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Formal Relationship

Improved bounds and high-accuracy estimates for remaining life
expectancy via quadrature rule-based methods

Oscar E. Fernandez1

Abstract

BACKGROUND
Previous research has derived bounds on the remaining life expectancy function e(x) that
connect survivorship and remaining life expectancy at two age values and therefore can
be used to, among other things, estimate life expectancy at birth when the population’s
full mortality trajectory is not known.

RESULTS
We show that the aforementioned bounds emerge from using particular two-node closed
quadrature rules and prove a theorem that establishes conditions for when an n-node
closed rule respects those bounds for e(x). This enables the usage of known high-
accuracy rules that stay within the bounds and provide new high-accuracy estimates for
e(x). We show that among this set of rules are ones that yield exact estimates for e(x).
We illustrate our work empirically using life table data from French females since 1816
and discover a new empirical regularity linking life expectancy at birth in the data set to
survivorship and remaining life expectancy at age 20.

CONTRIBUTION
Our results furnish conditions for using known rules to generate high-accuracy estimates
of remaining life expectancy that respect the known theoretical bounds on e(x), making
calculating the associated maximum errors straightforward and requiring no information
about the higher-order derivatives of the associated survival function, as is the case for
standard rules. The empirical validation of this approach in the French female data and
the discovery of the aforementioned associated empirical regularity argue for follow-up
research using our approach to establish additional, higher-accuracy estimates for e(x)
and also to probe the generality and biodemographic drivers of the new regularity.
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1. Background

Consider an age-structured population in which the maximum life span is ω. Let s(x)
denote the associated survival function, where age x is measured in years, and e(x) denote
the remaining life expectancy at age x. By definition, s(x) is a nonincreasing function,
and s(0) = 1, s(ω) = e(ω) = 0, and e(0) = e0, the life expectancy at birth. Assuming
s(x) is a continuous function, Cohen (2011) proves that

(b− a+ e(b))
s(b)

s(a)
≤ e(a) ≤ b− a+ e(b)

s(b)

s(a)
, 0 ≤ a ≤ b ≤ ω. (1)

When a = b this equation reduces to the unenlightening e(a) ≤ e(a) ≤ e(a). We
will therefore discuss here only the a < b case. Furthermore, when s(x) is nonconstant
on [a, b]–a realistic assumption for real-world populations–the inequalities in Equation 1
become strict. These assumptions transform Equation 1 into

(b− a+ e(b))
s(b)

s(a)
< e(a) < b− a+ e(b)

s(b)

s(a)
, 0 ≤ a < b ≤ ω. (2)

As Cohen (2011) discusses, the bounds here can be used to approximate e(x) (e.g.,
e(0) = e0) using e(y) and s(y), where y 6= x, making possible the estimation of life
expectancy without detailed knowledge of the mortality trajectory between ages x and y.

In this article we derive Equation 2 using a different method than the one used by
Cohen (2011). Herein, we take a numerical analysis approach. In Section 2 we first
show that Equation 2 is built from a 0-degree accurate two-node closed quadrature rule
(the Appendix reviews these concepts) and then provide conditions under which such
quadrature rules respect the bounds in Equation 2. We then use this to develop higher
accuracy quadrature rule approximations to e(x). In particular, we show that among
these quadrature rules is one that evaluates e(x) exactly. Section 3 explores the accuracy
of the new approximations developed: we profile one such approximation that halves the
maximum error incurred by using either of the bounds in Equation 2 and show how those
accuracies may be improved. We investigate our results empirically in Section 4 using life
table data from French females since 1816 and present a new empirical regularity linking
life expectancy at birth in the data set to survivorship and remaining life expectancy at age
20. In the Discussion section we comment on this new regularity and discuss potential
follow-up investigations.
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2. Results and new relationships

Theorem 1. Let a and b be such that 0 ≤ a < b ≤ ω. Suppose that s(x) is continuous,
nonincreasing, and nonconstant on [a, b], with s(a) 6= 0. Then

(b− a)s(b) <
∫ b

a

s(t) dt < (b− a)s(a), (3)

and from this follows Equation 2.

