5-year age group for the start
and end of the base period.

Births Either: recorded local area base period births by sex (if available).
Or: model age-specific fertility rates (e.g., national rates) to estimate births
indirectly.

Deaths Either: recorded base period deaths by sex and period-cohort (if available).
Or: a national life table for the period, or a mortality surface of nLx values, to
estimate deaths indirectly.

Net migration No input additional data are required (net migration by sex and period-cohort
for the base period is calculated as an accounting residual).

Outward and
inward migration

Synthetic base period outward and inward migration flows by sex and
period-cohort are estimated from three data inputs:
(1) model migration rates by sex and period-cohort,
(2) a crude migration turnover rate (inward + outward migration divided by
the total population-at-risk) which can be area-specific or universal, and
(3) local area net migration by sex and period-cohort (just calculated).
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Population estimates by sex and 5-year age group are required for the jump-off year
of the forecasts and 5 years earlier. These form the starting and ending populations of the
base period population accounts.

In many cases, recorded births by sex for the base period will be available. If not,
births can be estimated indirectly. First, the Total Fertility Rate is estimated from the
jump-off year age–sex population estimates using the xTFR estimation method of Hauer
and Schmertmann (2020, Equation 5) which derives the TFR from the population age–
sex distribution. The estimated TFR is:

𝑥𝑇𝐹𝑅 = ቀ10.65 − 12.55 𝑊25−34
𝑊15−49

ቁ 𝐶0−4
𝑊15−49

(6)
where:

𝐶 = children
𝑊 = women.

Age-specific fertility rates are estimated by scaling a set of model fertility rates (e.g.,
national rates for the base period) to the TFR estimate. These rates are multiplied by base
period female populations-at-risk to estimate the number of births. Total births are then
divided into males and females by an assumed (e.g., national) sex ratio at birth.

If recorded base period deaths by sex and period-cohort are available, those data can
be used. If not, they can be estimated indirectly by multiplying modelled period-cohort
death rates by base period populations-at-risk. The simplest model death rates are national
death rates obtained from a life table. Assuming national mortality levels is clearly an
approximation, but it will generally produce reasonable results unless local mortality is
known to be very different from the national average. If local life expectancy at birth
statistics are available, but age-specific deaths data are not (or are too sparse or noisy),
then it is possible to derive approximate local death rates via model life tables or a
national mortality surface (Wilson 2018). The mortality surface consists of a series of
past and forecast national life tables. By matching local life expectancy at birth to the
point on the mortality surface with equivalent 𝑇0 values it is possible to calculate death
rates by sex and period-cohort from the 𝐿𝑥𝑛  values. A more detailed description is given
in Wilson (2018) and a simple illustration is available from
https://doi.org/10.6084/m9.figshare.17088539.v1.

At the local area scale, migration is generally the most important demographic
component of change. The way this is estimated is the defining feature of the synthetic
migration cohort-component model. The estimation process starts with model migration-
age schedule rates and finishes with synthetic inward and outward migration flows by
sex and period-cohort which are consistent with the base period net migration age–sex
pattern. An illustration of how migration-age profiles develop over the migration

https://doi.org/10.6084/m9.figshare.17088539.v1
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estimation process is shown in Figure 1 using the example of female migration in and out
of one inner city local area. The calculation consists of seven steps.

Figure 1: Base period inward and outward migration-age profiles at various
points in the synthetic migration estimation process, Adelaide City
SA3 area females
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Figure 1: (Continued)

First, preliminary base period migration turnover (inward plus outward migration
combined) by sex and period-cohort is prepared by multiplying the model migration rates
by the local area populations-at-risk:

𝑀𝑠,𝑎→𝑎+5
𝑖 (𝑡 − 5, 𝑡) = 𝑚𝑠,𝑎→𝑎+5  52 ቀ𝑃𝑠,𝑎

𝑖 (𝑡 − 5) + 𝑃𝑠,𝑎+5𝑖 (𝑡)ቁ (7)

where:

𝑀 = preliminary migration turnover flow
𝑖 = local area
𝑚 = model migration rate.

The model migration rates were created by fitting a model migration schedule to
male and female internal migration between all SA3 areas over the period 2006–2011
using data from the 2011 census. The rates are provided in the Appendix.

The second step estimates the aggregate migration turnover for the local area. Use
is made of the crude migration turnover rate, defined as total inward plus outward
migration divided by total population (re-named from the original ‘population turnover’
measure introduced by Dennett and Stillwell 2008). The migration turnover rate may be
a universal value estimated for all areas or it may be area-specific. Total migration
turnover for the local area is calculated as the product of this rate and the total population
-at-risk:
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𝑇𝑂𝑖(𝑡 − 5, 𝑡) = 𝑡𝑜𝑖 5
2 ቀ𝑃

𝑖(𝑡 − 5) + 𝑃𝑖(𝑡)ቁ (8)

where:

𝑡𝑜 = crude migration turnover rate
𝑇𝑂 = migration turnover flow.

Actual total migration turnover could be used instead where such data are available
or can easily be estimated. However, in many cases these data will not be available.

