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The bootstrap approach to the multistate life table method using
Stata: Does accounting for complex survey designs matter?1

Nader Mehri2

Abstract

OBJECTIVE
I aim to develop a Stata program that estimates multistate life table quantities and their
confidence intervals while controlling for covariates of interest, as well as adjusting for
complex survey designs. Using the Health and Retirement Study (HRS) (2000–2016), I
use the new program to estimate US females’ total, healthy, and unhealthy life
expectancies and their intervals by race/ethnicity at age 52 (the youngest age in the
sample), while adjusting for education.

METHODS
Using the nonparametric bootstrap technique (with replacement), the present study offers
and validates an age-inhomogeneous first-order Markov chain multistate life table
program. The current proposed Stata program is the maximum likelihood version of
Lynch and Brown’s Bayesian approach to the multistate life table method, which has
been developed in R.3 I use the estimates from the Bayesian approach to validate the
estimates from the unweighted bootstrap approach. I also account for the HRS complex
survey design using the HRS baseline survey design indicators (clustering, strata, and
sample weights). I utilize the estimates from the unweighted and weighted bootstrap
models to evaluate the extent to which ignoring the HRS complex survey design alters
the estimates.
RESULTS
The health expectancy estimates obtained from the unweighted bootstrap approach are
consistent with estimates from the Bayesian approach, which ignores complex survey
designs. This indicates that the bootstrap approach developed in the current paper is valid.
Also, the results show that ignoring the HRS complex survey design does not
meaningfully alter the estimates.

1 Appendix A presents a concise version of the Stata code. The detailed version of the code is available on the
Demographic Research website. The current version of the manuscript offers a Stata model syntax (not a
package extension) that can be used to estimate state expectancies of interests and their variabilities.
2 Aging Studies Institute, Syracuse University, Syracuse NY, USA. Email: nmehri@syr.edu.
3 Appendix B presents R codes for Lynch and Brown’s Bayesian approach to the multistate life table method.

mailto:nmehri@syr.edu
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CONTRIBUTION
The paper contributes to the multistate life table methods literature by providing a
flexible, valid, and user-friendly program to estimate multistate life table quantities and
their variabilities in Stata.

1. Background

The multistate (increment-decrement) life table methods have been widely used to
investigate transitions across individuals’ life spans, including transitions in health and
mortality, marital status, and labor force participation (Muniz 2020). Specifically, in the
case of health and mortality transitions, one of the major products of the multistate life
table methods includes healthy and unhealthy life expectancies (HLE and ULE). These
expectancies simultaneously reflect the mortality and morbidity status of individuals by
measuring the number of years that a hypothetical cohort could expect to live in good or
poor health, respectively. Although the multistate life table technique is a complex
method, its output can be easily understood by policymakers, practitioners, and the public
(Zang and Lynch 2018).

Allowing for the inclusion of covariates and quantifying the uncertainty around the
multistate life table quantities are key components for testing hypotheses of interest
(Lynch and Brown 2005). A multistate life table method that is lacking these important
features can produce only point estimates of the expectancies of interest and are therefore
unable to test hypotheses or make inferences about the population despite using sample
data (Lynch 2007). This limitation is especially relevant for Stata users because, despite
the strengths and popularity of Stata among social and demographic researchers, the
literature on the multistate life table method is lacking a Stata program that estimates the
multistate life table quantities and their variabilities by covariates of interest while
accounting for complex survey designs. Using the nonparametric bootstrap technique4

(with replacement), the present study fills this important gap by offering and validating
an age-inhomogeneous first-order Markov chain multistate life table program5 that
produces the distribution of multistate life table quantities while controlling for covariates
of interest, as well as adjusting for complex survey designs. The variabilities for the
multistate life table quantities (e.g., confidence intervals, standard errors) that are key
components for testing hypotheses can be obtained by summarizing this distribution.

4 Bootstrap resamples the original data across, for example, 1,000 replications using a simple random sampling
technique. This method is commonly referred to as nonparametric bootstrap (StataCorp 2021).
5 Transition probabilities are conditioned on age and status (e.g., healthy/unhealthy) in an age-inhomogeneous
first-order Markov chain multistate life table model.
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It is noteworthy that the current proposed Stata program is the maximum likelihood
version of Lynch and Brown’s Bayesian approach to the multistate life table method,
which has been developed in R (Lynch and Brown 2005, 2010). The Bayesian multistate
life table method has been used to investigate critical health-related issues among older
adults, including hearing impairment life expectancy, cognitively intact and happy life
expectancy, and regional disparities in the impact of diabetes on life expectancy (Bardo
and Lynch 2021; Zang, Lynch, and West 2021; West and Lynch 2021). It is of note that
the bootstrapping approach offered in the present paper improves the Bayesian approach
by allowing users to account for complex survey designs using the baseline or terminal
survey design indicators.

2. Accounting for complex survey designs in the context of multistate
life table methods

Under simple random sample techniques, sampling units are selected randomly and
independently with an equal selection probability (Aneshensel 2013). However, most
social and health surveys are not simple random samples of the population but instead
consist of respondents from complex survey designs. These designs often stratify the
population based on one or more characteristics, including geography, race, age, and so
on. In addition, the designs can be multistage, meaning that initial strata are created, then
respondents are sampled from smaller units within those strata, also known as clusters
(Aneshensel 2013). Contingent on the size of strata and clusters, the stratification and
clustering usually lead to unequal selection probability of the survey respondents. Also,
complex survey designs may involve oversampling subgroups (e.g., racial/ethnic
minority groups), which in turn increases the selection probabilities for the oversampled
respondents. Oversampling usually is needed to increase the sample size and therefore
the accuracy of parameter estimates among oversampled respondents (Aneshensel 2013).

Ignoring complex survey designs can affect the standard errors of parameter
estimates. Specifically, ignoring the stratification tends to overestimate the variance for
the parameter estimates, whereas ignoring the clustering underestimates the variance.
Ignoring both stratification and clustering tends to deflate the variance for the parameter
estimates because clustering usually has a substantially stronger impact on the variance
compared to stratification (Aneshensel 2013). As such, ignoring the stratification and
clustering increases the chance of rejecting the null hypothesis while it is true (Type I
error).