Proof. The assumptions on s imply that s(b) < s(t) < s(a) for t ∈ [a, b]. Integrating
this inequality yields Equation 3. To show how Equation 3 yields Equation 2, we note
that since ∫ b

a

s(t) dt =

∫ b

a

s(t) dt+

∫ ω

b

s(t) dt−
∫ ω

b

s(t) dt

=

∫ ω

a

s(t) dt−
∫ ω

b

s(t) dt

= e(a)s(a)− e(b)s(b), (4)

substituting this into Equation 3 yields (b−a)s(b) < e(a)s(a)− e(b)s(b) < (b−a)s(a).
Solving this for e(a) and using the assumption that s(a) 6= 0 yields Equation 2.

The bounds in Equation 3–for easy reference, hereafter we refer to those as the ‘Co-
hen bounds’–are what result from using a 0-degree accurate two-node closed quadrature
rule for s on [a, b] (c.f., the Appendix). This theorem, therefore, shows that this type of
quadrature rule undergirds Equation 2. Using a higher-degree accurate quadrature rule
would generate a more accurate e(a) estimate. But the error expressions for quadrature
rules generally involve the higher-order derivatives of the integrand (Burden, Faires, and
Burden 2015), in this case s(t). Without knowledge of those higher-order derivatives
one cannot a priori know (or even bound) the error incurred in a general quadrature rule.
This is one strength of Equation 2: The maximum error (the difference in the bounds) is
explicitly calculable from life tables. The next theorem furnishes conditions under which
a two-node closed quadrature rule respects the Cohen bounds.

Theorem 2. Let a and b be such that 0 ≤ a < b ≤ ω. Suppose that s(x) is continu-
ous, nonincreasing, and nonconstant on [a, b], with s(a) 6= 0. For the two-node closed
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quadrature rule
∫ b

a

s(t) dt ≈ c1s(a) + c2s(b), if

c1 ≥ 0, c2 ≥ 0, c1 + c2 = b− a, (5)

then

(b− a)s(b) <
∫ b

a

s(t) dt ≈ c1s(a) + c2s(b) < (b− a)s(a) (6)

and

[(b− a) + e(b)]
s(b)

s(a)
< e(a) ≈ c1s(a) + [c2 + e(b)]s(b)

s(a)
< (b− a) + e(b)

s(b)

s(a)
. (7)

Proof. The nonconstant and nonincreasing properties of s(x) on [a, b] imply that s(a) >
s(b). Using now the assumptions in Equation 5 we get

c1s(a) + c2s(b) < c1s(a) + c2s(a) = (c1 + c2)s(a) = (b− a)s(a) and
c1s(a) + c2s(b) > c1s(b) + c2s(b) = (c1 + c2)s(b) = (b− a)s(b).

Thus, using Equation 3 we get bounds for the two-node closed quadrature rule that
proves Equation 6:

(b−a)s(b) < c1s(a)+c2s(b) ≈
∫ b

a

s(t) dt and
∫ b

a

s(t) dt ≈ c1s(a)+c2s(b) < (b−a)s(a).

To prove Equation 7, substitute Equation 4 into Equation 6 to get

(b− a)s(b) < e(a)s(a)− e(b)s(b) ≈ c1s(a) + c2s(b) < (b− a)s(a).

Solving this for e(a) and making use of the assumption that s(a) 6= 0 yields Equation
7.

Corollary 1. Let a and b be such that 0 ≤ a < b ≤ ω. Suppose that s(x) is continuous,
nonincreasing, and nonconstant on [a, b], with s(a) 6= 0. Then for every t ∈ (0, 1),

[(b−a)+e(b)]
s(b)

s(a)
< e(a) ≈ (b− a)[s(a) + t(s(b)− s(a))] + e(b)s(b)

s(a)
< (b−a)+e(b)

s(b)

s(a)
.

(8)
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Furthermore, there exists ξ ∈ (0, 1) such that

e(a) =
(b− a)[s(a) + ξa,b(s(b)− s(a))] + e(b)s(b)

s(a)
. (9)

Proof. Let t ∈ (0, 1), c1 = (1− t)(b−a), and c2 = t(b−a). Then Equation 5 is satisfied
for this combination of c-values and for each t ∈ (0, 1), and substituting these c-values
into Equation 7 yields Equation 8.