Third, preliminary base period migration turnover by sex and period-cohort (from
step 1) is scaled to aggregate migration turnover (step 2) to give migration turnover by
sex and period-cohort specific to the local area:

𝑇𝑂𝑠,𝑎→𝑎+5
𝑖 (𝑡 − 5, 𝑡) = 𝑀𝑠,𝑎→𝑎+5

𝑖 (𝑡 − 5, 𝑡) 𝑇𝑂𝑖(𝑡−5,𝑡)
∑ ∑ 𝑀𝑠,𝑎→𝑎+5

𝑖 (𝑡−5,𝑡)𝑎𝑠
(9)

These values are then split in half to give preliminary estimates of inward and
outward migration:

𝐼𝑠,𝑎→𝑎+5
𝑖 (𝑡 − 5, 𝑡) = 1

2 𝑇𝑂𝑠,𝑎→𝑎+5
𝑖 (𝑡 − 5, 𝑡) (10)

𝑂𝑠,𝑎→𝑎+5
𝑖 (𝑡 − 5, 𝑡) = 1

2 𝑇𝑂𝑠,𝑎→𝑎+5
𝑖 (𝑡 − 5, 𝑡)

At this stage, inward and outward migration flows are identical (Figure 1, top graph).
In the fourth step, total net migration is estimated as an accounting residual:

𝑁𝑖(𝑡 − 5, 𝑡) = 𝑃𝑖(𝑡) − 𝑃𝑖(𝑡 − 5) + 𝐷𝑖(𝑡 − 5, 𝑡) − 𝐵𝑖(𝑡 − 5, 𝑡) (11)

where:

𝑁 = base period total net migration.

Fifth, preliminary directional migration is adjusted up and down to create different
inward and outward migration flows which are consistent with base period total net
migration. The scaling factor is calculated using the quadratic equation:

𝑓𝑖 =
𝑁𝑖 +ට(𝑁𝑖)2 + 4 12 𝑇𝑂

𝑖 1
2 𝑇𝑂

𝑖

2 12 𝑇𝑂
𝑖 (12)
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with time labels omitted for clarity. This is used in preference to the plus–minus method
(Smith, Tayman, and Swanson 2013) because it can cope with very large adjustments.
Revised inward and outward migration flows by sex and period-cohort are then created
from the preliminary flows (step 3) adjusted by the scaling factor:

𝐼𝑠,𝑎→𝑎+5
𝑖 (𝑡 − 5, 𝑡)[2] = 𝐼𝑠,𝑎→𝑎+5

𝑖 (𝑡 − 5, 𝑡) 𝑓𝑖 (13)

𝑂𝑠,𝑎→𝑎+5
𝑖 (𝑡 − 5, 𝑡)[2] = 𝑂𝑠,𝑎→𝑎+5

𝑖 (𝑡−5,𝑡)

𝑓𝑖

The inward and outward migration flows at this stage possess different values but
identical age–sex patterns (Figure 1, middle graph).

Sixth, base period net migration by sex and period-cohort is calculated as an
accounting residual using population estimates at the start and end of the base period plus
the births and deaths just estimated:

𝑁𝑠,𝑎→𝑎+5
𝑖 (𝑡 − 5, 𝑡) = 𝑃𝑠,𝑎+5

𝑖 (𝑡) − 𝑃𝑠,𝑎
𝑖 (𝑡 − 5) + 𝐷𝑠,𝑎→𝑎+5

𝑖 (𝑡 − 5, 𝑡) (14)

For the infant period-cohort, births replace the start-of-period population. In the
projections created for the evaluation presented later, residual net migration was
smoothed by averaging over sex up to age 65 in order to reduce noise but retain area-
specific migration–age patterns.

In the final seventh step, the revised inward and outward migration flows (from step
5) are constrained to be consistent with net migration by sex and period-cohort (step 6).
In this step scaling factors are applied to migration for each sex and period-cohort to
proportionally adjust inward and outward migration. The scaling factors are calculated
using the quadratic equation:

𝑓𝑠,𝑎→𝑎+5
𝑖 =

𝑁𝑠,𝑎→𝑎+5
𝑖 +ට൫𝑁𝑠,𝑎→𝑎+5

𝑖 ൯
2
+ 4 𝐼𝑠,𝑎→𝑎+5

𝑖 [2] 𝑂𝑠,𝑎→𝑎+5
𝑖 [2]

2 𝐼𝑠,𝑎→𝑎+5
𝑖 [2]

(15)

with time labels omitted here to aid clarity. The scaling factors are smoothed over age
above age 45 using three-term moving averages to reduce noisy patterns. They are then
applied to adjust inward and outward migration:

𝐼𝑠,𝑎→𝑎+5
𝑖 (𝑡 − 5, 𝑡)[3] = 𝐼𝑠,𝑎→𝑎+5

𝑖 (𝑡 − 5, 𝑡)[2] 𝑓𝑠,𝑎→𝑎+5 (16)

𝑂𝑠,𝑎→𝑎+5
𝑖 (𝑡 − 5, 𝑡)[3] = 𝑂𝑠,𝑎→𝑎+5

𝑖 (𝑡−5,𝑡) [2]

𝑓𝑠,𝑎→𝑎+5
.
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These final synthetic inward and outward migration flows are now consistent with
base period net migration patterns (Figure 1, bottom graph).

Outward migration rates for use in the projections are calculated by dividing
outward migration by the base period populations-at-risk:

𝑜𝑠,𝑎→𝑎+5
𝑖 (𝑡 − 5, 𝑡) = 𝑂𝑠,𝑎→𝑎+5

𝑖 (𝑡−5,𝑡)[2]
5
2൬𝑃𝑠,𝑎

𝑖 (𝑡−5)+𝑃𝑠,𝑎+5
𝑖 (𝑡)൰

(17)

while inward migration is used directly in the projections as a migration flow.

