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Formal Relationship

On a closed-form expression and its approximation to Gompertz life
disparity

Cinzia Di Palo1

Abstract

BACKGROUND
In the literature, there exists a closed form solution to the remaining life expectancy at
age x when mortality is governed by the Gompertz law. This expression contains a spe-
cial function that allows us to construct high-accuracy approximations, which are also
helpful in assessing the elasticity of life expectancy with respect to the model parameters.
However, to my knowledge, a similar formulation for life disparity does not exist, and as
a consequence, it does not exist for life table entropy either.

CONTRIBUTION
Under the assumption that mortality is governed by the Gompertz law, I present and
prove a closed form expression for life disparity at age x that is similar to that existing
for life expectancy. Since the closed form expressions hold for both life expectancy and
life disparity, an exact expression for the life table entropy is immediately derived. In
addition, using known relationships on the exponential integral function, an approximate
form for life disparity is also obtained.
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1. Relationship

Let x be any initial age, with x ≥ 0. The life table survival function, denoted by l(x),
provides the survival probability from birth to age x. It is related to the distribution of
deaths, denoted by f(x), through

f(x) = −dl(x)

dx
, l(x) =

∫ ∞
x

f(s) ds = 1−
∫ x

0

f(s) ds.

The force of mortality, denoted by µ(x), is related to the previous functions by

µ(x) =
f(x)

l(x)
for all x such that l(x) > 0.

Let

e(x) =

∫∞
x
l(s) ds

l(x)

express the life expectancy and

(1) e†(x) =

∫∞
x
e(s)f(s) ds

l(x)

express the life disparity, both of them at age x. Starting from these relationships, as in
Vaupel and Romo (2003) and Aburto et al. (2019), the life table entropy above age x is
proven to be equal to

H(x) =
e†(x)

e(x)
.

When the Gompertz model is used to represent mortality, it is

µ(x) = aekx x ≥ 0,

where a and k denote the initial mortality level and the rate of aging, respectively, with
a > 0 and k > 0. As shown, for example, in Pollard (2002), Pflaumer (2011), and
Castellares et al. (2020), the closed form expression for the remaining life expectancy at
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age x is provided by

(2) e(x) =
1

k
exp
(µ(x)

k

)
E1

(µ(x)

k

)
,

where E1(z) =
∫∞
1
t−1 exp(−zt) dt =

∫∞
z
t−1 exp(−t) dt is the exponential integral

function defined for z ∈ C.
Starting from (2), all the relationships developed throughout the paper assume that

the Gompertz law is used to represent mortality, and no special notation is adopted.
I prove that an analogous expression can be obtained for life disparity at age x. That

is, the following relationship holds:

(3) e†(x) =
1

k
exp
(µ(x)

k

)
E2

(µ(x)

k

)
,

where E2(z) =
∫∞
1
t−2 exp(−zt) dt =

∫∞
z
t−2 exp(−t) dt is the exponential integral

function of order 2 defined for z ∈ C.
As a consequence, from the definition of the life table entropy using (2) and (3), it

immediately follows that

(4) H(x) =
E2

(
µ(x)
k

)
E1

(
µ(x)
k

) .

Note that closed form expressions (3) and (4) assume that mortality is consistent
with the Gompertz law, which is empirically valid over adult ages across most countries
around the world despite the known limitations at both young and very advanced ages.
In this last regard, some studies suggest that the exponential growth of mortality with
age is followed by a period of deceleration, with slower rates of mortality increase. See
Horiuchi and Wilmoth (1998) and Thatcher, Kannisto, and Vaupel (1998), among many
others. Therefore mortality at advanced ages does not seem properly modeled by the
Gompertz law, as illustrated in Gavrilov and Gavrilova (1991) or more recently Barbi
et al. (2018). This point is currently subject to some debate in the demographic literature.
Gavrilov and Gavrilova (2011) refused the assumption of the mortality deceleration and
illustrated that the Gompertz model provides a better fit of mortality data than the logistic
models in the age range from 80 to 106. Gavrilova, Gavrilov, and Krut’ko (2017) found
that mortality after age 110 years continues to grow with age and can be fitted by the
Gompertz law. However, this issue does not affect the demonstration of relationships (3)
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and (4), although the goodness of the fit on data of the Gompertz law suggests using them
for adult ages.