It is of note that several studies have challenged the necessity of weighting and
adjusting for sampling designs. These studies argue that, although weighting is
appropriate in the context of univariate analyses of characteristics of population, in the
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context of regression analyses, weighting is more controversial and complicated than it
is generally thought (Lynch and Brown 2008; Solon, Haider, and Wooldridge 2015;
Winship and Radbill 1994). Winship and Radbill (1994) show that unweighted estimates
from OLS regression models are unbiased, consistent, and more precise if sampling
weights are solely a function of independent variables. Lynch and Brown (2008) argue
that ignoring sampling designs may not alter the significant coefficients to
nonsignificance given that surveys with complex survey design usually have a large
sample size. Additionally, weight construction can be a subjective process. Typically, the
ultimate goal for the weight construction process is fitting survey estimates with the
population counterparts, including census values. As such, weight construction
procedures involve obtaining post-stratification weights by repeatedly comparing
weighted estimates to their population counterparts until the survey estimates fit the
population counterparts. The procedure often involves arbitrary choices of characteristics
such that different researchers may generate different weights depending on the chosen
characteristics (Gelman 2007; Lynch and Brown 2008).6

The issue of accounting for complex survey designs is especially challenging in the
context of longitudinal analyses given that the initially sampled cohort changes over time
due to attrition and mortality. Therefore, sampling weights that are calibrated to the
baseline population become incorrect as the cohort ages, which in turn may result in
serious biases (HRS staff 2019).7 It should be noted that multistate life table methods that
include mortality (and survivorship) as an outcome incorporate attrition due to death in
the state space. Thus, using the baseline survey design indicators to estimate health
expectancies controls only for attrition due to death. As such, using the baseline weights
comes at the cost of the assumption that the pattern of age profiles of transition
probabilities for individuals is fixed regardless of their age at baseline.

Ignoring complex survey designs in the context of the multistate life table methods
has been controversial as well. For example, one study found that ignoring the
stratification and clustering underestimates the variance for the total, active, and disabled
life expectancies by 2% to 75%, although the size of the underestimation differed across
state expectancy measures, gender, and race/ethnicity (Cai et al. 2010). In contrast, Lynch
and Brown (2008, 2010) find that ignoring complex survey designs had a trivial impact
on the interval estimates for the proportion of remaining life to be spent healthy (PLE).

6 There can be ‘objective’ weights. With an enumerated population, it is possible to have ‘exact’ sampling
weights, which are by definition nonsubjective. There simply has to be a well-defined population and unequal
sampling from that population in order for there to be the possibility of objective (i.e., not ‘subjective’) weights.
As an example, the National Health and Aging Trends Study (NHATS), a major and well-known national
survey, draws its sample from an enumerated list: all people aged 65 and over, enrolled in the Medicare
program, on a given date.
7 Alternatively, one may use the terminal-year weight indicators, which are appropriate for the retrospective
analyses. However, using the terminal-year weights may result in serious biases as well given that the terminal-
weights ignores correcting for differential left censoring (HRS staff 2019).
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They find that the distribution of PLE was broader and slightly shifted when the sample
design was incorporated, as compared to the alternative approach that ignored the sample
design (Lynch and Brown 2008).

Using the baseline survey design indicators (clustering, strata, sample weights) from
the Health and Retirement Study (HRS), the present study reexamines the impact of
accounting for the HRS complex survey design on estimates for total, healthy, and
unhealthy life expectancies among non-Hispanic Whites, non-Hispanic Blacks, and
Hispanics.

3. Steps in the bootstrapping approach to the multistate life table
method using Stata

The steps for the bootstrapping multistate life table approach offered in the present paper
share some properties with the Bayesian multistate life table method. The Bayesian
approach involves using the Gibbs sampling technique to sample parameters from a
discrete-time bivariate probit model.8 The bivariate normal integration is used to convert
the sampled parameters to age-state-specific transition probabilities, which are then used
to construct the distribution of the multistate life table quantities of interest. The
corresponding variabilities for the multistate life table quantities can be obtained by
summarizing the distribution (Lynch and Brown 2005, 2008b, 2010).

In a similar fashion, the approach offered in the present paper uses a nonparametric
bootstrap technique to generate a sequence of discrete-time (weighted) multinomial
logistic regression parameters, and (at each step) to generate a new set of age-state-
specific transition probabilities.9 Specifically, as shown in Table 1, the steps for the
bootstrap approach involve (1) obtaining the bootstrapped (weighted) multinomial
regression coefficients, (2) computing the age-state-specific transition probabilities from
each bootstrap sample, (3) obtaining the radix values, and (4) constructing the distribution
of the multistate life table quantities using the standard demographic life table
computations. The corresponding variabilities for the multistate life table quantities (i.e.,
standard error, confidence intervals) can be obtained by summarizing the distribution
yielded in Step 4.

8 It should be noted that the extended version of the Bayesian multistate life table method uses discrete-time
multinomial logit model (Zang and Lynch 2018). However, only the older version of the Bayesian approach is
available for public use and comes with a user guideline. As such, throughout the current paper, I refer to the
older version of the Bayesian approach, which uses a discrete-time bivariate probit model.
9 The bootstrap approach offered in the present paper is flexible by allowing users to choose their statistical
model to obtain transition probabilities.
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Table 1: The process of constructing multistate life table quantities and
corresponding variabilities using the bootstrap approach in Stata

Step Process Input Output Tools Stata
command

1 Estimate a bootstrapped
(weighted)
discrete-time multinomial
regression model

Raw data A set of bootstrapped
(weighted) logit
coefficients

The (weighted) multinomial
logistic regression model, the
bootstrap technique, the
bootstrap weights

(svy)mlog,
bootstrap,
bsweights

2 Compute age-state-
specific transition
probabilities from the
bootstrapped
parameters

Output at
Step 1

Age-state-specific
transition probabilities for
each set of bootstrapped
parameters

1.a, 1.b, and 1.c formulas
margins

3 Obtain the radix values Raw data Radix values at the
starting age

The discrete-time (weighted)
logistic regression, 1.a, 1.b,
and 1.c formulas

(svy)logit,
margins

4 Compute multistate life
table quantities for each
set of the bootstrapped
parameters

Output at
Steps 2
and 3

The distribution of the
multistate life table
quantities (e.g., HLE,
ULE)

The standard demographic
life table computations
(Schoen 1988a)

mslt

Step 1:  Obtaining the bootstrapped (weighted) multinomial logistic regression
coefficients

Step 1 involves fitting a discrete-time (weighted) multinomial logistic regression model
using a combination of age and starting state (i.e., healthy, unhealthy) as well as age-
invariant covariates (i.e., sex, race) at time t to predict ending state at time t + n (n is
survey wave interval). The step also uses the nonparametric bootstrap technique (with
replacement) to obtain simple random samples from the original sample and then estimate
the parameters from the selected samples. For this step, Cluster and idcluster options are
used to force Stata to randomly select the bootstrap samples from individuals, not the
person-waves (Sanchez 2021).

Step 2: Computing the age-state-specific transition probabilities

Step 2 involves utilizing the Stata’s predictive margins post command to convert the
bootstrapped parameters to the transition probabilities for being healthy, unhealthy, or
dead. The age-state-specific transition probabilities for a given covariate profile (e.g.,
non-Hispanic White females with 12 years of education) are obtained by conditioning the
transition probabilities on age and starting states (i.e., healthy, unhealthy) as well as the
covariates involved in the discrete-time multinomial regression model at Step 1.