2.3 Multiple area version

The multiple area version of the synthetic migration cohort-component model involves
the same calculations as the single area version, except for the additional feature of
constraining to independent national forecasts (or those of a state or similar larger region).
After births by sex have been projected for all local areas, they are constrained by
multiplying by the ratio of national projected births to the sum of local projected births:

𝐵𝑠𝑖[2] = 𝐵𝑠𝑖
𝐵𝑠𝑛𝑎𝑡

∑ 𝐵𝑠𝑖𝑖
(18)

where:

𝑛𝑎𝑡 = national.

Similarly, deaths are constrained to national projected deaths by sex and period-cohort:

𝐷𝑠,𝑎→𝑎+5
𝑖 [2] = 𝐷𝑠,𝑎→𝑎+5

𝑖 𝐷𝑠,𝑎→𝑎+5
𝑛𝑎𝑡

∑ 𝐷𝑠,𝑎→𝑎+5
𝑖

𝑖
(19)

Note that the constraining of local births and deaths to the national projections means
that actual local fertility rates and life expectancies will differ slightly from the original
assumptions.

Local inward and outward migration flows by sex and period-cohort are then
constrained. Iterative proportional fitting is used to constrain local directional migration
by sex and period-cohort to (1) local total net migration, and (2) national (or state) net
migration by sex and period-cohort. The constraining does not use a conventional
iterative proportional fitting algorithm. Instead, for both sets of net migration constraints,
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initial inward and outward migration flows are adjusted by the same proportional amount
so that they are consistent with each net migration constraint. In rare circumstances
(usually where outward migration is very high), it is possible for this adjustment to
generate negative populations. Where this occurs, the constraining algorithm intervenes
and changes inward and outward migration flows to avoid generating negative
populations.

3. Forecast evaluation

3.1 Data inputs and forecasts

Population estimates by sex and 5-year age group for SA3 areas of Australia are available
on a consistent set of boundaries from 1991 to 2016 (ABS 2021). In 2016 the median
SA3 area population was 61,539, with the 95% range spanning 11,600 to 192,073.
Making full use of this dataset, four sets of SA3 population ‘forecasts’ were produced,
1996-based, 2001-based, 2006-based, and 2011-based, with all forecasts extending out
to 2016. The accompanying base periods for which population accounts were prepared
were, respectively, 1991–1996, 1996–2001, 2001–2006, and 2006–2011. For the
purposes of this study, three SA3 areas of New South Wales with very small populations
were combined into one, and the SA3 areas which form Other Territories were excluded
from the analysis because not all were officially included as part of Australia for the
whole study period. In total, forecasts were produced for 328 SA3 areas.

Two types of forecasts were prepared: (1) forecast-constrained, in which local area
forecasts were constrained to separate forecasts of local area population totals and
national population forecasts by age and sex, and (2) estimate-constrained, in which local
area forecasts were constrained to actual local area population totals and national
population estimates. The purpose of the first type was to create a set of forecasts as close
to a real application as possible; the purpose of the second type was to remove the effect
of incorrect constraining forecasts and thus reveal the accuracy of the age–sex forecasting
ability of the synthetic migration cohort-component model.

For the forecast-constrained set, local area forecasts of total population were
prepared by taking the average of four extrapolative models. Several studies have
demonstrated that averaging the outputs of multiple forecast models often yields gains in
accuracy over any of the individual models (e.g., Armstrong 2001; Goodwin 2009; Rayer
and Smith 2010; Smith and Shahidullah 1995; Wilson 2017). The four models were:

1) a constant share of population model in which each small area’s share of the
national population at the jump-off year is held constant;
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2) a linear/exponential model in which population is forecast using linear
extrapolation if population change over the previous decade was positive, and
an exponential model if it was negative;

3) a variable share of growth model in which preliminary projected population
growth from the linear/exponential model is adjusted to match national
projected growth;

4) a modified exponential model (Baker et al. 2008) in which ceiling and floor
limits to projected populations are imposed.

The forecasts from models (2) and (4) were constrained to sum to national projected
growth; models (1) and (3) produce forecasts consistent with the national projections as
part of their calculations. Population growth rates used in models (2) to (4) were based
on the decade prior to the jump-off year.

For all SA3 areas, the simplest assumptions were selected for the cohort-component
forecasts. Base period TFRs, calculated using the xTFR estimation method, were
assumed to remain unchanged into the future. Age-specific fertility rates were calculated
by scaling base period national fertility rates to match each area’s TFR. National forecast
mortality rates were used for all areas. For all areas, a crude migration turnover rate of
0.1744 was assumed, which was the approximate migration turnover rate for all SA3
areas estimated from 2011 census migration data. Base period inward migration and
outward migration rates for each area were applied in all forecast intervals. All forecasts
were constrained to national population forecasts or estimates.

National population forecasts were prepared which mimicked the official Australian
Bureau of Statistics (ABS) medium series projections of the time. These projections used
the same TFR, life expectancy at birth, and overseas migration assumptions as assumed
by the ABS at the jump-off year of each of the forecasts. It was not possible to use actual
ABS projections because of the lack of projected demographic components by sex and
period-cohort in some of the projection publications, and differences in jump-off
populations due to a major revision of the 1991–2011 population estimates time series
following the 2011 census (ABS 2013).

To compare the synthetic migration cohort-component model with other models
which do not require local area migration data, SA3 area population forecasts by age and
sex were also prepared using two types of Hamilton–Perry model (Hamilton and Perry
1962; Baker et al. 2017). The first comparative model is the standard Hamilton–Perry
model using Cohort Change Ratios (denoted HP CCR). The second is an alternative
which uses CCRs when base period cohort population change is negative and CCDs when
the population change is positive (HP CCR/CCD). Smoothing of CCR and CCD age
profiles occurred in both Hamilton–Perry models. Populations aged 0–4 were created via
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Child/Woman Ratios. The outputs of both models were constrained to SA3 total
populations and national population forecasts or estimates by age and sex.

