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Formal Relationship

On the relationship between life expectancy, modal age at death, and
the threshold age of the life table entropy

Chiara Micheletti1

Francisco Villavicencio2

Abstract

BACKGROUND
Indicators of longevity like the life expectancy at birth or the modal age at death are
always positively affected by improvements in mortality. Instead, for lifespan variation it
has been shown that there exists a threshold age above and below which averting deaths
respectively increases or decreases such variation.

OBJECTIVE
Within a Gompertz force of mortality setting, we aim to provide approximations of the
life expectancy at birth and the threshold age of the life table entropy in terms of the
modal age at death, highlighting the interrelationships holding among the three.

RESULTS
In the Gompertz framework, a tight relationship exists between the life expectancy at
birth, the threshold age of the life table entropy, and the modal age at death, with the
former two moving together and in parallel to the latter. We apply this theoretical result
to life table data from the Human Mortality Database to show how the different relation-
ships evolve over time. We observe a remarkable association between the modal and the
threshold ages, even in populations with high mortality levels.

CONTRIBUTION
We provide approximations of the life expectancy at birth and the threshold age of the
life table entropy in terms of the Gompertz modal age at death. This is a mathematical
demography paper that builds upon previous research by James W. Vaupel and illustrates
the beauty – and oftentimes simplicity – of the mathematical relationships between de-
mographic concepts.
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1. Introduction

The analysis of the distribution of random variables usually aims attention at three main
indicators: the mean, the mode, and the variance. In mortality studies that analyse the
distribution of ages at death, this translates into life expectancy (mean), modal age at
death (mode), and lifespan variation (variance). Several metrics have been proposed to
measure lifespan variation, such as the variance of the age-at-death distribution (Edwards
and Tuljapurkar 2005; Gillespie, Trotter, and Tuljapurkar 2014), life disparity (Vaupel and
Canudas-Romo 2003; Vaupel, Zhang, and van Raalte 2011), the Theil index (Smits and
Monden 2009), the Gini coefficient of the life table (Hanada 1983; Shkolnikov, Andreev,
and Begun 2003), or Drewnowski’s index (Aburto et al. 2022).

Here we focus on the life table entropy, a dimensionless indicator of the relative
variation in the length of life compared to life expectancy at birth. It was first defined
by Leser (1955), and further developed and studied by Keyfitz (1977), Demetrius (1978),
Goldman and Lord (1986), and Vaupel (1986), among others. Following Keyfitz (1977),
the life table entropy can be defined as

H = −
∫∞
0

ℓ(a) log ℓ(a) da∫∞
0

ℓ(a) da
,

where ℓ(x) is the survival probability from birth to age x. Note that the denominator is the
life expectancy at birth expressed in terms of the survival function. The life table entropy
can be interpreted as a weighted average of the cumulative hazard H(x) = − log ℓ(x),
which justifies the notationH.

Aburto et al. (2019) prove that if mortality improvements over time occur at all ages,
there exists a unique threshold age that separates positive from negative contributions to
H: Mortality improvements below the threshold age reduce lifespan variation, whereas
mortality improvements above the threshold increase lifespan inequality. This threshold
is what Zhang and Vaupel (2009) identify as the age separating early from late deaths in
a population.

In this paper, we study the relationship between the life expectancy at birth (eo), the
modal age at death (M), and the threshold age of the life table entropy (aH). Assuming
the risk of death increases exponentially over age following a Gompertz mortality model
(Gompertz 1825), we give closed-form approximations for eo and aH in terms of M .
To formally prove our results, we adopt a hybrid approach, combining both analytical
and numerical tools. We provide an empirical application to illustrate the remarkable
association between M and aH , even in populations with high levels of infant, child, and
young adult mortality or that are affected by mortality shocks.
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2. Relationships

For any given age x ≥ 0, let µ(x) = β eβ(x−M) be the force of mortality (mortality
hazard or risk of death) of the Gompertz model in terms of the modal age at death M > 0
and the rate of ageing β > 0 (Missov et al. 2015). The corresponding life expectancy at
birth can be estimated as

(1) eo ≈ M − γ

β
,

where γ ≈ 0.5772157 is the Euler-Mascheroni constant.
LetH denote the life table entropy as defied by Keyfitz (1977). Aburto et al. (2019)

prove that if mortality improvements over time occur at all ages, there exists a unique
threshold age aH that separates positive from negative contributions toH resulting from
those improvements. We postulate that under the Gompertz model,

(2a) aH ≈ M − γ

β
,

and therefore

(2b) aH ≈ eo .