For example, assume that a combination of predictors (X = 𝑥1, 𝑥1,𝑥2, … , 𝑥𝑘),
including age and starting state as well as the covariates of interest (e.g., race/ethnicity,
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sex, education), is used to fit a bootstrapped discrete-time multinomial logistic regression
model to predict ending state (y) with three categories: healthy (h), unhealthy (u), and
dead (d). The multinomial regression model estimates a set of logit coefficients for being
healthy, unhealthy, or dead for each bootstrap sample (𝛽(h), 𝛽(u), and𝛽(d)). If the healthy
state is omitted as a reference category, the transition probabilities for being healthy,
unhealthy, or dead for each bootstrap sample are obtained by (1) multiplying the matrix
for the logit coefficients for being unhealthy or dead to the X matrix10, (2) exponentiating
the resulting matrix to obtain the relative probability of being unhealthy or dead over the
healthy state (𝑒𝑋𝛽(u) , 𝑒𝑋𝛽(d)), and (3) converting the relative probabilities to the transition
probabilities for being healthy, unhealthy, or dead using formulas 1.a, 1.b, and 1.c,
respectively (StataCorp 2021):

Pr(y = healthy) = 1

1+𝑒𝑋𝛽(u)+𝑒𝑋𝛽(d) (1.a)

Pr(y = unhealthy) = 𝑒𝑋𝛽
(u)

1+𝑒𝑋𝛽(u)+𝑒𝑋𝛽(d) (1.b)

Pr(y = dead) = 𝑒𝑋𝛽
(d)

1+𝑒𝑋𝛽(u)+𝑒𝑋𝛽(d) (1.c).

Step 3: Obtaining the radix values

Consistent with the Bayesian approach, Step 3 estimates the life table’s radix values by
modeling the starting state. This step utilizes a discrete-time (weighted) logistic
regression model to predict the starting state (being healthy or unhealthy) using the same
predictors involved in the discrete-time multinomial regression model at Step 1. The radix
values represent the estimated proportion of healthy or unhealthy individuals at the
starting age. An alternative would be to use an external source, such as the US Census,
find the relevant distribution, and treat those values as nonstochastic. Also, for a status-
based multistate life table, this step can be ignored.11 The radix values as well as the
bootstrapped transition probabilities are used in Step 4 to generate the distribution of
multistate life table quantities and their variabilities.

10 For a given covariate profile, the X matrix will consist of specific values for age, starting state, and the
covariates of interest (the constant is multiplied by 1). Age must be incremented across the age range to obtain
age-state-specific transition probabilities. Also, age-invariant covariates involved in the regression model can
be controlled by setting their values to the sample mean.
11 Under the status-based approach, a cohort enters the life table in a given state at starting age (e.g., either
healthy or unhealthy) whereas under the population-based approach, a cohort enters the life table with the
distribution over starting states at starting age (e.g., healthy, and unhealthy) (Saito, Robin, and Crimmins 2014).
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Step 4: Constructing the distribution of the multistate life table quantities

Step 4 utilizes the standard demographic life table computations (Schoen 1988; Palloni
2001) to obtain the multistate life table quantities of interest for each bootstrap sample
for a given covariate profile (e.g., non-Hispanic White females with 12 years of
education). Specifically, Step 4 uses Stata’s recently developed multistate life table (mslt)
command (Muniz 2020) to obtain the distribution of multistate life table quantities of
interest. The variabilities for the multistate life table quantities of interest are obtained by
summarizing the distribution. Specifically, Step 4 involves (1) converting the transition
probabilities to transition rates under linear or exponential assumptions depending on the
functionality of the risk of event within age groups, (2) obtaining the number of survivors
at ages above the starting age by applying the transitions rates to the radix values, (3)
obtaining the person-years lived above age x (Tx) in transient states, and (4) obtaining
state expectancies of interest by dividing (3) by (2). Equations for these steps are available
in Muniz (2020).

4. An example

For the sake of explication, I use the HRS (2000–2016) to estimate US females’ health
expectancies and their variabilities (95% intervals) by race/ethnicity at age 5212 while
controlling for education. I estimate the health expectancies using three sets of
estimations: (1) the Bayesian bivariate probit model, which ignores the HRS complex
survey design; (2) the unweighted bootstrap multinomial logistic model, which ignores
the HRS complex survey design; and (3) the weighted bootstrap multinomial logistic
model, which accounts for the HRS complex survey design. I use the estimates from the
Bayesian approach to validate the estimates from the unweighted bootstrap approach as
described in the subsequent section. Also, I utilize the estimates from the unweighted and
weighted bootstrap models to evaluate the extent to which ignoring the HRS complex
survey design alters the estimates.

4.1 Validating the bootstrapping approach to the multistate life table method using
Stata

To validate the bootstrap approach offered in the present paper, I estimate the health
expectancies and corresponding 95% intervals using the Bayesian bivariate probit

12 Age 52 is the youngest age in the sample for this example.
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approach.13 Given that the Bayesian approach ignores complex survey designs, the
estimates from the Bayesian and the unweighted bootstrap approaches are expected to be
relatively consistent, which will confirm that the approach offered in the current paper is
valid. It is of note that negligible differences in the estimates are expected due to using
dissimilar statistical models (multinomial logistic vs. bivariate probit) as well as the
dissimilar sampling techniques employed in the bootstrap approach and the Bayesian
approach, which uses the Gibbs sampling technique.

To be consistent with the Bayesian approach, however, I estimate the population-
based health expectancies using 1,000 bootstrap samples while assuming linearity to
solve the multistate life table equations. It is noteworthy that the Bayesian approach
involves estimating a discrete-time bivariate probit model to predict health and mortality
outcomes, therefore the health status will be missing for those who are dead. To address
this issue, Lynch and Brown’s Bayesian approach simulates a health score at each
iteration of the Gibbs sampler for those who die by integrating the entire distribution of
possible health status among them. In contrast, given that the Stata program offered in
the current paper utilizes the multinomial logistic model, this simulation phase is
eliminated. Using the multinomial logistic model, health and mortality status can be
categorized as healthy, unhealthy, or dead; therefore, there is no need for simulating the
health status of those who are deceased. It is of note that the extended version of the
Bayesian multistate life table method uses discrete-time multinomial logit model rather
than the bivariate probit model (Zang and Lynch 2018). However, at the time of writing
this paper, only the older version of the Bayesian approach was available for public use
and comes with a user guideline.

4.2 Analytic strategy

The multistate life table program offered in the current paper can handle unlimited
transient states but at most one absorbing state. However, for the sake of explication, I
use a three-state space multistate system with four possible transitions: healthy to
unhealthy, unhealthy to healthy, healthy to dead, and unhealthy to dead (Figure 1). The
absorbing state, death, is assumed irreversible.

13 Stata does not have an official command for handling the same probit model employed in the Bayesian
approach.
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Figure 1: A three-state space multistate system involving four possible
transitions

Notes: 𝑝 = the transition probability, h = healthy, u = unhealthy, d = dead.

