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Bayesian implementation of Rogers–Castro model migration
schedules: An alternative technique for parameter estimation

Jessie Yeung1

Monica Alexander2

Tim Riffe3

Abstract

BACKGROUND
The Rogers–Castro model migration schedule is a key model for migration trends over
the life course. It is applied in a wide variety of settings by demographers to examine the
relationship between age and migration intensity. This model is nonlinear and can have
up to 13 parameters, which can make estimation difficult. Existing techniques for
parameter estimation can lead to issues such as nonconvergence, sensitivity to initial
values, or optimization algorithms that do not reach the global optimum.

OBJECTIVE
We propose a new method of estimating Rogers–Castro model migration schedule
parameters that overcomes most common difficulties.

METHODS
We apply a Bayesian framework for fitting the Rogers–Castro model. We also provide
the R package rcbayes with functions to easily apply our proposed methodology.

RESULTS
We illustrate how this model and the R package can be used in a variety of settings by
applying the model to data from the American Community Survey.

CONTRIBUTION
We provide a novel and easy-to-use approach for estimating Rogers–Castro model
parameters. Our approach is formalized in an R package that makes parameter estimation
and Bayesian methods more accessible for demographers and other researchers.
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1. Introduction

One of the most important considerations for demographers dealing with migration
patterns is the fundamental relationship between migration and age. This relationship
parallels how migration is influenced by multiple transitions over the life course, such as
starting or finishing education, new employment opportunities, or retirement (Preston,
Heuveline, and Guillot 2000). These regularities in migration intensity over the life
course, allowing demographers and policymakers to model migration by age. This
fundamental relationship between migration and age is most notably described by Rogers
and Castro, who were the first to introduce a mathematical model for migration in the
form of a flexible multiexponential migration model (Rogers, Racquillet, and Castro
1978; Rogers and Castro 1981). Initial versions of the model included families of 7, 9,
and 11 parameters, but the model was later extended to include the 13-parameter schedule
(Rogers and Little 1994). Over the past 40 years, this model has become well-known
among demographers as the Rogers–Castro model migration schedule or the
multiexponential model schedule. Rogers and Castro argue in a variety of works that this
model is well suited to describe migration age schedules that appear across regions of
various sizes and across gender and ethnic subgroups (Rogers and Castro 1981).

The standard Rogers–Castro migration age schedule is shown in Figure 1. Migration
intensities typically peak in early adulthood due to the relatively higher number of
transitions involving education, employment, and partnership formation. Around
retirement age, a smaller peak sometimes results from the transition out of the workforce
as individuals form new living arrangements for retirement. Among the oldest age
groups, migration intensities may gradually increase as individuals move into institutions
or other homes that provide additional care and support. Finally, the migration intensity
of children tends to mirror that of their parents. For example, migration intensity is high
in the youngest ages as parents experience the high migration intensities of early
adulthood.
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Figure 1: Standard shape of Rogers–Castro migration age schedule

Note: This figure shows the standard shape of the Rogers–Castro migration age schedule with labels for the four main components
(pre-working age, working age, retirement age, and post-retirement age) that correspond with migration-related life span stages. These
four components are further discussed in later sections.

Age–migration models are useful in practice because they smooth noisy data,
estimate missing data, allow for prediction of future trends, and help model other
demographic trends that rely on migration. In particular, the Rogers–Castro model
migration schedule has successfully been applied to interregional migration in North
America (Rogers and Little 1994; Raymer and Rogers 2007; Raymer and Rogers 2008);
the United Kingdom (Bates and Bracken 1982); Japan, Korea, and Thailand (Kawabe et
al. 1990); and South Africa (Hofmeyer 1988). The model has also been used to inform
population projects in the case of Canada (George 1994). Some demographers argue for
adjustments to the standard Rogers–Castro model to accommodate idiosyncratic features
found in specific populations, such as a second retirement peak (Warnes 1992) or a
student peak (Wilson 2010). However, the main components of the standard Rogers–
Castro model are able to capture age-based migration trends in the majority of cases, and
the model is used in many production settings, such as the World Population Prospects
(United Nations 2019).