3. Proof

Proof of (1)

Castellares et al. (2020) show that the remaining life expectancy at age x of the Gompertz
mortality model with hazard µ(x) and rate of ageing β > 0 is given by

(3) e(x) =
1

β
ez E1(z) ,

where z = µ(x) / β and E1(z) =
∫∞
z

e−t

t dt is the exponential integral. According to
Abramowitz and Stegun (1964: 229), for any given z ∈ C such that |Arg(z)| < π,

(4) E1(z) = −γ − log(z)−
∞∑
k=1

(−1)k zk

k · k!
.
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Let us consider the Gompertz force of mortality in terms of the modal age at death µ(x) =
β eβ(x−M). Applying (3) and (4), we obtain the following approximation of the life
expectancy at birth:

eo := e(0) =
1

β
ee

−β M

E1

(
e−βM

)
=

1

β
ee

−β M

(
−γ + βM −

∞∑
k=1

(−1)k e−βM k

k · k!

)
.(5)

Using data from the Human Mortality Database (HMD), Missov et al. (2015) esti-
mate values of the Gompertz parameters β and M for several populations. The lowest
reported values are β = 0.061 (Russian males 2000–2009) and M = 66.06 (Swedish
males 1800–1809). Notice that exp

{
e−0.061·66.06} ≈ 1.0179, and that for any higher

values of β and M the term exp
{
e−βM

}
in (5) gets closer to 1. On the other hand,

the series
∑∞

k=1
(−1)k zk

k·k! is convergent. Setting z = exp
{
e−0.061·66.06} one can find

numerically that

∞∑
k=1

(−1)k e−0.061·66.06·k

k · k!
≈ −0.0177 .

Similarly, the summation gets closer to 0 for higher values of β and M .3 With these two
approximations, we can infer that in human populations and under the Gompertz model

eo ≈ 1

β
(−γ + βM) = M − γ

β
,

which proves (1). □

Adopting the Gompertz parameters estimated by Missov et al. (2015) as a refer-
ence, we carried out an additional sensitivity analysis by applying (5) to calculate eo
for multiple combinations of β ∈ [0.05, 0.16] and M ∈ [30, 100]. Although values of
M < 60 years are unlikely in contemporary human populations (Missov et al. 2015),
we were interested in testing the validity of (1) over a wide range of values of β and
M – and therefore a broad spectrum of mortality regimes. For instance, a combination of
β = 0.05 and M = 30 corresponds to a life expectancy at birth below 30 years, whereas

3 When estimating the summation in (5), we included terms from k = 1 to k = 150, which was tested to be
sufficient to validate the convergence of the series. The same criterion was used when calculating e(x) using (5)
in other sections of the manuscript.
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at the other end, a combination of β = 0.16 and M = 100 gives eo > 95. The results of
the sensitivity analysis are presented in Figure 1.

Figure 1: Sensitivity analysis of (1). Estimates of the error term
ε := |eo −M + γ

β | for combinations of β ∈ [0.05, 0.16] and
M ∈ [30, 100] in a Gompertz setting
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We observe that the error term ε := |eo −M + γ
β | < 0.5 years in 70% of the cases,

while ε > 1 about 19% of the time. The latter corresponds to combinations of β and M
for which exp

{
e−βM

}
> 1 and the summation in (5) is not close to zero (darker area

in the lower-left corner of Figure 1). Therefore, in these cases these two terms cannot be
cancelled, and the approximation in (1) does not hold. For combinations of β ≥ 0.08
and M ≥ 60, ε < 0.1 years in 90% of the cases and ε < 0.54 always, so the maximum
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error is just over half a year. Notice that β = 0.08 and M = 60 correspond to a life
expectancy at birth of eo = 53.3 years, and that eo increases for higher values of β and
M . The United Nations World Population Prospects (UN WPP) report very few records
with such a small life expectancy at birth. Since 2010, the lowest reported value for both
sexes combined is eo = 45.6 years (Lesotho in 2010) and eo > 53.3 in 98.3% of all
country-years (United Nations 2022). Hence, we can conclude that the approximation
suggested in (1) is accurate for the vast majority of contemporary human populations.

Proof of (2a) and (2b)

Aburto et al. (2019) show that in a Gompertz setting the threshold age aH that separates
positive from negative contributions to lifespan variation as measured by the life table
entropyH is reached when

(6) e(x) =
eo

βeo + 1
.