2. Proof

Let µ(x) = aekx be the Gompertz law for the force of mortality. Consequently, the sur-
vival function of the Gompertz model is l(x) = exp(ak ) exp

(
−µ(x)k

)
. See e.g. Castel-

lares et al. (2020).
First, I have considered the term inside the integral in (1), for which it is

e(x)f(x) = e(x)µ(x)l(x) = exp
(a
k

)µ(x)

k
E1

(µ(x)

k

)
,

so that ∫ ∞
x

e(s)f(s) ds =
1

k
exp
(a
k

)∫ ∞
x

µ(s)E1

(µ(s)

k

)
ds =

=
1

k
exp
(a
k

)∫ ∞
x

µ(s)
(∫ ∞

1

exp(−µ(s)k t)

t
dt
)
ds.

Using the reversal of the integration, it follows that

∫ ∞
x

e(s)f(s) ds =
1

k
exp
(a
k

)∫ ∞
1

1

t

(∫ ∞
x

µ(s) exp
(
−µ(s)

k
t
)
ds
)
dt,

and by means of the substitution y = µ(s), it is

∫ ∞
x

e(s)f(s) ds =
1

k
exp
(a
k

)∫ ∞
1

1

t

(∫ ∞
µ(x)

1

k
exp
(
−y
k
t
)
dy
)
dt =

=
1

k
exp
(a
k

)∫ ∞
1

1

t

(1

k
exp
(
−y
k
t
)−k
t

∣∣∣∞
µ(x)

)
dt =

=
1

k
exp
(a
k

)∫ ∞
1

exp
(
−µ(x)k t

)
t2

dt =
1

k
exp
(a
k

)
E2

(µ(x)

k

)
.
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Finally, dividing by l(x), relationship (3) follows, and as a consequence, relationship (4)
is also derived.

Q.E.D.

3. History and related results

Wrycza (2014) finds that the life table entropy at age 0 is provided by H = 1
b

(
1
e0
− a
)

,

where H and e0 mean H(0) and e(0), respectively, when the force of mortality follows
the Gompertz law. This is a special case of (4). Indeed, as shown in Abramowitz and
Stegun (1964), the following recurrence relation holds:

En+1(z) =
1

n
[exp(−z)− zEn(z)] n = 1, 2, 3, ...

Then for n = 1, and set z = µ(x)
k , the following relationship holds:

E2

(µ(x)

k

)
= exp

(
−µ(x)

k

)
− µ(x)

k
E1

(µ(x)

k

)
.

Hence, substituting the previous relationship in (3), it follows that

e†(x) =
1

k
exp
(µ(x)

k

)[
exp
(
−µ(x)

k

)
− µ(x)

k
E1

(µ(x)

k

)]
=

=
1

k

[
1− exp

(µ(x)

k

)µ(x)

k
E1

(µ(x)

k

)]
,

and from (2), it immediately follows that

e†(x) =
1

k

[
1− µ(x)e(x)

]
.(5)

Hence, substituting (5) in (4), it is

H(x) =
1

k

( 1

e(x)
− µ(x)

)
,(6)

as in Aburto et al. (2019), and when x = 0 the result in Wrycza (2014) is obtained.
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In addition, note that the expression in the square brackets on the right-hand side
in (5) is the derivative, with the negative sign, of life expectancy with respect to x. See
Finkelstein and Vaupel (2009). Therefore, relationship (5) can be written as

(7) e†(x) = −1

k

de(x)

dx
.

This means that the average number of life-years lost as a result of death at age x can
be approximately given by the change in life expectancy between ages x and x + 1 over
the rate of aging. For example, let us consider the life table for Italian females in 2007, as
downloaded from the Human Mortality Database (accessed in November 2022). On this
data, for all ages in the table, fitting the Gompertz model with the method of least squares,
the parameters that best fit the data are a = 3, 12002× 10−5 and k = 0, 088799043. For
Italian females, for the year 2007, life expectancy at birth and at age one are e(0) = 84.04
and e(1) = 83.3 years, respectively. It follows that the life disparity at birth for Italian
females for the year 2007 is about 8.4 years. (In this regard, see Vaupel, Zhang, and van
Raalte 2011, where the corresponding value, calculated for the same population and the
same year, is 8.8 years.)

Furthermore, using (7), it immediately follows that

H(x) = −1

k
é(x),(8)

where é(x) denotes the relative derivative with respect to x of life expectancy, namely

é(x) =

de(x)

dx
e(x)

. According to this relationship, when the Gompertz model is used, the

life table entropy at age x is proportional (with the negative sign) to the ratio of the rela-
tive change in life expectancy and the relative change in mortality at that age, where the
latter equals the rate of aging.