There are a number of ways to estimate and fit the Rogers–Castro migration
schedule. One approach is to use hand calculations; with the appropriate formulas, one
can estimate the model parameters with a simple calculator (Rogers, Castro, and Lea
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2005). Other approaches involve various software-based optimization procedures, such
as Solver in Excel (Little and Dorrington 2013), Table Curve 2D (Rogers and Raymer
1999), nlminb in R (Ruiz-Santacruz 2021), the Gauss-Newton algorithm (Little and
Dorrington 2013), and several others. In practice, the Rogers–Castro model can be hard
to fit with standard optimization algorithms due to its nonlinearity and large number of
parameters. Additionally, the results are highly sensitive to initial conditions, and there
is never a guarantee that the global minimum has been reached.

In this paper we propose an alternative method of estimating Rogers–Castro model
parameters in a Bayesian framework. Implementing the Rogers–Castro framework in a
Bayesian model has been mentioned sparingly in the literature (Congdon 2008), although
no current tools implement this methodology in an easy or simple manner. Our work is
formalized in the R package rcbayes, which is available on CRAN (Yeung, Alexander,
and Riffe 2021). This package allows users to obtain Bayesian estimates of Rogers–
Castro parameters and is user-friendly for those less familiar with the specifics of running
Bayesian models. We demonstrate in this paper how to use the rcbayes package and how
this methodology mitigates issues present in other methods of estimation.

2. Rogers–Castro model migration schedule

The Rogers–Castro model migration schedule consists of four components to capture
trends in the pre-working ages, working ages, retirement ages, and post-retirement ages.
These four components are visualized in Figure 1. The model is flexible in that any of
the four components can be included or excluded based on the data and situation.
Assuming that all four components are included, the full mathematical specification for
the migration rate at age 𝑥 is show in Equation (1).

𝑚(𝑥) = 𝑎1 exp{–𝛼1𝑥} + (pre-working)
𝑎2 exp{–𝛼2(𝑥– 𝜇2)– exp[– 𝜆2(𝑥– 𝜇2)]} +     (working)
𝑎3 exp{–𝛼3(𝑥– 𝜇3)– exp[– 𝜆3(𝑥– 𝜇3)]} +    (retirement)      (1)
𝑎4 exp{𝛼4𝑥} + (post-retirement)
𝑐 (overall)

Each term represents one of the four components, whereas the final 𝑐 parameter is
related to the baseline level of migration. The parameters within each term capture the
intensity or shape of migration in each stage. In particular, the 𝜆𝑘parameters influence
the steepness of the ascending side of the peaks and the 𝑎𝑘 parameters influence the
steepness of the descending side. Together the 𝛼𝑘and 𝜆𝑘parameters capture the rate of
change over age, thereby impacting the overall shape of that component. Finally, the



Demographic Research: Volume 49, Article 42

https://www.demographic-research.org 1205

𝜇2 and 𝜇3 parameters influence the age for the working age peak and the retirement peak,
respectively.

This migration model has up to 13 parameters if all four components are included.
In practice, four combinations of components are most commonly seen and used (Rogers,
Little, and Raymer 2010):

 A seven-parameter model including pre-working and working age components
 A nine-parameter model including pre-working, working, and post-retirement

age components
 An 11-parameter model including the pre-working, working, and retirement age

components
 A 13-parameter model that includes all four components

Figure 2 shows the shapes of each of these commonly found migration schedules.

Figure 2: Most common shapes of Rogers–Castro migration age schedules
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3. Previous approaches

Most approaches to estimate Rogers–Castro parameters involve optimization algorithms.
One common approach is to use Solver in Excel. If data do not come in one-year age
intervals (five-year migration intensities are common), this method involves first
interpolating one-year migration intensities using a procedure such as cubic splines
(Little and Dorrington 2013). Additionally, the user manually sets initial estimates as
starting values, and results can be highly sensitive to these chosen values. Since there is
always the risk that the output is not a global optimum, choosing starting values based on
known parameters of a similar curve is recommended. However, results of a similar curve
are not always available, particularly in unique cases. Nevertheless, convergence is still
difficult to achieve in the 11-parameter and 13-parameter models. Thus it often takes
experimentation and several attempts at fine-tuning to achieve acceptable results (Rogers,
Castro, and Lea 2005).

Another approach is to use deterministic mathematical formulas that reduce
parameter estimation to simple hand calculations. In particular, Rogers, Castro, and Lea
provide three linear methods of estimating model parameters in this way and argue that
these methods perform satisfactorily (Rogers, Castro, and Lea 2005). The main advantage
of this method is that it overcomes issues of nonconvergence and instability that
inevitably arise with nonlinear optimization procedures. However, as one can use several
sets of formulas that all lead to different results, there is no obvious way of choosing a
particular approach. Each approach will be biased in a different way, and choosing any
approach requires an implicit bias–variance trade-off.