Let us define the function ϕ(z) := ez E1(z). Using (3), the remaining life ex-
pectancy at age x of the Gompertz model can be expressed as e(x) = 1

β ϕ(z). For all
positive real numbers, ϕ(z) is a one-to-one function, strictly decreasing, continuous, and
differentiable. Therefore, it has an inverse, here denoted by ϕ−1(w). The threshold age
occurs when

1

β
ϕ(z) =

eo
βeo + 1

⇐⇒ z = ϕ−1

(
βeo

βeo + 1

)
⇐⇒ eβ(x−M) = ϕ−1

(
βeo

βeo + 1

)
⇐⇒x = M +

1

β
log

[
ϕ−1

(
βeo

βeo + 1

)]
.

To prove (2a), we need

(7) − log

[
ϕ−1

(
βeo

βeo + 1

)]
≈ γ .

A closed-form expression of the inverse of the exponential integral E1(z) does not
exist, and it can only be approximated numerically (Pecina 1986). The same holds true
for ϕ(z), so to compute ϕ−1(w) we implement the Newton-Raphson method (see, for in-
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stance, Quarteroni, Sacco, and Saleri 2007). For all the combinations of β ∈ [0.05, 0.16]
and M ∈ [30, 100] displayed in Figure 1, we apply (5) to calculate the life expectancy at
birth eo, which leads to

0.586 <
β eo

β eo + 1
< 0.940 .

When restricting the analysis to β ≥ 0.08 and M ≥ 60, the range of this quotient reduces
to [0.810, 0.940].

For each fixed w ∈ [0.810, 0.940], we aim to find z such that ϕ(z) = w. The
Newton-Raphson method starts with an initial guess z0 and then iteratively updates the
target value as

(8) ϕ−1(w) ≈ zn+1 = zn − ϕ(zn)− w

ϕ′(zn)
.

The procedure continues until |ϕ(zn) − w| < 10−6 or a maximum number of prede-
termined iterations is reached.4 The derivative in the denominator is obtained using the
identity ϕ′(z) = ϕ(z)− z−1 (Abramowitz and Stegun 1964: 230).

We apply the Newton-Raphson method to estimate ϕ−1(w) for a large set of values
of w between 0.810 and 0.940. As a result, − log

[
ϕ−1(w)

]
∈ [0.475, 0.724] and

max

{∣∣∣∣γ + log

[
ϕ−1

(
βeo

βeo + 1

)]∣∣∣∣ : β ∈ [0.08, 0.16],M ∈ [60, 100]

}
< 0.146 ,

which proves (7) and (2a). Using (1), Equation (2b) follows immediately. □

Figure 2 illustrates how close eo and aH are in a Gompertz setting and how they tend
to evolve in parallel with M – especially for combinations of β ≥ 0.08 and M ≥ 60,
the most common scenarios in contemporary human populations – which validates (1),
(2a), and (2b). In addition, Table A-1 in the Appendix reports some combinations of the
Gompertz parameters β and M for which (7) is a good approximation.

4 Finding z such that ϕ(z) = w is analogous to searching for the roots of g(z) := ϕ(z) − w. The Newton-
Raphson method iteratively approaches a given root of g(z) with the root of the tangent line to g(z) at zn, which
has slope g′(zn) = g(zn)/(zn−zn+1). Hence, zn+1 = zn−g(zn)/g′(zn) = zn−(ϕ(zn)−w)/ϕ′(zn),
yielding (8).
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Figure 2: Estimates of the life expectancy at birth eo and the threshold age
aH under the Gompertz model, for a wide range of combinations
of parameters β ∈ {0.05, . . . , 0.16} and M ∈ {30, . . . , 100}
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4. History and related results

Some of the analyses by Aburto et al. (2020) on the dynamics of life expectancy and
lifespan equality suggest that in low-mortality settings the life expectancy at birth eo and
the threshold age of the life table entropy aH tend to converge. As shown in Figure 3,
this is the case, for instance, of Swedish females from 1950 onward.

Figure 3: Life expectancy at birth eo, threshold age aH , and modal age at
death M of Swedish females, 1900–2019. This figure replicates
Box 1, Figure 1, Panel A in Aburto et al. (2020: 5254) using the
most recent data from the Human Mortality Database (2023)

50
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Life expectancy at birth

Values of eo, M , and aH in Figure 3 are estimated from life table data without as-
suming any parametric mortality model. The mode M is the (adult) age at which the age-
at-death distribution reaches the maximum, whereas aH is estimated numerically using
the approach suggested by Aburto et al. (2019) (see Section 4.2 for details). Prior to 1950,
when infant and child mortality were high, values of eo were considerably lower than aH .
However, M and aH evolve in parallel for the whole period 1900–2019, separated by a
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nearly constant gap. We have proved in (2a) that in a Gompertz setting aH ≈ M − γ
β . In

the application, we will illustrate how the Gompertz mode and rate of ageing can be used
to estimate the empirical threshold age.

