Volume 47 - Article 27 | Pages 843–882 Author has provided data and code for replicating results

Small-area estimates from consumer trace data

By Arthur Acolin, Ari Decter-Frain, Matt Hall

Print this page  Facebook  Twitter


Date received:07 Feb 2022
Date published:06 Dec 2022
Word count:8066
Keywords:calibration techniques, consumer data, nontraditional data, small area estimation
Additional files:readme.47-27 (text file, 3 kB)
 demographic-research.47-27 (zip file, 2440 MB)


Background: Timely, accurate, and precise demographic estimates at various levels of geography are crucial for planning, policymaking, and analysis. In the United States, data from the decennial census and annual American Community Survey (ACS) serve as the main sources for subnational demographic estimates. While estimates derived from these sources are widely regarded as accurate, their timeliness is limited and variability sizable for small geographic units like towns and neighborhoods.

Objective: This paper investigates the potential for using nonrepresentative consumer trace data assembled by commercial vendors to produce valid and timely estimates. We focus on data purchased from Data Axle, which contains the names and addresses of over 150 million Americans annually.

Methods: We identify the predictors of over- and undercounts of households as measured with consumer trace data and compare a range of calibration approaches to assess the extent to which systematic errors in the data can be adjusted for over time. We also demonstrate the utility of the data for predicting contemporaneous (nowcasting) tract-level household counts in the 2020 Decennial Census.

Results: We find that adjusted counts at the county, ZIP Code Tabulation Areas (ZCTA), and tract levels deviate from ACS survey-based estimates by an amount roughly equivalent to the ACS margins of error. Machine-learning methods perform best for calibration of county- and tract-level data. The estimates are stable over time and across regions of the country. We also find that when doing nowcasts, incorporating Data Axle estimates improved prediction bias relative to using the most recent ACS five-year estimates alone.

Contribution: Despite its affordability and timeliness compared to survey-based measures, consumer trace data remains underexplored by demographers. This paper examines one consumer trace data source and demonstrates that challenges with representativeness can be overcome to produce household estimates that align with survey-based estimates and improve demographic forecasts. At the same time, the analysis also underscores the need for researchers to examine the limits of the data carefully before using them for specific applications.

Author's Affiliation

Arthur Acolin - University of Washington, United States of America [Email]
Ari Decter-Frain - Cornell University, United States of America [Email]
Matt Hall - Cornell University, United States of America [Email]

Similar articles in Demographic Research

» Validation of spatially allocated small area estimates for 1880 Census demography
Volume 29 - Article 22    | Keywords: small area estimation

» Measuring Local Heterogeneity with 1990 U.S. Census Data
Volume 3 - Article 10    | Keywords: small area estimation