To prove the last part we first note that the choice of c-values above converts the

two-node closed quadrature rule
∫ b

a

s(t) dt ≈ c1s(a) + c2s(b) into

∫ b

a

s(t) dt ≈ {s(a) + t[s(b)− s(a)]} (b− a). (10)

If s(x) is continuous on [a, b], then by the mean value theorem for integrals there exists a
t∗ ∈ [a, b] such that

∫ b

a

s(t) dt = s(t∗)

∫ b

a

1 dt = s(t∗)(b− a). (11)

But because we have assumed that s(x) is nonconstant on [a, b] we cannot have t∗ = a
or t∗ = b. (When t∗ = a or t∗ = b, Equation 11 violates the inequality of Equation 3.)
Thus, t∗ ∈ (a, b). Substituting Equation 10 and Equation 11 into Equation 6 and then
dividing by b− a yields

s(b) < s(t∗) ≈ s(a) + t[s(b)− s(a)] < s(a). (12)

Define now the function f(t) by s(a) + t[s(b) − s(a)]. This is a continuous (linear)
function on [0, 1] with negative slope since s(a) > s(b), and therefore by the intermediate
value theorem it takes on every value between f(0) = s(a) and f(1) = s(b). Since
s(b) < s(t∗) < s(a) from Equation 12, there is therefore a ξa,b ∈ (0, 1) such that
f(ξa,b) = s(t∗). For that ξ-value,

∫ b

a

s(t) dt = {s(a) + ξa,b[s(b)− s(a)]} (b− a). (13)
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Substituting this into the left-hand side of Equation 4 and solving for e(a) then yields
Equation 9.

Corollary 1 provides a continuous family of two-node closed quadrature rules re-
specting the Cohen bounds. For the particular case of t = 1/2, Equation 8 yields

[(b− a) + e(b)]
s(b)

s(a)
< e(a) ≈ (b− a)[s(a) + s(b)]

2s(a)
+ e(b)

s(b)

s(a)
< (b− a) + e(b)

s(b)

s(a)
. (14)

Since the approximation herein is the same as that obtained from approximating
∫ b
a
s(t) dt

via the trapezoidal rule (because the right-hand side of Equation 10 reduces to the trape-
zoidal approximation when t = 1/2), we will refer to the approximation in Equation
14 as the trapezoidal estimate of e(a). We note that if s(x) is concave (or, respectively,
convex) on [a, b], then the trapezoidal estimate of e(a) is a lower (or, respectively, upper)
bound for e(a) that is strictly greater (or, respectively, less) than the lower (or, respec-
tively, upper) bound in Equation 2. These results are intuitively clear from Figure 1.
The following theorem shows that this trapezoidal estimate halves the maximum error in
estimating e(a) as compared to using either of the Cohen bounds.

Figure 1: Plots of s(x) (blue curves) along with the line segments defined by
y = s(a) (black, dashed), y = s(b) (red, dashed), and the line
connecting (a, s(a)) and (b, s(b)) (gray, dashed)

(a)

a b

s(b)

s(a)

x

s(x)

(b)

a b

s(b)

s(a)

x

s(x)

Note: The quantity
∫ b
a
s(t) dt is better approximated by (b− a)s(a) than by (b− a)s(b) when s(x) is concave on

[a, b] (a), and better approximated by (b− a)s(b) than by (b− a)s(a) when s(x) is convex on [a, b] (b).

Theorem 3. Let a and b be such that 0 ≤ a < b ≤ ω. Suppose that s(x) is continuous,
nonincreasing, and nonconstant on [a, b], with s(a) 6= 0. Then the maximum error in

814 http://www.demographic-research.org
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estimating e(a) by Equation 14 is half the maximum error in estimating e(a) by either
bound in Equation 2.