4.1 The Gompertz mortality model

Since its original formulation two centuries ago, the Gompertz (1825) model has been
widely used by demographers, actuaries, and biologists to study mortality patterns of
human and non-human populations (Colchero et al. 2016; Campos et al. 2020). The
force of mortality of the Gompertz model changes exponentially over age x ≥ 0, and it
is commonly expressed in terms of the baseline mortality α > 0 and the rate of ageing
β ∈ R as

(9) µ(x) = α eβx .

This formulation allows for a non-positive rate of ageing, something uncommon in human
populations but that has been observed in some species across the tree of life (Jones et al.
2014). Aburto et al. (2022) explore the different patterns of the Gompertz model for
positive, zero, and negative rates of ageing and how they relate to the threshold age of
Drewnowski’s index, an indicator of lifespan variation based on the Gini coefficient.

The Gompertz force of mortality as a function of the mode M and the rate of ageing
β was first defined by Gumbel (1958), if not before. It is given by

(10) µ(x) = β eβ(x−M)

and previous research has shown the convenience of using this formulation, provided that
the modal age at death M is more informative and easy to interpret than the baseline mor-
tality α (Canudas-Romo 2008; Horiuchi et al. 2013; Missov et al. 2015, among others).

Equations (9) and (10) are two equivalent definitions of the Gompertz force of mor-
tality, and the latter can be derived from the former using the identity α = β e−βM .
Analogously, M = (log β − logα) /β. That said, (10) is only defined for β > 0: If
β = 0, then µ(x) = 0 becomes meaningless; if β < 0, then µ(x) < 0, which contradicts
the definition of a rate. Actually, the formula by Castellares et al. (2020) in (3) to calcu-
late the remaining life expectancy at age x is only valid for β > 0, even when applied
to (9):

• If β = 0, the force of mortality µ(x) = α is constant and independent of age, and
the survivorship becomes ℓ(x) = e−αx. The remaining life expectancy at age x is

772 http://www.demographic-research.org
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then e(x) =
∫∞
x

ℓ(a) da / ℓ(x) = 1 /α, the inverse of µ(x). Notice the similarity
with the exponential distribution with rate λ and expected value 1 / λ.

• If β < 0, then z = µ(x) / β < 0 in (3). Following Abramowitz and Stegun (1964),
the exponential integral E1(z) is defined for all z ∈ C such that |Arg(z)| < π. The
argument of a complex number z is the angle between the positive real axis and the
segment joining the origin (0, 0) and z in the complex plane. The argument of all
real (not complex) negative numbers is π. Therefore, E1(z) is not defined for any
z ∈ {s ∈ R : s < 0}. Moreover, log(z) in (4) is not defined for negative z either.

The relationship between M and eo in the Gompertz framework was already iden-
tified by Pollard and Valkovics (1992) and Vaupel (forthcoming) but from different ap-
proaches. Pollard and Valkovics (1992) find that eo = −(log(α/β) + γ) / β, which is
equivalent to (1) but with the parametrisation in (9). They obtain this result by calculating
the first cumulant of the Gompertz distribution from the cumulant-generating function,
which is the log of the moment-generating function. Vaupel (forthcoming) proves (1) us-
ing survival ages (Alvarez and Vaupel 2023) and making some mild assumptions of plau-
sible values of β and M . Our approach is new to the extent that we use the closed-form
expression of the Gompertz e(x) from Castellares et al. (2020) and that we carry out a
systematic sensitivity analysis to explore the combinations of the Gompertz parameters
for which (1) actually holds (Figure 1).

As for the relationship between M and aH , to our knowledge (2a) is new in the
literature. Equation (2b) derives from (1) and (2a).