Additionally, it is possible for these two approaches to be combined. In the case of
an augmented version of the Rogers–Castro model that includes a student peak, Wilson
presents an approach to estimate parameters using steps that utilize both Excel Solver and
formula-based calculations (Wilson 2010). Calculations are used for parameters that are
easier to estimate in that way, and Excel Solver is used multiple times for a small number
of parameters to avoid nonconvergence issues.

Finally, with the increase in popularity of statistical software such as R, Stata, SPSS,
and SAS, it only makes sense for the aforementioned estimation approaches to be
replicated using this software, particularly as the number of people who are proficient in
Excel Solver or Table Curve 2D becomes more limited. Oftentimes maximum likelihood
combined with an optimization algorithm can be used to estimate parameters. For
example, migraR is an R package that focuses on estimation of Rogers–Castro model
parameters using a gradient descent algorithm (Ruiz-Santacruz 2021). However,
traditional linear optimizers may not behave as desired in high dimension, as they are
subject to many of the aforementioned pitfalls, such as sensitivity to initial values and
issues with reaching the global optimum.
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4. Our model and recommended steps

We propose two ways to express the Rogers–Castro model migration schedule in a
Bayesian framework. First of all, we offer a Poisson model with the number of (in- or
out-) migrants modeled with a Poisson distribution, where population is used as an
exposure. Fitting this model would require data on specified ages or age groups (𝑥𝑖), the
number of age-specific observed migrants (𝑦𝑖), and age-specific exposures (𝑂𝑖), such as
population or sample sizes. Note that 𝑖 is the index for age groups where, for example,
𝑖 = 1 represents the first age group. The model is as follows:

𝑦𝑖  ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑚𝑖  × 𝑂𝑖)

𝑚𝑖 = 𝑎1 exp{𝛼1𝑥𝑖}
       + 𝑎2 exp{–𝛼2(𝑥𝑖– 𝜇2)– exp[– 𝜆2(𝑥𝑖– 𝜇2)]}
       + 𝑎3 exp{–𝛼3(𝑥𝑖– 𝜇3)– exp[– 𝜆3(𝑥𝑖– 𝜇3)]}
       + 𝑎4 exp{𝛼4𝑥𝑖}
       + 𝑐

𝛼1~𝑁(0, 1)
𝑎1~𝑁(0, 0.1)

𝛼2~𝑁(0, 1)
𝑎2~𝑁(0, 0.1)
𝜇2~𝑁(25, 1)
𝜆2~𝑁(0, 1)

𝛼3~𝑁(0, 1)
𝑎3~𝑁(0, 0.1)
𝜇3~𝑁(65, 1)
𝜆3~𝑁(0, 1)

𝑎4~𝑁(0, 0.05)
𝜆4~𝑁(0, 0.01)

𝑐~𝑁 ቀmin
i

{𝑦𝑖/𝑂𝑖}, 0.1ቁ

Note that in this notation, 𝑚𝑖 represents the true age-specific migration rate to be
estimated in the model.
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Second, we propose a normal model where the migration rate is modeled with a
normal distribution. Fitting this model requires data on specified ages or age groups (𝑥𝑖)
and age-specific observed migration rates (𝑟𝑖). Additionally, the standard deviation in the
likelihood (𝜎) can be specified as well. If it is not specified, 𝜎 will be estimated in the
model. The model is as follows:

𝑟𝑖  ~𝑁(𝑚𝑖 ,𝜎2)

𝑚𝑖  = 𝑎1 exp{𝛼1𝑥𝑖}
        + 𝑎2 exp{–𝛼2(𝑥𝑖– 𝜇2)– exp[– 𝜆2(𝑥𝑖– 𝜇2)]}
        + 𝑎3 exp{–𝛼3(𝑥𝑖– 𝜇3)– exp[– 𝜆3(𝑥𝑖– 𝜇3)]}
        + 𝑎4 exp{𝛼4𝑥𝑖}
        + 𝑐

𝛼1~𝑁(0, 1)
𝑎1~𝑁(0, 0.1)

𝛼2~𝑁(0, 1)
𝑎2~𝑁(0, 0.1)
𝜇2~𝑁(25, 1)
𝜆2~𝑁(0, 1)

𝛼3~𝑁(0, 1)
𝑎3~𝑁(0, 0.1)
𝜇3~𝑁(65, 1)
𝜆3~𝑁(0, 1)

𝑎4~𝑁(0, 0.05)
𝜆4~𝑁(0, 0.01)

𝑐~𝑁 ቀmin
i

{𝑟𝑖}, 0.1ቁ

Within the rcbayes package, the mig_estimate_rc function estimates the parameters
of this model using a Markov Chain Monte Carlo (MCMC) algorithm via the Stan
programming language (Carpenter et al. 2017). The Bayesian methods used here set
priors for each parameter, which helps with convergence during the estimation process.