Proof. Let U and L denote the upper and lower bounds in Equation 2. The maximum
error incurred in using either of the bounds in Equation 2 to approximate e(a)–which we
will denote by ME–is then

ME = U − L

=

[
(b− a) + e(b)

s(b)

s(a)

]
−
[
(b− a+ e(b))

s(b)

s(a)

]

= (b− a)
(
1− s(b)

s(a)

)
. (15)

Denoting now the trapezoidal estimate in Equation 14 by T , Equation 14 says that L <
e(a) ≈ T < U . Thus, e(a) must be contained in the interval (L,T ] or [T ,U). Since
T − L and U − T are given by[

(b− a)[s(a) + s(b)]

2s(a)
+ e(b)

s(b)

s(a)

]
− L =

b− a
2

(
1− s(b)

s(a)

)
=
ME

2
, (16)

U −
[
(b− a)[s(a) + s(b)]

2s(a)
+ e(b)

s(b)

s(a)

]
=

b− a
2

(
1− s(b)

s(a)

)
=
ME

2
, (17)

respectively, we conclude that the estimate e(a) ≈ T halves the maximum error Equation
15.

3. Applications and extensions of the theoretical results

3.1 Applications of the trapezoidal estimate

The improved accuracy of the trapezoidal estimate of e(a) to the Cohen bounds makes
possible more accurate estimates of, for example, life expectancy at birth. To wit, setting
a = 0 in Equation 14 yields

e0 ≈
b

2
[1 + s(b)] + e(b)s(b), 0 < b ≤ ω, (18)
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and Equation 17 assures us that this approximation halves the maximum error incurred
relative to using either of the bounds in Equation 2. (We will refer to Equation 18 as
the trapezoidal estimate of e0.) As a concrete illustration of this let us set b equal to the
median age m (for which s(m) = 1/2) in Equation 18; this yields

m+ e(m)

2
< e0 ≈

1.5m+ e(m)

2
<

2m+ e(m)

2
, (19)

where we have included the bounds that result from Equation 2 for comparison. The
maximum error in using either of the bounds in Equation 19 to estimate e0 isME = m/2,
whereas the maximum error in using the trapezoidal estimate is ME = m/4.

3.2 Additional high-accuracy approximation options

Incorporating additional knowledge about s(x) or using more advanced quadrature rules
or both improves the approximations to e(a). As an example of the former, let us return to
the notes in Figure 1 regarding how the convexity of the survival curve affects the estimate
we have developed. In modern industrialized societies s(x) is mostly convex for x / 2
years and then becomes mostly concave until x ≈ 90 years. These are therefore contexts
in which, for example, using t-values close to 1 in the approximation in Equation 8 would
yield accurate estimates of e0 if we take b = 20, whereas using t-values close to 0 would
yield accurate approximations of e0 if we take b = 80. We illustrate this empirically in
the next section.

Although we have restricted attention to two-node closed quadrature rules, Theorem
2 easily generalizes to handle n-node quadrature rules. To wit, if we replace the two-node
quadrature rule in the theorem with an n-node one,

∫ b

a

s(t) dt ≈
n∑
i=1

cis(xi), where we fix x1 = a and xn = b (20)

and where n is a natural number, with n ≥ 3, then under the hypotheses

ci ≥ 0,

n∑
i=1

ci = b− a (21)

(the analogues of Equation 5 in this n-node case), the same techniques used in the proof
of Theorem 2 yield the n-node analogues of Equations 6 and 7, which are simply the
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corresponding approximations where c1s(a) + c2s(b) is replaced by the right-hand side
in Equation 20. One can then employ more advanced quadrature methods to further
improve the accuracy of the new quadratures in Equation 20. In particular, the Gauss-
Lobatto quadrature rules satisfy the hypotheses in Equation 21 (Stoer and Burlisch 1993)
and are known to exhibit high accuracy: The n-node Gauss-Lobatto rule has degree of
accuracy 2n− 1 (Stoer and Burlisch 1993). Given that polynomials of order as low as 8
yield fairly accurate fits to survival curves, n = 4 Gauss-Lobatto quadrature rules should
generate high-accuracy approximations to e(a). (For n ≥ 4 these rules require s(x)- and
e(x)-values at irrational x-values, but these can be estimated by interpolating between
nearby integer x-values.)