In the literature, there exists an approximation formula for Gompertz life expectancy.
See Pflaumer (2011) and Missov and Lenart (2013), although in the latter, the proce-
dure described is applied to a wrongly written formula for life expectancy. The approx-
imation formula is derived from (2) using the series expansion of function E1(z). See
Abramowitz and Stegun (1964). By truncating the series after the linear term, it follows
that

e(x) ≈ 1

k
exp
(µ(x)

k

)(
−γ − ln

a

k
− kx+

µ(x)

k

)
,
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where γ ≈ 0.57722 . . . is the Euler-Mascheroni constant.
When x = 0 and under the assumption a

k ≈ 0, as for the human population, the
approximation formula for life expectancy at birth is

e(0) ≈ 1

k
exp
(a
k

)(
−γ − ln

a

k
+
a

k

)
≈ 1

k

(
−γ − ln

a

k

)
.

Taking into account that m = 1
k ln k

a , where m denotes the modal age at death (see
Pollard and Valkovics 1992 and Pflaumer 2011, among many others), the well-known
relationship also follows:

e(0) ≈ m− γ

k
.

Analogously, let us consider the series expansion to function E2(z) − see Abramowitz
and Stegun (1964) − which is

E2(z) = −z[− ln z − γ + 1]−
∞∑

m=0,m 6=1

(−z)m

(m− 1) ·m!

= −z[− ln z − γ + 1]−
(
−1 +

z2

2
− z3

12
+ . . .

)
.

By truncating the series after the first term, it follows that

E2(z) ≈ 1− z[− ln z − γ + 1],

and, substituting it in formula (3), then it follows that

(9) e†(x) ≈ 1

k
exp
(µ(x)

k

)(
1− µ(x)

k

[
− ln

a

k
− kx− γ + 1

])
.

When x = 0 and under the assumption a
k ≈ 0, it follows that

(10) e†(0) ≈ 1

k
exp
(a
k

)(
1− a

k

[
− ln

a

k
− γ + 1

])
≈ 1

k

(
1− am

)
,

which, when a ≈ 0, provides approximation e†(0) ≈ 1
k , as in Vaupel and Romo (2003).

Furthermore, an approximation formula can also be derived for the life table entropy.
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Note that the following relationship holds:

En(y) = yn−1Γ(1− n, y) n = 0, 1, 2, ..., y > 0.

See Abramowitz and Stegun (1964). Hence, for n = 1 and n = 2, we have

(11) E1(y) = Γ(0, y) E2(y) = yΓ(−1, y),

respectively. As proven in Jameson (2016) - see Theorem 1, Formula 13 - the following
recursive relationship holds for y > 0 and all a:

(12) Γ(a+ 1, y) = aΓ(a, y) + yae−y.

Using (12) for a = −1, from the second relationship in (11), it follows that

E2(y) =
1

exp(y)
− yΓ(0, y) =

1

exp(y)
− yE1(y),

and hence from (4), set y = µ(x)
k , it follows that

(13) H(x) =
1

exp(µ(x)k )E1

(
µ(x)
k

) − µ(x)

k
.

From (13), when x = 0, it is

(14) H(0) =
1

exp(ak )E1

(
a
k

) − a

k
,

and, again, under assumption a
k ≈ 0, it follows that

(15) H(0) ≈ 1

E1

(
a
k

) ≈ − 1

γ + log a
k

.

See Pflaumer (2011).
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4. Conclusions

I developed an exact formula for determining life disparity at any age x when a Gom-
pertz law is used to model mortality. As an immediate consequence, to express life table
entropy, H(x), at any fixed age x, a corresponding exact formula, which relies solely on
the numerical evaluation of the exponential integral functions and the parameters of the
model, is obtained. An approximation formula for life disparity is also obtained based on
the series expansions of the integral exponential functions.

Starting from the basic formulas introduced in this paper, further developments aim
at deriving closed form expressions for the elasticity of the life table entropy depending on
the parameters of the Gompertz law. As the proven relationships can be helpful in other
fields such as biology, actuarial studies, and financial engineering, other possible results
will explore how to obtain closed form expressions in the case of the present values of
life annuities under a Gompertz law mortality assumption.
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