5. Data

The study sample of the present paper comprises the 2000 HRS respondents (the baseline)
that are followed for 16 years to 2016. The HRS is a nationally representative panel
survey of US adults aged 51 and over and their spouses/partners (Health and Retirement
Study 2016). The HRS is sponsored by the National Institute on Aging (grant number
NIA U01AG009740) and has been conducted biannually since 1992 by the University of
Michigan. Given that the sampling weights for the nursing home residents were included
in the HRS since 2000, I use waves 2000 through 2016 (the RAND version) to
appropriately account for the HRS complex survey design (the RAND HRS Longitudinal
File 2018 (V1) 2021).

5.1 Accounting for the HRS complex survey design

The HRS uses a multistage area probability sampling design involving four stages: (1)
using the probability proportionate to size method, two primary sampling units (PSUs)
consisting of US metropolitan statistical areas (MSAs) and non-MSA counties are
selected from 56 strata; (2) second stage sampling of area segments (SSUs) are sampled
from PSUs; (3) all housing units (HUs) that are located within SSUs boundaries are listed

Healthy Unhealthy

Dead

𝑝ℎ𝑢

𝑝ℎ𝑑

𝑝𝑢ℎ

𝑝𝑢𝑑
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and systematically selected for the sampled SSUs; and (4) an age-eligible person within
a sampled HU is randomly selected. The spouse/partner (at any age) of the sampled age-
eligible person is also selected (HRS 2008; Aneshensel 2013). Also, the HRS
oversamples non-Hispanic Blacks, Hispanics, and residents of Florida such that the
sampling probability of Blacks and Hispanics is nearly two times greater than that of
Whites (Sonnega et al. 2014; Aneshensel 2013).

As shown in the Stata syntax in Figure 2, I use the HRS sample design indicators
(weights, clusters, and strata) from the baseline, or 2000 HRS wave, to account for the
complex survey design. Also, to properly adjust for the HRS complex survey design
within the bootstrapping framework, I use the balanced bootstrap approach, by which the
survey’s sampling weights are reconstructed by tracking the number of times a
respondent falls into the bootstrapped sample (Kolenikov 2010). The Stata bsweights
package implements the balanced bootstrap approach by generating rescaled 1,000
replicate weights across each replication (Kolenikov 2010).

Figure 2: The Stata syntax for accounting for the HRS complex survey design
across 1,000 bootstrap replications

5.2 Measures

The independent variables for this example consist of age, starting state (self-rated
health), race/ethnicity, and education. The dependent variable is the ending state
categorized as healthy, unhealthy, and dead. Age intervals must match up with the survey
wave spacing in the multistate life table framework. The survey wave spacing is two
years in the HRS, hence age intervals must be two years beginning at the youngest age
in the sample (i.e., 52 to 53). Consistent with Lynch and Brown (2008), I set the youngest
age group to be 0 and increment it across the age range (i.e., 52 to 53 = 0, 54 to 55 = 1,
…, over 100 = 24). Also, the open-ended age group is set to be 100 or more. Self-rated
health is a dichotomous measure created from the self-rated health question, where
respondents who said their health was excellent, very good, or good are identified as
‘healthy’ and respondents who said their health was fair or poor are ‘unhealthy.’
Race/ethnicity was categorized as non-Hispanic White, non-Hispanic Black, and
Hispanic. Education was measured using years of schooling ranging from 0 to 17 or more.
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5.3 Analytic sample

I create a person-wave data format such that each HRS 2000 respondent represents a
single time interval between subsequent HRS waves between 2000 and 2016. Given that
the HRS wave spacing is two years, the respondents contributed up to eight person-wave
observations for this example. The HRS 2000 respondents included 10,444 non-Hispanic
White, non-Hispanic Black, and Hispanic females who were given a nonzero sampling
weights.14 These respondents contributed a total of 60,251 person-wave observations
from 2000 to 2016, of which 2,479 (4.1%) observations were excluded because they were
missing in a certain HRS wave. After excluding person-wave observations with missing
values among age, self-rated health, race/ethnicity, and education (0.2%), the analytic
sample included 57,648 person-wave observations.

As shown in Table 2, 63.1%, 28.7%, and 8.2% of person-wave observations were
reported as healthy, unhealthy, and dead, respectively, at the end of intervals. Likewise,
69% and 31% reported that they were healthy and unhealthy at the beginning of the
intervals, respectively. On average, the analytic sample was 72.5 years of age and had
approximately 12 years of schooling. Also, 77.1% of the analytic sample was non-
Hispanic White, 14.8% was non-Hispanic Black, and 8.1% was Hispanic.

Table 2: Characteristics of the analytic sample (2000–2016)
Variables Mean (sd) or %
Ending state
Healthy 63.1%
Unhealthy 28.7%
Dead 8.2%
Starting state
Healthy 69%
Unhealthy 31%
Age 72.5 (9.7)
School years 12.1 (3.1)
Race/ethnicity
Non-Hispanic White 77.1%
Non-Hispanic Black 14.8%
Hispanic 8.1%
Total (person-wave observations) 57,648

14 Given that the HRS sample eligibility is determined by birth cohort, the ineligible HRS cohort respondents
are given zero weights. Also, individuals that enter the study as young spouses do not receive a weight until
their birth cohort is sampled.
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5.4 The Stata syntax to estimate state expectancies

Step 1: Obtaining the bootstrapped (weighted) multinomial logistic regression
coefficients

As shown in the Stata syntax in Figure 3, I use age, self-rated health (starting state),
race/ethnicity, education, and several interactions (age × starting state, age × race, and
education × race) in a discrete-time (weighted) multinomial logistic model to predict the
ending state, categorized as healthy, unhealthy, and dead. The baseoutcome(0) option
omits the ending state of being healthy as a reference category. The HRS complex survey
design can be ignored by simply removing the svy prefix.

Step 2: Computing the age-state-specific transition probabilities

The margins post command and the bootstrap command generate the age-state-specific
transition probabilities for being healthy, unhealthy, or dead across 1,000 bootstrap
replications for the three race/ethnicity categories with around 12 years of schooling. Any
main effect variables included in the regression model must be given a value in the
margins post command. For example, as shown in the Stata syntax in Figure 3, the
specified values for age, starting state, and race/ethnicity require Stata to generate age-
state-specific transition probabilities for the three race/ethnicity categories. The atmeans
option sets the sample mean for any covariates that are not given a value in the margins
post command (i.e., education). For interactions, Stata automatically calculates the
appropriate values using the specified values for the main effects variables. As such, there
is no need to specify values for the interactions involved in the regression model.

Specifically, the margins post command shown in the Stata syntax in Figure 3
indicates that age is incremented by one unit across the age range from the youngest age
group (52 to 53 = 0) to the open-ended age group (100 or more = 24). The starting state
is given two values of 0 or 1 for being healthy or unhealthy, respectively. The specified
values for the race/ethnicity variable require Stata to generate age-state-specific transition
probabilities for non-Hispanic Whites, non-Hispanic Blacks, and Hispanics coded as 0,
1, and 2, respectively. For this example, given that education is not given a value, the
atmeans option sets its value to the sample mean, which is approximately 12 years of
schooling.