Some existing parametric models for s(x) can also be utilized within our framework.
Specifically, any parametric model that satisfies s(b) ≤ s(x) ≤ s(a) for x ∈ [a, b] will
generate an approximation for e(a) that respects the bounds in Equation 2. (The quantity
c1s(a) + c2s(b) in Equation 6 is replaced by the output of

∫ b
a
s(t) dt for the chosen

parametric model, and thus Equation 7 follows from the same manipulations as in the
proof of that part of Theorem 2.) For example, the functions

hn(x) = s(a)−
[
s(a)− s(b)
(b− a)n

]
(x− a)n, n > 0, (22)

satisfy s(b) ≤ s(x) ≤ s(a) for x ∈ [a, b]. These functions are convex for 0 < n < 1
and concave for n > 1 (h1(x) is a linear function). Thus, if one has information about
the concavity/convexity of s(x) on [a, b], then one can select appropriate n-values to
generate accurate estimates of e(a). As another example one could choose to model s(x)
as Weon and Je (2012) do, where a rescaled age x

α is used: s
(
x
α

)
= e−(x/α)β(x/α)

(here
s(α) = e−1 and β(x) is a positively sloped linear function), suitably scaled to satisfy
s(b) ≤ s(x) ≤ s(a) for x ∈ [a, b]. Such modified stretched exponential survival models
have been shown to accurately capture the post-1950 scale and shape variances in survival
curves in human populations (Weon and Je 2012) and could therefore provide additional
high-accuracy estimates of e(a).

4. Applications to the remaining life expectancy in French females,
1816–2015

We now illustrate the theoretical results from Section 2 empirically using life table data
from the Human Mortality Database HMD for French females (1816–2015, 200 yearly
life tables).

Figures 2–6 plot the magnitude of the percentage errors in estimating e0 for each
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life table in the data set by the Cohen bounds and by the trapezoidal estimate in Equation
14 for a = 0 and b = 20, 40, 60, and 80. Accuracy generally increases over time for
each of the three estimates, regardless of the b-value used. Figure 6 explains why: The
rectangularization of the survival curves over time leads to s(x) curves that are more
nearly constant for 0 ≤ x ≤ b, which leads to smaller s(b) − s(0) values, which in turn
shrinks the maximum errors defined by Equations 15, 16, and 17. The b = 20 estimates
are, broadly speaking, the most accurate of the four (compare the range of the vertical
axes in the figures). The reason here is simple: As the b-value increases there is more
survival curve area that is underestimated by the lower Cohen bound and overestimated
by the upper Cohen bound. As the b-value increases the lower Cohen bound becomes less
accurate than the upper Cohen bound earlier in the data set. The reason for this goes back
to our earlier observation about how the convexity of s affects these estimates (c.f., the
Figure 1 caption). As Figure 6 shows, for 0 ≤ x ≤ 20 the population’s survival curves
remain more convex than concave. This implies that the lower Cohen bounds are more
accurate estimates than the upper ones. However, on the interval 0 ≤ x ≤ 80 Figure
6 shows that the population’s survival curves become more concave than convex over
time. This implies that over time the upper Cohen bound estimates become more accurate
than the lower bound estimates. These accuracy–concavity relationships also explain the
dependency of the most accurate estimate on the b-value and time. For example, for
b = 40 and 60 the trapezoidal estimate is generally the most accurate of the three (Figures
3 and 4). This accords with the fact that survival curves are roughly half-concave and half-
convex over the intervals 0 ≤ x ≤ 40 and 0 ≤ x ≤ 60 (Figure 6). By contrast, for b = 20
the lower (Cohen) bound is generally the most accurate (Figure 2). (The trapezoidal
estimate is just as accurate post-1975.) This accords with the enduring overall convexity
of the survival curves over the interval 0 ≤ x ≤ 20 (Figure 6). Finally, when b = 80
the upper Cohen bound is the most accurate post-1950 (Figure 5). This accords with
the increasing degree of concavity of the survival curves over the interval 0 ≤ x ≤ 80
post-1950 (Figure 6).