The following is a guide of recommended steps for using the rcbayes package to fit
the Rogers–Castro model. The purpose of these steps is to provide users with a general
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understanding of the recommended workflow. More details on how to use the package
functions are provided in package vignettes.

4.1 Step 1: Exploratory data analysis

As usual, the recommendation is to begin analysis by examining numerical and graphical
summaries of data, as demonstrated in Figure 3. In this situation, the exploratory data
analysis serves the additional role of helping researchers decide which components of the
Rogers–Castro model to include: pre-working age, working age, retirement age, and post-
retirement age patterns. When fitting the model, we recommend including only
components seen in the data to avoid overfitting or incurring convergence issues.

Figure 3: Exploratory visualization for migration rates over the life course

Note: Based on this exploratory analysis, it would be reasonable to fit an 11-parameter model that includes pre-working, working, and
retirement components only.

To help with this decision, we offer an interactive Shiny app in rcbayes, as shown
in Figure 4. This app gives an easy way to visualize the multiexponential curve in the
presence or absence of any of the four components. (Note: After loading the package into
R, run rcbayes::interact_rc() to activate the Shiny app.)
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Figure 4: Shiny app available through rcbayes for visualizing the
multiexponential curve

4.2 Step 2: Estimate the model

The next step is to fit the model using the mig_estimate_rc function. The choice between
fitting the Poisson model or the normal model will sometimes be guided by the available
data. The Poisson model requires (1) a vector of ages, ideally of the age group midpoints
if they span multiple years, (2) a vector of age-specific in-migrant or out-migrant counts,
and (3) a vector of age-specific population sizes. The normal model requires (1) a vector
of ages and (2) a vector of age-specific migration rates. For the normal model, the user
can also specify a value for (3) the standard deviation 𝜎 across the age-specific migration
rates. If this is not specified, the standard deviation will be estimated along with other
model parameters. (See example 1, below, for more information on specifying the
standard deviation in the normal model.)

If only rate data are available (as opposed to counts and population sizes), the normal
model is the only option. If migration counts and population counts are available, both
the normal and Poisson models can be fit. The Poisson model will likely be more accurate
in its assumption about the underlying random process that generated the data, but the
normal model will sometimes be easier to fit without convergence issues.
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The mig_estimate_rc function will fit either the Poisson model or the normal model,
depending on the arguments provided. In addition, the four model components to include
should be specified explicitly. Any additional parameters are optional arguments for Stan.
The following sample code demonstrates how to use the function.

Code for fitting the Rogers–Castro model

#fit the Poisson model by using ages, migrants, and pop
res <- mig_estimate_rc(ages = age_data, migrants = mig_data, pop =
pop_data,

            pre_working_age = TRUE,
            working_age = TRUE,
            retirement = TRUE,
            post_retirement = FALSE,
            #optional inputs into stan
            control = list(adapt_delta = 0.95, max_treedepth = 10)
            )

#fit the normal model by using ages and mx (migration rates)
res <- mig_estimate_rc(ages = age_data, mx = mx_data,
            sigma = 0.002, #optional
            pre_working_age = TRUE,
            working_age = TRUE,
            retirement = TRUE,
            post_retirement = FALSE,
            #optional inputs into stan
            control = list(adapt_delta = 0.95, max_treedepth = 10)
            )

4.3 Step 3: Examine convergence

After running a model with MCMC, it is important to check the convergence of the
model. The check_converge object in the function output provides model diagnostics.
For further guidance on how to verify convergence, the rcbayes package includes a
“Rogers–Castro Migration Models with rcbayes” vignette, which explains this step in
more detail. In the presence of nonconvergence, the vignette “Achieving Model
Convergence with mig_estimate_rc” explains how this can be resolved. In our
experience, the majority of convergence issues can be resolved by setting initial values
using the init_vals function – especially in the full 13-parameter model.
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4.4 Step 4: Examine results