3.2 Error measures

Errors for total populations and individual age–sex group forecasts were measured using
Absolute Percentage Error (APE):

𝐴𝑃𝐸 = |𝐹−𝐴|
𝐴

 100

where 𝐹 denotes forecast and 𝐴 the actual population. Median, 90th percentile, and mean
values of APE are reported.

To summarise forecast errors across age–sex groups of a population in a single
metric, an alternative Absolute Percentage Error measure for total population was used.
The conventional APE for total population does not account for the quality of a forecast
by age and sex. It could be close to zero – suggesting an accurate forecast – in situations
where there are large offsetting age–sex errors, such as substantial over-forecasts of
younger age groups and severe under-forecasts of older age groups. To overcome this, an
alternative measure, APEage-sex, was calculated by summing absolute errors for each age–
sex group and then dividing by the total actual population; i.e.,

𝐴𝑃𝐸𝑎𝑔𝑒−𝑠𝑒𝑥 = ∑ ∑ ห𝐹𝑠,𝑎−𝐴𝑠,𝑎ห𝑎𝑠
𝐴

 100.

Graphically, the numerator is the absolute difference in area between the forecast
population pyramid and the actual population pyramid. APEage-sex is equivalent to
Weighted Mean Absolute Percentage Error and the Mean Absolute Deviation/mean ratio
(Kolassa and Schutz 2007) but is calculated differently so that it can accommodate actual
age–sex populations of zero, which can occur in small populations. If all age–sex forecast
errors take the same sign (all positive or all negative), then the alternative APEage-sex will
be the same as the conventional total population APE. If, however, there is a mix of over-
and under-forecasts across age–sex populations, then APEage-sex will be greater, indicating
a less successful forecast in terms of age–sex structure. Note that the value of APEage-sex

is dependent on the number of age–sex groups and their width in age. Its value calculated
using single-year age–sex groups will differ from that using 5-year age–sex groups. All
comparisons between populations should use APEage-sex calculated with the same age–sex
population breakdown. Median, 90th percentile, and mean values of this measure across
local areas are reported in this paper.
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4. Results

4.1 Total population forecast errors

The national and SA3 area total population forecast errors are briefly reported first,
because they influence the age–sex forecast errors. The SA3 total populations in the
estimate-constrained forecasts have errors of zero, by definition. Errors in predicting total
population from the average of four extrapolative models used in the forecast-constrained
set of forecasts are summarised in Table 2. Also included in the table are Absolute
Percentage Errors of the national population forecasts. Errors in forecasting the national
population are quite low except for the 2001-based forecast, which was due to under-
projections of both the fertility rate and net overseas migration. For the SA3 area
forecasts, median APEs are 2%–3% after 5 years, 4%–6% after 10 years, and 7%–9%
after 15 years, though, as the 90th percentile APEs show, the upper end of the distribution
contains errors which are quite high.

Table 2: Total population errors in the forecast-constrained set of forecasts

Forecast horizon

Forecast series

1996-based 2001-based 2006-based 2011-based

SA3 area projections
Median APE (%)

5 years 2.4 2.7 2.1 2.7

10 years 4.4 5.8 4.0

15 years 7.4 8.8

90th percentile APE (%)

5 years 8.3 9.0 6.6 8.1

10 years 15.2 15.3 11.8

15 years 21.3 22.2

MAPE (%)

5 years 3.7 4.0 3.3 4.0

10 years 6.6 7.7 6.0

15 years 10.0 11.2

National forecast
APE (%)

5 years 0.1 1.2 1.3 1.3

10 years 1.2 5.9 2.2

15 years 5.5 9.9
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4.2 Age–sex population forecast errors

Table 3 summarises the age–sex population forecast errors of the synthetic migration
cohort-component model and the two implementations of the Hamilton–Perry model as
measured by APEage-sex. The lowest errors for each set of forecasts by forecast horizon
are indicated by shading. The main finding is that average errors from the synthetic model
are the lowest for all forecasts evaluated, whether measured as median or mean errors.
The percentage point reductions in error between HP CCR and the synthetic model
increase with forecast horizon, giving modest reductions in median error of up to 1
percentage point after 5 years but larger reductions of 1–3 percentage points after 15
years. Reductions in mean error are generally larger than median error, with the greatest
being a 4.7 percentage point improvement after 15 years (for the 2001-based estimate-
constrained forecast).

As would be expected, the estimate-constrained forecasts, which use actual SA3
total populations and actual national populations, produce more accurate age-sex
forecasts. In addition, the reduction in error from the Hamilton–Perry models is greater
than for the forecast-constrained forecasts. It demonstrates that if national forecasts and
local area total populations are forecast well, then the synthetic model delivers quite
decent improvements in accuracy over the Hamilton–Perry models. Errors from the
synthetic model’s forecasts also have a slightly narrower error distribution than the
Hamilton–Perry models. The 90th percentile of the APEage-sex distribution is lower for all
but one of the forecasts, and there is a greater reduction in 90th percentile error values in
the estimate-constrained forecasts.