818 http://www.demographic-research.org

http://www.demographic-research.org


Demographic Research: Volume 48, Article 27

Figure 2: Comparisons of the percentage error in using the lower bounds
(red), upper bounds (blue), and trapezoidal estimates in Equation
14 with b = 20 to estimate e0 in French females, 1816–2015
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Note: Life table data obtained from the Human Mortality Database (HMD).

Figure 3: Comparisons of the percentage error in using the lower bounds
(red), upper bounds (blue), and trapezoidal estimates in Equation
14 with b = 40 to estimate e0 in French females, 1816–2015
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Figure 4: Comparisons of the percentage error in using the lower bounds
(red), upper bounds (blue), and trapezoidal estimates in Equation
14 with b = 60 to estimate e0 in French females, 1816–2015
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Figure 5: Comparisons of the percentage error in using the lower bounds
(red), upper bounds (blue), and trapezoidal estimates in Equation
14 with b = 80 to estimate e0 in French females, 1816–2015
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Figure 6: Survival curves for French females in 1816 (red), 1866 (blue), 1916
(gold), 1966 (green), and 2015 (black)
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We now illustrate Corollary 1. We do not know a priori the corresponding ξa,b-value
that will yield the exact e(a)-value promised by Equation 9. But a posteriori, once the
relevant life table parameters are known (specifically, e(a), e(b), s(a), and s(b)), then
solving Equation 9 for ξa,b yields

ξa,b =
1

s(b)− s(a)

[
e(a)s(a)− e(b)s(b)

b− a
− s(a)

]
. (23)

These ξ-values will be closer to 0 than 1 if s(x) is concave on [a, b] and closer to 1 than 0 if
s(x) is convex on [a, b]. Thus, calculating the ξ-values for consecutive life tables allows
us to track the historical trends in those ξ-values in real-world data sets and provides
information about how the associated survival curves have evolved over time. Figure 7
illustrates this by comparing the values of ξ0,b for the b-values considered in Figures 2–5.
(To be clear, these particular ξ-values yield exact e0-values.)
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Figure 7: A plot of the ξ0,b values from Equation 23 that yield exact
e0-values for b = 20 (blue), 40 (red), 60 (green), and 80 (black) for
French females, 1816–2015
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Note: Life table data obtained from the Human Mortality Database (HMD).

We observe that the maximum ξ-values decrease as b increases. This accords with
the increasingly concave nature of the survival curves (Figure 6) as both b and time in-
crease. This same concavification of the survival curves over time results in a decreasing
trend in ξ0,b-values for a fixed b-value. This is particularly prominent in the b = 80 (black)
curve. As Figure 6 shows, over time the survival curves have become more strongly con-
cave on the interval 0 ≤ x ≤ 80, driving down the values of ξ0,80. Of the four b-values
considered, the ξ0,20-values have shown the least variability over time. This suggests that
perhaps there is a single ξ-value that can accurately estimate e0 for the full data set in
the b = 20 case. Let us denote this single ξ-value by ξ∗0,20. To find this ξ∗-value we
minimized the root mean square error between e0 and the estimate in Equation 8 (with
a = 0 and b = 20). This yields ξ∗0,20 ≈ 0.8182 and the corresponding estimates

e0 ≈ 20[1 + ξ∗0,20(s(20)− 1)] + e(20)s(20)

= 20
(
1− ξ∗0,20

)
+ s(20)

(
e(20) + 20ξ∗0,20

)
≈ 3.6359 + s(20) (16.3641 + e(20)) . (24)
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Figure 8 plots the percentage error in estimating e0 with Equation 24. Remarkably,
as Figure 8 shows, this approximation yields highly accurate estimates of e0 (error mag-
nitude less than 0.5%) regardless of the complex and dynamic changes in mortality across
age and time in the population since 1816.

Figure 8: A plot of the percentage errors in approximating e0 for French
females, 1816–2015, using ξ0,20 ≈ 0.8182
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Note: Life table data obtained from the Human Mortality Database (HMD).