The bootstrap command uses the nonparametric bootstrap technique (with
replacement) to obtain 1,000 simple random samples from the original sample and then
generates the age-state-specific transition probabilities from the selected samples as
described above. Cluster and idcluster options force Stata to randomly select the
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bootstrap samples from the individuals, not the person-waves (Sanchez 2021).15 The nose
option accelerates the computation process by allowing Stata to skip computing the
standard errors for the transition probabilities, which are redundant for the purpose of
multistate life table constructions. Given the specified values for the covariates, Stata
generates 450 age-state-specific transition probabilities16 across 1,000 iterations and then
saves the obtained 1,000 age-state-specific transition probabilities in the specified Stata
data file in the saving option.

Figure 3: The Stata syntax for generating age-state-specific transition
probabilities across 1,000 iterations

Step 3: Obtaining the radix values

Figure 4 presents Stata syntax to obtain the radix values by fitting a discrete-time
(weighted) logistic regression model to predict the starting state (being healthy or
unhealthy) using the same predictors involved in the discrete-time multinomial regression
model at Step 1. The margins post command generates the estimated proportion of being
healthy or unhealthy at the youngest age group (i.e., 52 to 53 = 0) for non-Hispanic
Whites, non-Hispanic Blacks, and Hispanics. The atmeans option controls for education
by setting its value to the sample mean (~12 years of schooling). The HRS complex
survey design can be ignored simply by removing the svy prefix.

15 Given that the survey wave spacing is two years in the HRS, the Cluster and idcluster options are defined as
follows:
. generate long newid = hhidpn
. tsset newid year, delta(2)
16 Stata will generate 450 age-state-specific transition probabilities given 3 categories for ending state, 25 age
groups, 2 categories for the starting state, and 3 race/ethnicity categories: 3 × 25 × 2 × 3 = 450.
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Figure 4: The Stata syntax for obtaining the weighted radix values for the
three race/ethnicity categories

As shown in the Stata output in Figure 5, 16.7% of non-Hispanic Whites at age 52
to 53 are estimated to be unhealthy after adjusting for education. The corresponding
estimates are 34.7% and 37% among non-Hispanic Blacks and Hispanics, respectively.
The radix values for being healthy are simply obtained by subtracting 1 from the
proportions reported in Figure 5. The radix values as well as the age-state-specific
transition probabilities are used in Step 4 to generate the distribution of healthy and
unhealthy life expectancies.

Figure 5: The weighted radix values for being unhealthy by race/ethnicity

Step 4: Constructing the distribution of the healthy and unhealthy life
expectancies by race/ethnicity

The Stata syntax shown in Figure 6 uses the 1,000 age-state-specific transition
probabilities yielded in Step 2 as well as the radix values from Step 3 to generate and
save 1,000 healthy and unhealthy life expectancies across the age range among non-
Hispanic Whites. The total life expectancy can be obtained by summing the healthy and
unhealthy life expectancies. The m12, m13, m21, and m23 are transition probabilities,
respectively, for healthy to unhealthy, healthy to dead, unhealthy to healthy, and
unhealthy to dead. The radix values for being unhealthy and healthy must be specified
within parentheses for l0. The R1 and R2 indicate the radix values for being healthy and
unhealthy, respectively. Given that the mslt command can handle a multistate life table
system without an absorbing state, the death option in the mslt command must be
specified to indicate that our multistate life table of interest involves an absorbing state.
The proportion option indicates that transition probabilities are used as input instead of
rates. The constant option assumes a linear solution instead of an exponential solution to
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solve the multistate life table equations. The rest of the codes shown below combine the
1,000 health expectancies and save them in the specified Stata data file. To obtain the
distribution for state expectancies among non-Hispanic Blacks or Hispanics, the below
Stata code must be rerun using the corresponding transition probabilities as well as radix
values.

Figure 6: The Stata syntax for constructing the distribution of health
expectancies for non-Hispanic Whites

The point estimates for the total, healthy, and unhealthy life expectancies as well as
their variabilities can be obtained by summarizing the 1,000 state expectancies yielded in
this step. Specifically, the point estimate and the standard error of the state expectancies
can be calculated by obtaining the mean and the standard deviation of the 1,000 state
expectancies yielded in Step 4. The corresponding 95% confidence intervals can be
obtained by taking the 25th and the 975th values of the 1,000 state expectancies as the
lower and upper bounds. Additionally, the point estimates and their standard errors can
be used for hypothesis testing17 using standard statistical tests, such as independent t-test
or ANOVA.

17 E.g., whether the state expectancies among the three race/ethnicity categories are statistically different from
each other.
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5.5 Total, healthy, and unhealthy life expectancies and their variabilities by
different estimation approaches

Table 3 and Figure 7 show that the estimates for total, healthy, and unhealthy life
expectancies from the Bayesian and the unweighted bootstrap approaches are comparable
despite using dissimilar statistical models and sampling techniques. The unweighted
bootstrap 95% intervals considerably overlap with the Bayesian 95% intervals, indicating
that the unweighted bootstrap approach performs well and is valid.18 For example, the
estimates from the Bayesian approach show that after controlling for education, non-
Hispanic White females at age 52 could expect to live 30 (95% CI: 29.6–30.4) additional
years, of which 22.6 (95% CI: 22.1–22.9) and 7.4 years (95% CI: 7.2–7.7) were expected
to be healthy and unhealthy years, respectively. The corresponding estimates from the
unweighted bootstrap approach are similar to the Bayesian approach: 29.7 (95% CI:
29.3–30), 22.3 (95% CI: 21.9–22.7), and 7.3 (95% CI: 7.1–7.6) years, respectively, for
total, healthy, and unhealthy life expectancies. Likewise, the estimates from the Bayesian
and the unweighted bootstrap approaches are consistent for non-Hispanic Blacks as well
as Hispanics. In sum, Table 3 and Figure 7 show that the estimated differences between
the Bayesian and unweighted bootstrap approaches for the total, healthy, and unhealthy
life expectancies are trivial among non-Hispanic Whites, non-Hispanic Blacks, and
Hispanics. This confirms that the bootstrap approach to the multistate life table method
offered in the current paper is valid.

Table 4 and Figure 7 show that ignoring the HRS complex survey design has a trivial
impact on the estimates. Generally, the 95% intervals from the multinomial logistic
model that account for the HRS complex survey design considerably overlap with the
95% intervals that ignores the HRS complex survey design. As such, it is not possible to
conclude that the population (true) values are different with and without weights.