For each age–sex group, Absolute Percentage Errors were also calculated. Mostly –
but certainly not for every age group – the average synthetic model errors are lower.
Figure 2 illustrates the Median Absolute Percentage Errors across the 1996-based and
2001-based forecasts combined for the female population at a forecast horizon of 15
years. Errors are shown for both the projection-constrained forecasts (Figure 2, part a)
and the estimate-constrained forecasts (Figure 2, part b). The high errors in the childhood
ages in the projection-constrained forecasts are due to large errors in the assumed fertility
rates of the 2001-based national forecasts. The only difference between the two types of
forecast is the constraining populations. The difference in errors evident between the two
graphs is therefore the result of errors in the local total population and national population
constraints.
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Table 3: Age–sex population forecast errors by projection model measured by
APEage-sex

Forecast
horizon Model

Forecast-constrained  Estimate-constrained

1996-
based

2001-
based

2006-
based

2011-
based

1996-
based

2001-
based

2006-
based

2011-
based

Median APEage-sex (%)

5 years HP CCR 6.1 6.1 4.8 5.0  5.0 4.8 4.0 3.9

HP CCR/CCD 6.0 5.7 4.4 4.8  4.8 4.5 3.7 3.7

Synthetic 5.7 5.3 4.4 4.7 4.2 4.0 3.4 3.3

10 years HP CCR 9.3 11.9 7.7  7.6 8.4 6.0

HP CCR/CCD 9.0 10.5 7.2  7.3 7.5 5.4

Synthetic 8.5 9.5 7.1 6.1 6.0 5.1

15 years HP CCR 13.6 15.3  10.3 10.6

HP CCR/CCD 12.5 13.8  9.6 9.3

Synthetic 11.9 12.6 7.7 7.7

90th percentile APEage-sex (%)

5 years HP CCR 15.1 14.4 9.6 9.8  11.0 10.2 7.4 7.1

HP CCR/CCD 14.5 12.7 9.0 9.4  10.4 9.1 6.8 6.6

Synthetic 14.3 11.1 8.7 9.0 10.0 6.8 5.8 5.5

10 years HP CCR 20.7 24.5 14.8  16.1 17.9 11.2

HP CCR/CCD 18.5 20.7 14.0  14.2 15.0 10.4

Synthetic 18.8 19.1 13.6 11.9 11.3 8.5

15 years HP CCR 26.3 32.8  19.0 23.1

HP CCR/CCD 24.8 30.1  17.3 19.8

Synthetic 23.6 26.2 14.3 15.0

Mean APEage-sex (%)

5 years HP CCR 8.0 8.0 5.9 6.3  6.7 6.3 4.9 4.9

HP CCR/CCD 7.6 7.4 5.6 6.0  6.2 5.6 4.5 4.4

Synthetic 7.4 6.9 5.5 5.9 5.6 4.7 4.1 4.0

10 years HP CCR 12.0 14.0 9.6  9.7 10.5 7.5

HP CCR/CCD 11.2 12.7 9.1  8.7 9.1 6.8

Synthetic 10.8 11.7 8.8 7.5 7.2 5.8

15 years HP CCR 16.1 18.6  12.5 13.4

HP CCR/CCD 14.8 16.9  10.9 11.4

Synthetic 14.2 15.5 9.1 8.8

Note. The lowest errors are indicated by the shaded cells.
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Figure 2: Median Absolute Percentage Errors for female age-specific SA3 area
population forecasts at a forecast horizon of 15 years (1996-based
and 2001-based forecasts combined)

(a) Forecast-constrained

(b) Estimate-constrained

To provide an indication of the relative accuracy of forecasts by area classifications
typically used in forecast evaluation studies, median APEage-sex errors are presented for
areas classified by (1) broad urban/rural region type – either within a state capital city
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metropolitan region or in the rest of each state, (2) base period growth rate, and (3) jump-
off population size. Errors are shown for the 1996-based estimate-constrained forecasts
only to keep the table size manageable. (Error patterns for the other forecasts which
extend out 15 years are similar, with the synthetic model’s advantage being greater for
the estimate-constrained forecasts.)

Table 4 presents the errors. For each area classification and forecast horizon, the
synthetic model gives the lowest errors. Local areas located within the rest of state regions
tend to experience lower forecast errors than those within capital cities, with the forecast
error differences between the two broad region types smaller for the synthetic model.
Forecast errors by base period growth rate exhibit a u-shape pattern for the Hamilton–
Perry models, in common with many other studies (Tayman 2011), but not for the
synthetic model. Errors by jump-off population size category show the expected decline
in error with increasing population size (Wilson et al. 2018).
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Table 4: Age–sex population forecast errors measured by median APEage-sex

for the 1996-based estimate-constrained forecasts for selected
categories of area

Forecast
horizon Model

Broad region Base period growth Jump-off population
Capital
city

Rest of
State

<0%
p.a.

0–1%
p.a.

1–2%
p.a.

2+%
p.a.

<30,000 30,000–
59,999

60,000+

Median APEage-sex (%)

5 years HP CCR 5.2 4.7 4.7 4.5 5.1 6.5 6.2 4.9 4.4
HP CCR/CCD 5.1 4.5 4.6 4.3 4.8 5.7 5.6 4.6 4.1
Synthetic 4.2 4.0 3.9 3.9 4.8 4.5 4.8 3.9 3.4

10 years HP CCR 8.7 6.6 7.7 6.4 7.3 9.8 10.2 7.0 7.1
HP CCR/CCD 8.0 6.6 7.2 6.4 7.1 8.0 8.4 7.0 6.6
Synthetic 6.3 5.8 6.2 5.6 6.2 6.2 6.9 5.9 5.2

15 years HP CCR 11.3 8.7 10.4 8.6 9.8 13.5 14.0 9.6 9.1
HP CCR/CCD 10.4 8.6 10.3 8.3 9.7 11.2 11.2 9.1 8.5
Synthetic 7.8 7.4 8.1 7.3 8.2 7.4 9.5 7.8 6.6