5. Discussion

The useful inequalities derived by Cohen (2011) for bounding the remaining life ex-
pectancy e(a) emerge from using 0-degree accurate quadrature rules to bound the area
under the survival curve, as demonstrated by Equations 3 and 4. By extending this geo-
metric approach, Theorem 2 and Corollary 1 provide conditions under which two-node
closed quadrature rules yield ‘Cohen inequalities,’ and Theorem 3 shows that these yield
improvements in the maximum error associated with the Cohen bounds and estimates
of e(a), in some cases furnishing exact e(a)-values (Equation 9). Section 3.2 showed
how these results can be improved via the use of higher-accuracy quadrature rules and/or
leveraging information about the concavity of the survival curve. We illustrated our re-
sults empirically in Section 4 by studying the French female population post-1816. As we
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saw, the concavification of the survival curves over time (Figure 6) drove and predicted
the accuracy of the various estimates for e0 (Figures 2–5). These changes in concavity
also drove down, in general, the ξ-values yielding exact e0-values (Figure 7). The notable
exceptions were the ξ0,20-values. These varied little enough over time that it became pos-
sible to extract highly accurate e0 estimates for the entire data set (Equation 24 and Figure
8) using only information about s(20) and e(20).

Possible future research could focus particularly on this last point. The highly ac-
curate e0 estimates in Equation 24 constitute a new regularity in the French female pop-
ulation. At present, this is an empirical regularity attributable to Corollary 1 and the
observations regarding the concavity of s(x) made following Equation 23. But one may
wonder what, if any, biodemographic drivers may be responsible for this regularity. Why
can life expectancy at birth for French females be so accurately estimated over the 200
years between 1816 and 2015 by knowing only s(20) and e(20)? Do regularities like
Equation 24 extend to other human populations (e.g., other populations in the HMD)?
That is, can life expectancy at birth in country i, denoted e0;i, be estimated to the same
high degree of accuracy by relations of the form

e0;i = c1;i + s(b)(c2;i + e(b)), c1;i = 1− ξ∗0,b;i, c2,i = bξ∗0,b;i (25)

for some optimal ξ-values ξ0,b;i? This is likely the case for at least some other countries in
the HMD since the French female population’s mortality trajectories are not substantially
different from those of other industrialized countries in Europe. What can explain the
particular ξ- and b-values yielding the highest accuracy approximations? Perhaps, even
in the case of Equation 24, there exists an optimal b-value, perhaps b 6= 20, that increases
the accuracy of Equation 24 even further. Perhaps there are subsets of HMD countries
with similar optimal estimates in Equation 25 including similar b-values. If there are,
then in these countries, as for French females since 1816, life expectancy at birth would
appear to be intimately tied to the survival probability and remaining life expectancy at
a particular age b or over a particular narrow range of b-values. Why would survivor-
ship and remaining life expectancy at such ages be so intimately linked with e0 in those
countries?

The same theory, analyses, and future research questions described above can also
be investigated for nonhuman species. Does Equation 25 produce high-accuracy e0 esti-
mates for nonhuman species? If so, why? If not, what makes humans special? Given that
life tables for many nonhuman populations are stage-based and not age-based, answers to
these questions could provide useful and practical estimates of life expectancy at birth and
perhaps also reveal the existence of hidden ecological, evolutionary, and biodemographic
regularities linking life expectancy at birth to later-stage survivorship and remaining life
expectancy.
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Appendix

An approximation of the form

∫ b

a

s(t) dt ≈ c1s(a) + c2s(b) (26)

is called a two-node closed (interpolating) quadrature rule in numerical analysis (Burden,
Faires, and Burden 2015). Here the ci are referred to as the weights, the x-values of s(x)
used on the right-hand side of Equation 26 are called the nodes, and ‘closed’ refers to the
fact that the nodes include the endpoints of the interval of integration.

The degree of accuracy of a quadrature rule is the largest positive integer n such that
the rule is exact for xk, for each k = 0, 1, . . . ,n (Burden, Faires, and Burden 2015). The
simplest two-node closed quadratures (26) are the left- and right-hand Riemann sums,
which correspond to c1 = (b− a) and c2 = 0, and c1 = 0 and c2 = (b− a), respectively.
These are 0-degree accurate quadrature rules: Equation 26 is exact for the aforementioned
c-value combinations only when s(x) is constant (x0) on [a, b].
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