The next step is to examine and interpret the fitted model. As previously mentioned, the
check_converge object in the function output provides model diagnostics. Two additional
objects in the output of mig_estimate_rc provide results. The pars_df object shows the
median estimate and the lower and upper bounds of a 95% credible interval for the
Rogers–Castro parameters. The fit_df object shows the data and estimated median
migration rates at each age, the lower and upper bounds of the 95% credible interval of
the fits, and the squared difference between data and the median estimate. A plot of the
results can be generated as follows:

Code for plotting model results with ggplot

rc_res[["fit_df"]] %>%
ggplot(aes(ages, data)) +
geom_point(aes(color = "data")) +
geom_line(aes(x = age, y = median, color = "fit")) +
geom_ribbon(aes(ymin = lower, ymax = upper), alpha = 0.2) +
ylab("Migration rate") + xlab("Ages") +
scale_colour_manual(name = "",
                  values = c(data = "red", fit = "black"),
                  guide = guide_legend(override.aes = list(
                  linetype = c("blank", "solid"),
                  shape = c(16, NA))))

This yields a plot similar to the one shown in Figure 5.
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Figure 5: Example of result from Bayesian estimation of Rogers–Castro model
parameters

4.5 Step 5: Sensitivity analysis of priors

The final step in the workflow could involve a sensitivity analysis of the prior
specification of the model (Depaoli, Winter, and Visser 2020). An important
consideration in Bayesian models is that prior specification in a model can impact the
posterior estimates of the parameters of interest. Conducting a sensitivity analysis enables
researchers to distinguish the effect of choice of priors from the role of data in the
resulting estimates. This analysis is conducted by fitting the data on similar models where
alternative priors are used, including both informative and noninformative priors. We
emphasize that sensitivity analysis results are intended for interpretation purposes and
should not alter the final model results. Including these results alongside the original
model estimates enhances the discussion and facilitates a better comprehension of the
final estimates.

In a sensitivity analysis, the model needs to be altered in ways specific to the
particular analysis. When developing the rcbayes package and in particular the
mig_estimate_rc function, we chose to implement “weakly informative priors” on all
parameters, which are outlined in the previous section. These priors ensure that parameter
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estimates are within a plausible range of values across a wide range of estimation contexts
and also help with model convergence. In the current version on CRAN, the rcbayes
package does not allow the user to specify priors. However, to aid in the process of
sensitivity analysis, a supplementary file provided with R code allows changes to the
model priors. This code is very similar to the mig_estimate_rc function and is intended
as a gentle guide for those less familiar with fitting Bayesian models in Stan using R.

5. Sensitivity analysis

We present a sensitivity analysis of both the Poisson and normal models by fitting the
model on data simulated from a known 11-parameter Rogers–Castro curve. We compare
the results from (1) the original model offered in the rcbayes package, (2) a model with
less informative priors, and (3) a model with more informative priors.4 Details of this
model are provided in Table 1. The prior variances within the less informative model
were increased by two orders of magnitude compared to the original model, while the
prior variances in the more informative model were decreased by one order of magnitude.
These models are also fit on several different total population sizes, ranging from 10,000
to 10,000,000 across all age groups. The results of the sensitivity analysis are shown in
Figure 6.

4 The third model with more informative priors is unrealistically informative, as priors were selected with the
known Rogers–Castro curve parameters in mind. This is done to demonstrate that the results if the priors
reflected extraordinarily accurate prior information on the parameter values.
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Table 1: Priors used in sensitivity analysis
Original priors Less informative priors More informative priors
𝛼1~𝑁(0, 1)
𝑎1~𝑁(0, 0.1)

𝛼2~𝑁(0, 1)
𝑎2~𝑁(0, 0.1)
𝜇2~𝑁(25, 1)
𝜆2~𝑁(0, 1)

𝛼3~𝑁(0, 1)
𝑎3~𝑁(0, 0.1)
𝜇3~𝑁(65, 1)
𝜆3~𝑁(0, 1)

𝑐~𝑁 ቀmin
i

{𝑟𝑖}, 0.1ቁ

𝜎~𝑁+(0, 1)

𝛼1~𝑁(0, 100)
𝑎1~𝑁(0, 10)