90th percentile APEage-sex (%)

5 years HP CCR 13.6 10.1 10.5 9.1 11.7 12.0 19.2 9.3 9.2
HP CCR/CCD 12.1 8.9 10.4 8.4 10.5 10.5 13.6 9.0 9.0
Synthetic 12.0 8.0 9.7 8.5 10.7 10.2 12.7 8.2 8.7

10 years HP CCR 17.1 13.9 18.1 12.2 16.8 16.5 23.5 13.9 13.3
HP CCR/CCD 15.7 12.1 16.4 11.4 13.2 15.3 16.9 12.3 12.7
Synthetic 13.6 10.3 14.2 10.6 11.3 13.0 14.7 10.4 11.8

15 years HP CCR 19.1 18.6 22.5 16.0 18.3 19.4 27.8 18.2 9.1
HP CCR/CCD 18.4 15.9 22.8 15.2 16.1 17.0 21.7 15.4 8.5
Synthetic 15.4 12.6 16.0 13.7 12.9 13.3 16.2 13.4 6.6

Mean APEage-sex (%)

5 years HP CCR 7.3 5.9 6.9 5.7 6.7 7.7 9.1 6.2 5.6
HP CCR/CCD 6.7 5.5 6.4 5.6 6.3 6.7 7.8 5.9 5.4
Synthetic 6.1 4.9 5.8 5.3 5.7 5.8 6.9 5.3 5.1

10 years HP CCR 10.6 8.4 10.9 7.8 9.6 11.0 13.5 8.8 7.9
HP CCR/CCD 9.5 7.6 9.8 7.5 8.6 9.2 11.0 8.2 7.5
Synthetic 8.2 6.7 8.6 6.9 7.3 7.5 9.3 7.2 6.6

15 years HP CCR 13.5 11.2 14.1 9.9 13.0 13.9 17.4 11.4 10.3
HP CCR/CCD 11.7 9.9 12.7 9.4 10.7 11.5 13.4 10.5 9.7
Synthetic 9.5 8.5 10.7 8.5 8.9 8.5 11.0 9.0 7.9

Note. The lowest errors are indicated by the shaded cells.

4.3 Sensitivity of the forecasts to alternative migration turnover assumptions

To test the sensitivity of the synthetic migration model to alternative migration turnover
assumptions, two additional sets of forecasts were produced, one with a 50% reduction
in the migration turnover rate used earlier, and the other with a 50% increase in the rate.
Table 5 presents the forecast errors alongside the ‘standard’ assumptions used for the
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main set of forecasts reported in Table 3. For such large changes to the migration turnover
rate, the differences in forecast accuracy are small. According to the median age–sex
APE, the lower migration turnover assumption generated slightly more accurate forecasts
overall, but if measured by the mean age–sex APE, the lower and standard assumptions
were more evenly matched. The higher migration turnover assumption proved marginally
less accurate in terms of mean or median error. The main point is that the population
forecasts are quite insensitive to migration turnover assumptions. In practical
applications, therefore, when very little migration data are available, even a rough
‘guesstimate’ of the migration turnover rate should be sufficient to generate reasonable
forecasts.

4.4 Incorporating local assumptions

The effect of using local (rather than national) life expectancy at birth by sex was
evaluated by creating alternative 2006-based estimate-constrained forecasts. The 2006
jump-off year was selected because of the availability of SA3 area deaths data by age and
sex for the 2001–2006 base period. Abridged life tables for SA3 areas over the 2001–
2006 period were prepared. Local differences with national life expectancy were
calculated, and then projected life expectancy for each SA3 area was assumed to be
national projected life expectancy plus or minus the 2001–2006 difference. In this
example, the impact on forecast error after 10 years proved to be negligible. The median
SA3 APEage-sex in 2016 using local life expectancy values only changed from 5.12% to
5.11% (the mean value remained unchanged), with the median absolute difference in SA3
APEage-sex between the two sets of forecasts being just 0.03 percentage points.



Demographic Research: Volume 46, Article 32

https://www.demographic-research.org 943

Table 5: Sensitivity of age–sex population forecast errors to alternative
migration turnover assumptions

Forecast
horizon

Migration turnover
assumption

Forecast-constrained Estimate-constrained

1996-
based

2001-
based

2006-
based

2011-
based

1996-
based

2001-
based

2006-
based

2011-
based

Median APEage-sex (%)

5 years 50% lower 5.6 5.4 4.4 4.6 4.2 4.1 3.4 3.3

Standard 5.7 5.2 4.4 4.7 4.1 4.0 3.4 3.3

50% higher 5.8 5.3 4.6 4.8 4.3 4.0 3.6 3.5

10 years 50% lower 8.4 9.7 6.9 6.0 6.0 5.0

Standard 8.5 9.5 7.1 6.1 6.0 5.1

50% higher 8.9 9.5 7.4 6.4 6.3 5.6

15 years 50% lower 11.6 12.5 7.4 7.5

Standard 11.8 12.6 7.7 7.7

50% higher 12.3 12.6 8.3 8.0

90th percentile APEage-sex (%)

5 years 50% lower 14.4 11.9 8.8 9.0 10.1 7.6 6.1 5.7

Standard 14.3 11.1 8.7 9.0 10.0 6.8 5.8 5.5

50% higher 14.2 10.8 8.7 9.1 9.8 6.9 5.9 5.8

10 years 50% lower 18.5 19.8 13.7 12.5 12.3 8.6

Standard 18.8 19.1 13.6 11.9 11.3 8.5

50% higher 18.3 19.1 13.8 12.2 10.9 8.7

15 years 50% lower 23.7 27.5 14.4 15.1

Standard 23.6 26.2 14.3 15.0

50% higher 23.9 26.1 15.1 14.4

Mean APEage-sex (%)