18 It should be noted that we cannot directly compare the estimates from the maximum likelihood approach to
the estimates from the Bayesian work as their interpretation is fundamentally different (see Lynch 2007). I
compare these estimates for the purpose of validating the Stata syntax only.
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Table 3: Total, healthy, and unhealthy life expectancies and their 95%
intervals for females at age 52, US 2000–2016 (Bayesian vs. the
unweighted bootstrap approaches)

Bayesian (95% CI) Bootstrap (95% CI)
Race/ethnicity Quantity Unweighted bivariate probit

model
Unweighted multinomial logistic

model
Non-Hispanic
White

TLE 30.0(29.6–30.4) 29.7(29.3–30.0)
HLE 22.6(22.1–22.9) 22.3(21.9–22.7)
ULE 7.4(7.2–7.7) 7.3(7.1–7.6)

Non-Hispanic
Black

TLE 27.9(26.9–28.8) 27.6(26.6–28.5)
HLE 17.3(16.5–18.2) 17.0(16.1–18.0)
ULE 10.5(9.9–11.1) 10.6(9.9–11.2)

Hispanic TLE 31.2(29.6–32.7) 31.0(29.5–32.7)
HLE 18.1(16.5–19.6) 17.7(16.0–19.3)
ULE 13.1(12.0–14.4) 13.3(11.9–14.7)

Notes: TLE = total life expectancy, HLE = healthy life expectancy, ULE=unhealthy life expectancy. School years was controlled by
setting its value to the sample mean (~12 years of schooling). The unweighted model ignores the HRS complex survey design.

Generally, the 95% interval estimates are wider when the HRS complex survey
design is taken into account. This is especially true for the estimates among non-Hispanic
Blacks and Hispanics, who had a substantially lower sample size when compared to non-
Hispanic Whites. This indicates that sample size plays a crucial role in minimizing the
impact of ignoring the complex survey design on the width of the intervals for the total,
healthy, and unhealthy life expectancies. Altogether, the results indicate that ignoring the
HRS complex survey design does not meaningfully alter the estimates.

Table 4: Total, healthy, and unhealthy life expectancies and their 95%
intervals for females at age 52, US 2000–2016 (unweighted vs.
weighted bootstrap approaches)

Race/ethnicity Quantity Unweighted multinomial logistic
model

Weighted multinomial logistic
model

Non-Hispanic
White

TLE 29.7(29.3–30.0) 29.6(29.2–30.0)
HLE 22.3(21.9–22.7) 22.3(21.9–22.8)
ULE 7.3(7.1–7.6) 7.3(7.0–7.6)

Non-Hispanic
Black

TLE 27.6(26.6–28.5) 26.9(25.8–28.1)
HLE 17.0(16.1–18.0) 16.5(15.4–17.6)
ULE 10.6(9.9–11.2) 10.5(9.7–11.2)

Hispanic TLE 31.0(29.5–32.7) 31.3(29.4–33.2)
HLE 17.7(16.0–19.3) 18.6(16.5–20.6)
ULE 13.3(11.9–14.7) 12.7(11.3–14.0)

Notes: TLE = total life expectancy, HLE = healthy life expectancy, ULE=unhealthy life expectancy. School years was controlled by
setting its value to the sample mean (~12 years of schooling). The unweighted model ignores the HRS complex survey design whereas
the weighted model accounts for the HRS complex survey design using the HRS baseline (the 2000 wave) survey design indicators.
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Figure 7: Total, healthy, and unhealthy life expectancies and their 95%
intervals by different estimation approaches, females at age 52, US
2000–2016

Notes: TLE = total life expectancy, HLE = healthy life expectancy, ULE = unhealthy life expectancy. School years was controlled by
setting its value to the sample mean (~12 years of schooling). The Bayesian and the unweighted bootstrap approaches ignore the HRS
complex survey design whereas the weighted bootstrap approach accounts for the HRS complex survey design using the HRS baseline
(the 2000 wave) survey design indicators.

6. Discussion

Using the bootstrap technique, the present paper contributes to the multistate life table
methods literature by offering and validating a Stata program that estimates the multistate
life table quantities and their variabilities by covariates of interest while accounting for
complex survey designs. Using the HRS (2000–2016), I estimated US females’ total,
healthy, and unhealthy life expectancies and their variabilities (95% intervals) by
race/ethnicity at age 52 while controlling for education. The results show that the health
expectancies and their intervals from the unweighted bootstrap approach are considerably
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consistent with Lynch and Brown’s Bayesian approach, which ignores complex survey
designs. This indicates that the bootstrap approach offered in the current paper is valid.

Also, the results show that ignoring the HRS complex survey design does not
meaningfully alter the estimates.19 Nonetheless, this does not always guarantee the
robustness of the estimates against ignoring complex survey designs in all studies given
that each survey has a unique sampling design. Consistent with Solon, Haider, and
Wooldridge (2015), it is important to report both the weighted and unweighted state
expectancies of interest and explain their implications for interpreting the results.

Additionally, the implementation and modification of the bootstrap approach
offered in the current paper is more flexible than Lynch and Brown’s Bayesian approach
and will be accessible to Stata users. For example, users may prefer to use probit models
instead of the originally suggested multinomial logistic regression model to obtain their
transition probabilities of interest. This is achievable by slightly modifying the Stata
program offered in the current paper. Likewise, users can obtain the distribution of status-
based or population-based state expectancies by simply changing the corresponding
option in the Stata’s mslt command. Also, users can specify linear or exponential options
to solve the life table equations depending on the functionality of the risk of event within
age groups. For the Bayesian approach, however, this amount of flexibility is not
available such that the changes noted above may require substantial modifications of the
corresponding R programs.

In addition, the inclusion of the age-squared term and the interactions between the
starting state and other covariates are not allowed in Lynch and Brown’s Bayesian
approach to the multistate life table method. Using the current Stata program, the age-
squared term (i.e., the interaction between age with itself) and any interaction terms can
be simply added to the regression model. Nonetheless, these limitations are unlikely to
meaningfully alter the estimates from the Bayesian multistate life table method.

Basically, any limitations for Stata’s mslt command (Muniz 2020) are applicable to
the bootstrap approach offered in the current paper as well. For example, a notable
limitation could be allowing unlimited transient states but only one absorbing state, as in
Lynch and Brown’s Bayesian approach. In addition, the bootstrapping approach offered
in the current paper is slower than Lynch and Brown’s Bayesian approach, which uses R.
For example, depending on the sample size and the complexity of the multinomial logistic
regression model, obtaining the transition probabilities from 1,000 bootstrap samples
may take several hours, whereas the similar process takes less than an hour using Lynch
and Brown’s R programs. Likewise, obtaining the state expectancies using their R
programs is faster than the Stata program offered in the present paper. Nevertheless, I
believe that the benefits of the newly developed program outweigh these limitations.