𝛼2~𝑁(0, 100)
𝑎2~𝑁(0, 10)
𝜇2~𝑁(1, 100)
𝜆2~𝑁(0, 100)

𝛼3~𝑁(0, 100)
𝑎3~𝑁(0, 10)
𝜇3~𝑁(1, 100)
𝜆3~𝑁(0, 100)

𝑐~𝑁(0, 10)
𝜎~𝑁+(0, 100)

𝛼1~𝑁(0.1, 0.1)
𝑎1~𝑁(0.1, 0.01)

𝛼2~𝑁(0.1, 0.1)
𝑎2~𝑁(0.1, 0.01)
𝜇2~𝑁(21, 0.1)
𝜆2~𝑁(0.5, 0.1)

𝛼3~𝑁(0.1, 0.1)
𝑎3~𝑁(0.1, 0.01)
𝜇3~𝑁(67, 0.1)
𝜆3~𝑁(0.5, 0.1)

𝑐~𝑁 ቀmin
i

{𝑟𝑖}, 0.01ቁ

𝜎~𝑁+(0, 0.1)

Note: Prior on 𝜎 applies only to normal models.

Across the eight combinations of model type and population size, we see very minor
differences in the fitted model across the original model priors, less informative priors,
and more informative priors. This implies that the prior specifications had a minimal
effect on the resulting estimates, an effect that is further minimized when the population
size is larger. This outcome highlights the model’s robustness across various sets of priors
and suggests that the choice of priors has minimal influence on the overall results in the
presence of a complete dataset of migration rates over age.

Further, for the normal model, we test the sensitivity of the model to the choice of
prior distribution on 𝜎. Instead of a normal prior on 𝜎, we fit several models where the
prior on 𝜎 is the conjugate prior of an inverse gamma while otherwise keeping the rest of
the model unchanged. Specifically, we use 𝜎 ∼ Inv-Gamma(𝛼 = 1,𝛽 = 1), 𝜎 ∼ Inv-
Gamma(3,1), and ∼ Inv-Gamma(3,0.5). Similar to the above, we fit these models on
several different total population sizes, ranging from 10,000 to 10,000,000 across all age
groups. The results of these alternative options and the results of the original Normal
model are shown in Figure 7.
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Figure 6: Results of sensitivity analysis when changing variance magnitudes
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Figure 7: Results of sensitivity analysis when changing prior distribution

There are very minimal differences across the different inverse gamma priors that
were used. The original model, which has a prior on sigma of 𝜎~𝑁+(0, 1), has minor
differences compared to the alternative models in how the model fits through the troughs
of the data, especially for smaller population sizes. However, the sensitivity of the model
to the choice of prior on 𝜎 appears limited, and we again see that the choice of prior
distribution has minimal influence on the overall results.

6. Illustrations and examples

In this section, we work through two examples where we fit our Bayesian Rogers–Castro
models on migration data obtained from the 2019 American Community Survey (ACS)
through IPUMS USA (IPUMS 2021). The 2019 ACS data provide responses from the
American population using a complex sampling design, resulting in a sampling fraction
of around 0.6% (United States Census Bureau 2021). For each respondent, we have the
age, state of residence, and state of residence one year prior to the survey. This provides
enough information to fit the model for domestic out-migration using either the Poisson
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or normal model for each state. We aggregate the microdata to obtain this information
while accounting for the weights from the complex sampling design.

6.1 Example 1: Domestic out-migration from California, comparing Poisson and
normal models

Figure 8a shows the age-specific migration rates for domestic out-migration from the
state of California in 2019 for all ages from 1 to 85. From this visualization, it appears
appropriate to fit an 11-parameter model that includes the pre-working age, working age,
and retirement components only. Figures 8b and 8c show the model results from the
Poisson model and normal model, respectively, and Table 2 shows the parameter
estimates from both models.