5 years 50% lower 7.4 7.0 5.5 5.8 5.6 4.9 4.1 4.0

Standard 7.4 6.9 5.5 5.9 5.6 4.7 4.1 4.0

50% higher 7.5 6.9 5.7 6.0 5.7 4.8 4.3 4.2

10 years 50% lower 10.7 11.9 8.7 7.5 7.4 5.8

Standard 10.8 11.7 8.8 7.5 7.2 5.8

50% higher 11.0 11.7 9.0 7.9 7.3 6.1

15 years 50% lower 14.0 15.7 8.8 9.0

Standard 14.2 15.5 9.1 8.8

50% higher 14.6 15.5 9.6 8.9

Note: The lowest errors are indicated by the shaded cells.



Wilson: Preparing local area population forecasts using a bi-regional cohort-component model

944 https://www.demographic-research.org

A possible explanation for this minimal difference in error is the fact that there are
minor differences in the disaggregation of cohort change into mortality and net migration
between the local and national mortality assumptions in the base period population
accounts. In the forecasts using national mortality rates there is a mix of slight over- and
under-estimation of mortality across local areas. However, remaining cohort change is
assumed to be net migration, so that even though mortality and net migration are
imperfectly estimated, cohort change is fully accounted for. Using local mortality
assumptions gives better mortality estimates in the base period accounts, which also
results in better estimates of net migration. But the amount of cohort change in the base
period remains the same. In most cases this leads to similar forecasts.

To evaluate the impact of using locally varying crude migration turnover rates, SA3-
specific rates were estimated using ABS 2011 census data. Census counts of 1-year-
interval internal in-migration, out-migration, and immigration were obtained. The values
of in-migration, out-migration, immigration and then half of immigration again (as a
proxy for emigration) were combined to give an estimate of migration turnover, and then
divided by SA3 census populations to create a rate. Although there are several conceptual
and empirical approximations inherent in this approach, it is simple to implement and
yields much more realistic rates than simply using a universal rate for all local areas. The
estimated migration turnover rates were then used to generate alternative 2006-based
estimate-constrained forecasts. Ideally, migration turnover rates would have been
estimated from the 2006 census, but the statistical geography prior to 2011 was radically
different and did not include SA3 areas.

The use of local migration turnover assumptions had little effect on overall error. At
a forecast horizon of 10 years, the median SA3 APEage-sex declined only marginally, from
5.12% to 5.06% (the mean APEage-sex declined from 5.82% to 5.71%). The median
absolute difference in individual SA3 APEage-sex values between the two sets of forecasts
was 0.19 percentage points. Yet many SA3-specific migration turnover rates varied
considerably from the national average, with the median absolute relative change in
migration turnover rates from the national average assumption being 27%. Despite
sizeable changes to migration turnover rates, the overall effect on the forecasts, and
forecast error, was small.

However, for a select few areas with very high migration turnover rates there were
moderate error reductions from using local migration assumptions. Notable
improvements occurred for the inner city SA3 areas of Sydney Inner City (with APEage-

sex declining from 10.0% to 6.0%), Adelaide City (from 16.4% to 11.5%), and two rapidly
growing SA3 areas in Canberra with very small populations. Population pyramids for the
Sydney and Adelaide SA3 areas at a forecast horizon of 10 years are shown in Figure 3.
The light blue bars indicate forecasts generated using local migration turnover rates, the
dotted outline bars represent forecasts using national average turnover rates, and actual
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2016 population estimates are shown by the black outline bars. As the graph shows, the
Sydney forecast is reasonably accurate; the Adelaide forecast is not quite as good
(especially at ages 20–24), but the use of local migration turnover rates improves the
forecast.

Figure 3: Population forecasts for Sydney Inner City and Adelaide City SA3
areas in 2016 (2006-based estimate-constrained forecasts)
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Figure 3: (Continued)

5. Discussion and conclusions

5.1 Main contributions

This paper has described the synthetic migration cohort-component model – an approach
to creating local area population forecasts by age and sex using a bi-regional cohort-
component model but without the need for locally specific migration, fertility, or
mortality input data. It combines the conceptual and empirical strengths of the bi-regional
cohort-component model and the important data on net migration age patterns contained
in each local area’s base period population accounts. It offers the flexibility of setting
area-specific mortality and migration assumptions, but still produces good quality
forecasts without them. It was shown that modest improvements in accuracy for some
inner city and rapidly growing areas can be obtained by estimating local crude migration
turnover rates.
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Importantly, the model can be applied to countries without local migration data. It
can also be used in situations where such data does exist but is unreliable, very noisy, or
prohibitively expensive, or where local migration data are not available for the selected
geographical units under consideration. Due to the low data requirements, local area age–
sex population forecasts can be prepared quickly, easily, and cheaply. An Excel
workbook which incorporates the multiple-area version of the model and contains
illustrative local area population forecasts for Australia is available for download at
https://doi.org/10.6084/m9.figshare.19372784.v1. This version incorporates minor
modifications based on user feedback (including an extension to age 85+ and a few
cosmetic changes) and therefore differs very slightly from the workbooks used for this
paper.

When applied to create ‘forecasts’ for SA3 local areas of Australia over past periods,
the synthetic migration model was shown to produce more accurate forecasts than the
comparison Hamilton–Perry models. This accuracy advantage increases with forecast
horizon length. For short forecast horizons of 5 years there are only modest accuracy
differences between the synthetic migration and Hamilton–Perry models, but for horizons
of 15 years the differences are sizeable, especially if total populations are forecast
accurately (see Table 2, estimate-constrained forecasts).