19 Using the baseline weights comes at the cost of the assumption that the pattern of age profiles of transition
probabilities for individuals is fixed regardless of their age at baseline.
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Appendix A. The concise version of Stata code for the bootstrap
approach to the multistate life table method20

*Account for the HRS complex survey design using the baseline sample design
indicators (HRS 2000 wave) across 1,000 bootstrap replications

svyset raehsamp_base [pweight=rwtcrnh_base], strata (raestrat_base)
bsweights bw, reps(1000) n(0) seed(9999)
svyset [pweight=rwtcrnh_base], bsrweight(bw*)

*Define Cluster and idcluster options to force Stata to randomly select the
bootstrap samples from the individuals and not the person-waves (Sanchez 2021)

tsset, clear
generate long newid = hhidpn
tsset newid year, delta (2)

*Step 1 and 2: Obtaining the bootstrapped (weighted) multinomial logistic
regression coefficients and computing the age-state-specific transition probabilities
for a given covariate profile (e.g., non-Hispanic White with around 12 years of
education)

capture program drop savemargins
program savemargins, rclass
 svy: mlogit SRH_E_new c.age_100 i.SRH_B c.age_100#i.SRH_B i.race

c.age_100#i.race c.education c.education#i.race,  baseoutcome(0)
 margins, predict (outcome (0)) predict (outcome (1)) predict (outcome (2)) at

(age_100=(0 (1) 24) SRH_B=(0 1) race=(0 (1) 2) ) atmeans  post nose
end
*Generate a sequence of discrete-time multinomial logistic regression parameters,
and (at each step) generate a new set of age-state-specific transition probabilities
for a given covariate profile (e.g., non-Hispanic White females with around 12
years of education)

bootstrap _b, saving (boot_mlog_F_repW_atmeans, replace) reps(1000) cluster(hhidpn)
idcluster(newid): savemargins  nose

20 The detailed version of the code is needed to replicate the results of the current paper which is available on
the Demographic Research website.
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*Step 3: Obtaining the weighted radix values for the three race/ethnicity
categories

svyset raehsamp_base [pweight=rwtcrnh_base], strata (raestrat_base)
svy:logit SRH_B c.age_100 i.race c.age_100#i.race c.education c.education#i.race
margins race, at ( age_100=0 ) atmeans
*W=.166926 , B=.3468686  , H=.3702465

*Step 4: Constructing the distribution of the multistate life table quantities for a
given covariate profile (e.g., non-Hispanic White with around 12 years of
education)

save MSLT_results_repW_mlog_boot.dta, emptyok replace
rename (HU HD UH UD ) (m12 m13 m21 m23)
keep profile age m*
order profile age m12 m13 m21 m23
quietly levelsof  profile, clean local(plist)
set graphics off
foreach p of local plist {
 clear matrix
 preserve
 quietly keep if (profile == “`p’“)
 drop profile
 keep age m12 m13 m21 m23
 local R2=.166926 // The radix values for being healthy (non-Hispanic Whites)
 local R1=1-`R2’
 quietly mslt, l0(`R1’ `R2’ 0) death proportion constant
 matrix rename ei_x `p’_ei_x
 xsvmat `p’_ei_x, norestore
    rename (`p’_ei_x1 `p’_ei_x2) (ei_x1 ei_x2)
 gen profile=“`p’“
 quietly append using MSLT_results_repW_mlog_boot.dta.dta
 quietly save MSLT_results_repW_mlog_boot.dta, replace
 restore
}



Demographic Research: Volume 47, Article 23

https://www.demographic-research.org 721

Appendix B. R codes for the Bayesian approach to the multistate life
table method

Appendix B1. R codes for the Gibbs sampler for a bivariate dichotomous probit
hazard model (GSMLThazard.R version .91)

#Copyright 2006 Scott M. Lynch (Princeton University) and J. Scott Brown (Miami
University). If you use this software, cite our Lynch and Brown (2005) Sociological
Methodology_ paper and see the instruction manual. We acknowledge support of NICHD
grant 1R03HD050374-01 in constructing this program

#This is a Gibbs sampler for a bivariate dichotomous probit hazard model with k
covariates. The second program, GMSLT_tables.R, produces life tables for a specified
covariate profile using the output of this program

#Required data file is space-delimited ascii with variables in this order:
#1 a column of ones for the intercept
#2 age (in one- or five-year age groups numbered successively starting at 0)
#3 starting state (time 1) indicator (0/1) healthy or not
#4 an age*starting state interaction
#5 sequence of covariates (e.g., sex, race, income...)
#6 sequence of age*covariate interactions in same order as variables listed in step 5
#7 healthy/unhealthy indicator (0/1) at time 2
#8 dead/alive indicator (1/0) at time 2
# e.g., 1 age start age*start male black income age*male age*black unhealthy2 dead2

#NOTES:
#If dead, health is indeterminate, so set ending health indicator at 0.
#Starting state by covariate interactions not allowed in this version.

#To run program, you only need to change the following:
#1. number of X variables (k), including intercept, age, starting state, etc.
#2. name of the input data file
#3. name of the Gibbs sampler output file
#4. width of proposal density for error correlation. This is technical but should be

modified to obtain a stable acceptance rate of .25–.75 for the error correlation
parameter. This is the last column reported in the output while Gibbs sampler is
running and is usually a function of the sample size. Try 1/sqrt(n) for starters
again; see manual for more detail.
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setwd (“~/Desktop/multistate life table/MLE”)
library(haven)
Bayes_input_F <- read_dta(“Bayes_input_F.dta”)
k=11
inf=(“~/Desktop/multistate life table/MLE/Bayes_input_F.dat”)
outf=(“~/Desktop/multistate life table/MLE/Bayes_input_F.par”)
w=1/sqrt(57648)

#DO NOT MODIFY ANYTHING BELOW HERE
starttime=Sys.time()
x=as.matrix(read.table(inf)[,1:k])
z=as.matrix(read.table(inf)[,(k+1):(k+2)])
zstar=matrix(0,nrow(z),2)
d=2
b=matrix(0,(d*k))
s=diag(d); cs=diag(d)
acctot=0
tz=matrix(0,4);ctz=matrix(0,4)
tz[1]=-Inf; tz[2]=0; tz[3]=tz[4]=Inf
write(c(0,t(b),t(s),0),file=outf,ncolumns=(d*k+d*d+2),append=T)

for(i in 2:10000){
#draw latent data
  bb=matrix(b,k,2)
  m=x%*%bb
#mvn gibbs sampler
  mm=m[,2] + s[1,2]*(zstar[,1]-m[,1])
  ss=1-s[1,2]^2
  zstar[,2]=qnorm(runif(nrow(z),
                        min=pnorm(tz[z[,2]+1],mm,sqrt(ss)),
                        max=pnorm(tz[z[,2]+2],mm,sqrt(ss))),mean=mm,sd=sqrt(ss))
  mm=m[,1] + s[1,2]*(zstar[,2]-m[,2])
  ss=1-s[1,2]^2
  zstar[,1]=qnorm(runif(nrow(z),
                        min=pnorm(tz[z[,1]-z[,2]+1],mm,sqrt(ss)),
                        max=pnorm(tz[z[,1]+z[,2]+2],mm,sqrt(ss))),mean=mm,sd=sqrt(ss))
#draw b from mvn
  vb=solve(solve(s)%x%(t(x)%*%x))
  mn=vb%*%(as.vector(t(x)%*%zstar%*%t(solve(s))))
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  b=mn+t(rnorm((d*k),0,1)%*%chol(vb))
#simulate s using MH sampling
  e=matrix((as.vector(zstar)-(diag(d)%x%x%*%b)),nrow(z),d)
  v=t(e)%*%e
  like=-.5*(d+nrow(z)+1)*log(det(s))-.5*sum(diag(v%*%solve(s)))
  cs[1,2]=cs[2,1]=s[1,2]+rnorm(1,mean=0,sd=w)
  if(abs(cs[1,2])<1){
    cslike=-.5*(d+nrow(z)+1)*log(det(cs))-.5*sum(diag(v%*%solve(cs)))
    if((cslike-like)>log(runif(1,0,1)))
    {s[1,2]=s[2,1]=cs[1,2]; acctot=acctot+1}
  }
  if(i%%10==0){print(c(i,b[1],b[1+k],s[1,2],acctot/i),digits=5)}

if(i%%5==0){write(c(i,t(b),t(s),acctot/i),file=outf,ncolumns=(d*k+d*d+2),ap
pend=T)}