Table 2: Out-migration from California based on American Community
Survey, 2019

Parameter
Poisson Model
Mean (SD)

Normal Model
Mean (SD)

𝛼1 (alpha1) 0.209 (8.8 × 10–4) 0.222 (8.2 × 10–4)

𝛼2 (alpha2) 0.092 (1.4e × 10–4) 0.101 (1.3 × 10–4)

𝛼3 (alpha3) 0.357 (3.3 × 10–3) 0.514 (5.5 × 10–3)

𝑎1 0.017 (4.1 × 10–5) 0.016 (3.9 × 10–5)

𝑎2 0.051 (3.4 × 10–5) 0.051 (2.5 × 10–5)

𝑎3 0.013 (4.7 × 10–5) 0.012 (8.3 × 10–5)

𝜇2 17.339 (1.1 × 10–3) 17.283 (9.2 × 10–4)

𝜇3 64.815 (1.7 × 10–2) 64.818 (2.2 × 10–2)

𝜆2 3.791 (7.4 × 10–3) 4.447 (7.4 × 10–3)

𝜆3 0.297 (4.2 × 10–3) 0.518 (8.2 × 10–3)

𝑐 0.009 (1.5 × 10–5) 0.009 (1.1 × 10–5)

When fitting the normal model, we specified the standard deviation in the likelihood
(𝜎) to be the standard deviation implied by the Poisson model. In the Poisson
specification, the observed number of migrants is assumed to be Poisson-distributed with
a rate equal to the underlying migration rate multiplied by the size of the population at
risk: 𝑦𝑖  ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑚𝑖  × 𝑂𝑖), where 𝑦𝑖 is the observed number of migrants, 𝑚𝑖 is the
true age-specific rate, and 𝑂𝑖 is the age-specific sample size. The normal approximation



Demographic Research: Volume 49, Article 42

https://www.demographic-research.org 1219

to the Poisson is 𝑦𝑖  ~ 𝑁(𝑚𝑖 × 𝑂𝑖 ,𝑚𝑖 × 𝑂𝑖) or equivalently 𝑟𝑖  ~ 𝑁 ቀ𝑚𝑖 ,
𝑚𝑖𝑂𝑖ቁ, since 𝑟𝑖

is the observed migration rate and 𝑟𝑖 = 𝑦𝑖  / 𝑂𝑖 . Thus a good choice for 𝜎 would be the
mean ofඥ𝑟𝑖/𝑂𝑖 across all age groups 𝑖, which is how we calculated the 𝜎 in this example.
Of course, this technique requires information on the age-specific population or sample
sizes, which may not be convenient if one only has data on observed age-specific
migration rates. If age-specific population sizes or sample sizes are not available, this
formula for 𝜎 won’t be useful as a direct formula but may still be helpful in determining
appropriate values for 𝜎.

From Figures 8b and 8c, we see that the model does not work well for ages 18–19.
The relatively large amount of migration at these ages can be referred to as the student
peak due to high levels of university transitions (Hind 2023; Wilson 2010). When the
student peak is present, the Rogers–Castro specification will not be properly specified for
those ages. Unless an extension is made to the model to specifically account for student
peaks, this is a general limitation of the Rogers–Castro model specification, regardless of
the method used to fit the model.

Figure 8: Out-migration from California based on American Community
Survey, 2019

(a) Raw data for out-migration from California, 2019
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Figure 8: (Continued)
(b) Model result from Poisson model for out-migration from California, 2019

Note: Gray bounds show the 95% credible interval.

(c) Model result from normal model for out-migration from California, 2019

Note: Gray bounds show the 95% credible interval.



Demographic Research: Volume 49, Article 42

https://www.demographic-research.org 1221

6.2 Example 2: Sensitivity analysis of Poisson model for domestic out-migration
from California

For illustrative purposes, example 1 showcased both the Poisson and normal models. In
example 2, we further expand and refine the Poisson model from example 1 through a
sensitivity analysis. Initially, the model employed default priors from the
mig_estimate_rc function in the rcbayes package, with the corresponding results already
presented. To explore other scenarios, alternative priors were selected. We fitted the
model using two sets of alternative priors, as outlined in Table 3, with one set comprising
less informative priors and another set comprising more informative priors. For the less
informative priors, we increased the variability in prior distributions significantly,
indicating the limited information available on potential parameter values. Additionally,
no prior information was provided regarding the ages at which the working age and
retirement peaks (the 𝜇 parameters) tend to occur. Conversely, the more informative
priors were based on peaks identified in exploratory data analysis (Figure 8a). As well,
prior knowledge obtained from other fitted Rogers–Castro migration schedules informed
the means of the priors.