5.2 Why does the synthetic migration model work as well as it does?

The forecast tests reported above demonstrate that, overall, the synthetic migration model
generated more accurate forecasts than the two comparison Hamilton–Perry models. But
why is this the case, given that the synthetic migration assumptions at first glance appear
to be quite approximate? In essence, it is because the synthetic migration model is a little
better at forecasting varying cohort population growth over time than models using CCRs
or CCDs. The key to this outcome is the creation of directional migration estimates which
are consistent with cohort-specific base period population accounts for the local area. The
synthetic inward and outward migration estimates are not ‘true’ migration flows, but they
comprise realistic migration age profiles which are consistent with the base period net
migration age–sex pattern. In the forecasts, the model generates age patterns of inward,
outward, and net migration flows which vary over time according to the area’s forecast
assumptions and changing population age structure.

The total population constraints in the synthetic migration model are applied by
adjusting migration only (with no adjustments made to fertility or mortality rates). The
preliminary migration projections are adjusted so that the cohort-component population
forecasts sum over age and sex to the independent total population forecast. The inward
migration age profile is shifted up or down as much as necessary. Outward migration

https://doi.org/10.6084/m9.figshare.19372784.v1
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forecasts, projected as a function of outward migration rates, change according to the size
of populations-at-risk. Adjustments to preliminary migration forecasts will generally be
greatest in the younger adult age groups and smallest at the oldest ages, which reflects
the real pattern of population change in most cases. The effective CCR age pattern will
therefore undergo some modification. For the Hamilton–Perry forecasts prepared for this
study, constraining to the total population forecast was achieved by adjusting projected
populations across all age groups by the same factor, effectively scaling all CCRs by the
same amount. (An alternative approach in which cohort population change was
constrained instead did not improve the Hamilton–Perry forecasts).

5.3 Limitations of the synthetic migration model

Although the synthetic migration model possesses several useful features, it is important
to note its limitations. The projected synthetic inward and outward migration flows form
an important part of the projection calculation process but cannot be regarded as reliable
directional migration forecasts in their own right. Net migration values should be reported
instead. There are also several simplifications in the directional migration modelling.
International and internal migration are not modelled or output separately; and while
outward migration is projected via rates and an origin population-at-risk, inward
migration is not. Furthermore, migration adjustments made to achieve consistency with
independent total population forecasts occur primarily through the adjustment of inward
migration flows. All these features are designed to simplify the modelling and minimise
data inputs, but the trade-off is some inevitable approximation of reality. Finally, like all
demographic models, if trends and patterns change radically from those of the base
period, forecasts using base period rates are likely to be inaccurate.

5.4 Limitations of the study

Limitations of the study include the restriction of the forecast evaluation to one type of
local area (SA3s) in one country over a period of just two decades. The model would
benefit from being tested in other countries. The synthetic migration model forecasts
prepared for this study were also not compared to those of a fully multi-regional model
or bi-regional model using recorded local area directional migration data. This was due
to data limitations. The necessary internal migration data for the selected statistical
geography are only available from one census (2011 census), and sub-state emigration
estimates have only been available since 2016 (ABS 2018). In addition, the smoothing
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techniques used in creating the synthetic migration input data are quite basic, and would
probably benefit from some enhancement.

5.5 Next steps

The obvious next step is to evaluate the model in other countries under a variety of
demographic environments to ascertain whether it offers similar accuracy gains as in
Australia. Finessing of the synthetic migration estimation process would also be useful.
The current methods used to smooth the migration-age profile adjustment factors and the
base period net migration age patterns are rudimentary. The smoothing outcomes could
probably be improved by employing the latest statistical methods, which vary the amount
of smoothing according to need – more for smaller populations where there is
considerable noise, and less for larger populations. It would also be useful to determine
whether the synthetic migration estimates could be improved by extending the temporal
and spatial extent of the estimation process; e.g., using the average results of two 5-year
base periods, and incorporating data from neighbouring areas. Furthermore, it would be
worth investigating whether the model could provide any more detail in the outputs. Are
there ways of creating a single-year-of-age version without compromising too much on
the simplicity and low data requirements of the 5-year age group model? A single-year-
of-age breakdown would also provide projections in single-year time intervals. But
alternative ways of obtaining annual projection numbers by interpolating the five yearly
projections could also be tested.
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Appendix

Table A1: Model migration schedule rates
Period-cohort Females Males
Birth to 0–4 0.27641 0.27927

0–4 to 5–9 0.22832 0.22753

5–9 to 10–14 0.17435 0.17020

10–14 to 15–19 0.18610 0.16218

15–19 to 20–24 0.35814 0.29384

20–24 to 25–29 0.45111 0.40990

25–29 to 30–34 0.39706 0.39627

30–34 to 35–39 0.30038 0.31805

35–39 to 40–44 0.21962 0.23831

40–44 to 45–49 0.16786 0.18051

45–49 to 50–54 0.14147 0.14773

50–54 to 55–59 0.13116 0.13401

55–59 to 60–64 0.12571 0.12842

60–64 to 65–69 0.11573 0.11945

65–69 to 70–74 0.09726 0.10085

70–74 to 75–79 0.07271 0.07464

75–79 to 80–84 0.04793 0.04793

80+ to 85+ 0.02800 0.02699

Source: Model migration schedule fitted to 2006–2011 migration between all SA3 areas from the ABS 2011 census
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