}
print(Sys.time()-starttime)
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Appendix B2. R codes for producing life tables using Gibbs samples from a
bivariate probit model program (GMSLTtables.R version .91)

#Copyright 2006 Scott M. Lynch (Princeton University) and J. Scott Brown (Miami
University). If you use this software, cite our Lynch and Brown (2005). Sociological
Methodology paper and see the instruction manual. We acknowledge support from
NICHD grant 1R03HD050374-01 in constructing this program.
#This program produces life tables using Gibbs samples from a bivariate probit model

program (GMSLThazard.R) applied to a user-specified covariate profile
#To run program, you need to change the following:
#1. the number of early Gibbs samples to discard prior to convergence (burnin)
#2. the number of life tables to generate (samples). burnin+samples cannot exceed the

length of the parameter output file.
#3. the youngest age in the sample in years (startage)
#4. the width of the age groups in the data (typically either 1 or 5) (yearscale)
#5. the number of covariates in the model, not counting the intercept, age, starting state,

age*starting state, nor interactions between age and covariates (numx)
#6. the number of interactions of covariates with age (numinter)
#7. the values at which you wish the covariates to be set (covval)
#8. the original data used by the hazard program (origdat)
#9. the input data file name (output of Gibbs sampler) (inf)
#10. the output file for the life tables (outf)

setwd (“~/Desktop/multistate life table/MLE”)
burnin=1000
samples=1000
startage=52
yearscale=2
numx=5
numinter=2
covval=matrix(NA,3,5)
#non-Hispanic Whites with around 12 years of schooling
covval[1,]=c(0,0, 12.07679,0,0)
#non-Hispanic Blacks with arounf 12 years of schooling
covval[2,]=c(1,0, 12.07679, 12.07679,0)
#Hispanics with around 12 years of schooling
covval[3,]=c(0,1, 12.07679,0, 12.07679)
require(mvtnorm)
for(loop in 1:3){
  origdat=(“~/Desktop/multistate life table/MLE/Bayes_input_F.dat”)
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  inf=(“~/Desktop/multistate life table/MLE/Bayes_input_F.par”)
  outf=(“~/Desktop/multistate life table/MLE/Bayes_input_F.tab”)
  transition=(“~/Desktop/multistate life table/MLE/Bayes_input_F_transition.tab”)

#DO NOT MODIFY ANYTHING BELOW HERE
  starttime<-Sys.time()
  num=(100-startage)/yearscale +1
  inter=matrix(1,num+1)
  starts=matrix(1,num+1,2)
  if(numx>0){cv=t(matrix(covval[loop,],numx,num+1))}
  pmat=matrix(0,3,3)
  fb=matrix(NA,num+1,2)
  b=matrix(NA,numx+numinter+4,2)
  g=as.matrix(read.table(inf,header=F))
  ages=matrix(seq(0,num),num+1)
  if(numx>0 & numinter==0){x<-cbind(inter,ages,starts,cv)}
  if(numx>0 & numinter>0){x<-cbind(inter,ages,starts,cv,ages[,1]*cv[,1:numinter])}
  if(numx==0){x<-cbind(inter,ages,starts)}
#gets radix from regression on starting state
  dat=read.table(origdat)
  oy=as.matrix(dat[,3])
  ox=as.matrix(dat[,c(2,5:(numx+numinter+4))])
  vvv=as.matrix(coefficients(glm(oy~ox,family=binomial(link=probit))))
  cvv=as.matrix(c(1,0,covval[loop,],rep(0,numinter)))
  radix=c(1-pnorm(t(cvv)%*%vvv,0,1),pnorm(t(cvv)%*%vvv,0,1),0)
  print(radix)
#start computations of life tables
  for(m in (burnin+1):(burnin+samples)){
  #read in parameter sample
    b[(1:(numx+numinter+4)),1]=g[m,(2:(numx+numinter+5))]
    b[(1:(numx+numinter+4)),2]=g[m,((numx+numinter+6):(2*(numx+
    numinter+4)+1))]
    rho=g[m,(2*(numx+numinter+4)+3)]
    sig=matrix(c(1,rho,rho,1),2,2)
  #compute predicted values for transitions: start h
    x[,3]=0; x[,4]=0
    hfb=x%*%b
  #compute predicted values for transitions: start u
    x[,3]=1; x[,4]=x[,2]
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    ufb=x%*%b
    l=matrix(radix,num,3,byrow=T)
    bl<-matrix(0,num,3)
    tl<-matrix(0,num,3)
  #get transition probabilities matrices across age from pred. vals.
    for(a in 1:num){
      pmat[1,3]=pmvnorm(lower=c(-Inf,-

Inf),upper=c(+Inf,hfb[a,2]),mean=c(0,0),corr=sig)
      pmat[2,3]=pmvnorm(lower=c(-Inf,-

Inf),upper=c(+Inf,ufb[a,2]),mean=c(0,0),corr=sig)
      pmat[1,2]=pmvnorm(lower=c(-

Inf,hfb[a,2]),upper=c(hfb[a,1],+Inf),mean=c(0,0),corr=sig)
      pmat[2,2]=pmvnorm(lower=c(-

Inf,ufb[a,2]),upper=c(ufb[a,1],+Inf),mean=c(0,0),corr=sig)
      pmat[1,1]=1-(pmat[1,2]+pmat[1,3])
      pmat[2,1]=1-(pmat[2,2]+pmat[2,3])
      pmat[3,3]=1
      write(c(t(pmat)),file=transition,append=T,ncolumns=(9*num))
      if(a<num){
        l[a+1,]=l[a,]%*%pmat
        bl[a,]=.5*yearscale*(l[a,]+l[a+1,])
      }
      if(a==num){
        bl[a,1:2]=l[a,1:2]%*%solve(diag(2)-pmat[1:2,1:2])
      }
    }
    le=matrix(NA,num,3)
    for(a in 1:(num-1)){
      tl[a,]=colSums(bl[a:num,])
      le[a,]=tl[a,]/sum(l[a,1:2])
    }
    tl[num,]=bl[num,]
    le[num,]=tl[num,]/sum(l[num,1:2])
    write(c(t(le)),file=outf,append=T,ncolumns=(3*num))
    print(c(m,le[1,]))
  }
  print(Sys.time()-starttime)
}
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