Table 3: Priors used in sensitivity analysis for out-migration from California,
2019

Original priors Less informative priors More informative priors
𝛼1~𝑁(0, 1)
𝑎1~𝑁(0, 0.1)

𝛼2~𝑁(0, 1)
𝑎2~𝑁(0, 0.1)
𝜇2~𝑁(25, 1)
𝜆2~𝑁(0, 1)

𝛼3~𝑁(0, 1)
𝑎3~𝑁(0, 0.1)
𝜇3~𝑁(65, 1)
𝜆3~𝑁(0, 1)

𝑐~𝑁 ቀmin
i

{𝑟𝑖}, 0.1ቁ

𝛼1~𝑁(0, 100)
𝑎1~𝑁(0, 10)

𝛼2~𝑁(0, 100)
𝑎2~𝑁(0, 10)
𝜇2~𝑁(1, 100)
𝜆2~𝑁(0, 100)

𝛼3~𝑁(0, 100)
𝑎3~𝑁(0, 10)
𝜇3~𝑁(1, 100)
𝜆3~𝑁(0, 100)

𝑐~𝑁(0, 10)

𝛼1~𝑁(0.1, 0.1)
𝑎1~𝑁(0.1, 0.01)

𝛼2~𝑁(0.1, 0.1)
𝑎2~𝑁(0.1, 0.01)
𝜇2~𝑁(19, 0.1)
𝜆2~𝑁(4, 0.1)

𝛼3~𝑁(0.1, 0.1)
𝑎3~𝑁(0.1, 0.01)
𝜇3~𝑁(66, 0.1)
𝜆3~𝑁(0.1, 0.1)

𝑐~𝑁 ቀmin
i

{𝑟𝑖}, 0.01ቁ

Figure 9 presents the results obtained from the original model as well as the
alternative models. The plot reveals striking similarity between the estimates derived
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from the original and alternative models. This observation suggests that the prior
specifications exerted minimal influence on the final estimates. Despite the utilization of
less informative and more informative priors in the sensitivity analysis, the resulting
estimates remain nearly indistinguishable.

Figure 9: Comparison of model results based on different priors

6.3 Example 3: Domestic out-migration from Texas using data based on five-year
age groups

In this example, we demonstrate that we can use this model even when age-specific data
come in the form of five-year age groups. To do this, we collapse Texas out-migration
data into the groups 0–4, 5–9, …, 80–84. Figure 10a shows the migration rates for each
age group, which suggests that we should fit the seven-parameter model with pre-working
age and working age components. Again, we fit the Poisson model by inputting a vector
of five-year age group midpoints, a vector of migrants for each five-year age group, and
a vector of sample sizes for each five-year age group. Figure 10b shows the model results.



Demographic Research: Volume 49, Article 42

https://www.demographic-research.org 1223

Figure 10: Out-migration from Texas based on American Community Survey,
2019

(a) Raw data for out-migration from Texas, 2019

b) Model result from Poisson model for out-migration from Texas, 2019

Note: Error bars show the 95% credible interval.
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7. Conclusions

This paper proposes two models for fitting the Rogers–Castro migration schedule within
a Bayesian framework. We propose one model that accepts migration data as age-specific
counts and population sizes, and another that accepts migration data as age-specific rates.
Functions for fitting these models are available through the R package rcbayes, with the
goal of improving accessibility of this methodology to demographers.

The benefits of using these models to fit Rogers–Castro migration schedules are
fourfold. First, this method can help researchers identify and avoid some of the issues
with existing approaches. Challenges of existing approaches include optimizers that may
stop at local optima, requiring good guesses as initial conditions to achieve convergence,
and algorithms being very sensitive to those initial conditions. Throughout this paper and
the R package, we provide tools to conduct a sensitivity analysis to determine the model’s
robustness to selected prior specifications. Additionally, although convergence is not a
guaranteed with our model, we find that convergence issues with the models are almost
exclusively with the Poisson model. Even then, using this Bayesian model with additional
package utilities (such as init_rc) helps alleviate this issue. In extreme cases where
convergence issues with the Poisson model persist, this may be helped by thinking about
either likelihoods that allow for overdispersion or moving away from the Rogers–Castro
specification. Second, using Bayesian approaches to fit demographic models such as this
is particularly useful in contexts of data sparsity. Third, our proposed technique is
implemented in R, which is free, extensible, and widely used in contemporary
demographic research. Fourth, the model implementation is provided through the rcbayes
package, is available on CRAN, and is maintained in an open GitHub repository, which
further promotes accessibility and reproducibility. Further avenues for work on these
models can include augmented versions of the Rogers–Castro migration schedule
(Wilson 2010) or a hierarchical version of the models, which would lend itself well to
fitting schedules for several geographic regions or population subgroups.
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