4.2 The life table entropy and the threshold age

Over the past two centuries, increases in life expectancy at birth have been followed by a
decrease in lifespan variation, with people tending to die at more similar ages (Edwards
and Tuljapurkar 2005; van Raalte, Sasson, and Martikainen 2018; Vaupel, Villavicencio,
and Bergeron-Boucher 2021). Aburto et al. (2020) show that these parallel changes are
not coincidental but a consequence of improvements in mortality reduction at specific
ages. In particular, they find that such improvements always positively impact life ex-
pectancy, while for lifespan variation there exists an age above which averting deaths
worsens inequalities. This age is referred to as the “threshold age” and has been com-
puted for different indicators of variation in length of life, such as life disparity (Zhang
and Vaupel 2009), the variance of the distribution of ages at death (Gillespie, Trotter,
and Tuljapurkar 2014), or Drewnowski’s index (Aburto et al. 2022). On a recent paper,
Martin, Aburto, and Permanyer (2023) calculate the threshold age of the coefficient of
variation and discuss the similarities among different inequality measures. They observe
that, in certain populations, absolute measures of inequality, such as the variance, life

http://www.demographic-research.org 773

http://www.demographic-research.org


Micheletti & Villavicencio: Life expectancy, modal age at death, and threshold age

disparity, or the Gini coefficient, may not have a threshold age, implying that any im-
provement in mortality would increase lifespan variation. On the contrary, when using
the corresponding measures of relative inequality with respect to life expectancy (i.e.,
coefficient of variation, life table entropy, and the relative Gini coefficient), there will al-
ways be ages for which averting deaths will reduce lifespan inequality and ages for which
variation will increase.

In a general setting without assuming any underlying mortality model, Aburto et al.
(2019) prove that the threshold age of the life table entropy occurs when

(11) H(x) +H(x)− 1 +H = 0 ,

where H(x) is the cumulative hazard andH(x) the life table entropy conditioned on sur-
viving to age x. Equation (11) is a generalisation of (6), and likewise can only be solved
numerically. They also suggest that under the Gompertz model the life expectancy at
birth eo and the threshold age aH are approximately proportional. More specifically, that

aH ≈ eo · δ , where δ =
γ + log(α/β)

eα/β (γ + log(α/β))− 1
.

Using the identity α = β e−βM yields

(12) δ =
γ − βM

ee−βM (γ − βM)− 1
.

However, (12) does not seem to work when compared to the results from the sensitivity
analysis in Figure 2. For instance, when β = 0.05 and M = 40 one gets δ ≈ 0.54, which
would mean that aH is about one half of eo. Yet from Figure 2 it is clear that aH > eo for
these values of β and M . In fact, 0 < δ < 1 for all combinations of β ∈ {0.05, . . . , 0.16}
and M ∈ {30, . . . , 100} (same combinations as in Figure 2), which would imply that
aH < eo. Figure 2 proves this is not always the case.

Discrepancies should be attributed to the fact that Aburto et al. (2019) do not use
the correct expression of the Gompertz life expectancy (see Equation (A10) in the Ap-
pendix of Aburto et al. 2019: 101). For further discussion on the Gompertz formulae, see
Castellares et al. (2020). Our sensitivity analysis in Figure 2 shows that aH ≈ eo, so the
constant of proportionality between the two (if any) should be close to 1 for a wide range
of values of β and M .
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5. Application

In this section, we assess the accuracy of the approximation of the threshold age of the
life table entropy provided in Section 2. We distinguish between the empirical threshold
age aH , computed numerically using (11) following Aburto et al. (2019), and the approx-
imated threshold age âH , obtained from (2a) in a Gompertz framework. We evaluate the
approximation’s precision studying the distribution of âH − aH , while also calculating a
set of errors. Furthermore, we test the behaviour of (2a) replacing the Gompertz mode M
with the observed/empirical one Mobs := maxx d(x), obtained by maximising the age-at-
death distribution d(x). The Gompertz parameters α and β in (9) are estimated via max-
imum likelihood, under the assumption that death counts are Poisson distributed within
each age interval (Currie 2016). The mode is then obtained as M = (log β − logα) /β.

All the analyses are performed with the open-source statistical software R (version
4.4.1) (R Core Team 2021).

5.1 The age range of the Gompertz model

Gompertz (1825) observed that human death rates start being log-linear from adult ages.
Depending on countries and period, the specific age at which this log-linearity begins
is not universally established: Common choices fall between 30 and 50 years. For each
country-year combination, we estimate α and β across three different scenarios, assuming
the Gompertz mortality model over the age ranges [30, 90], [40, 90], and [50, 90]. We use
8,022 period life tables from the Human Mortality Database (2023) for 48 countries,
females and males, from 1900 (or earliest year) to the most recent year available.

Figure 4 shows the evolution of aH , âH , and life expectancy at birth eo for females
from England and Wales, Italy, Japan, and the United States using the three different
starting ages: 30, 40, and 50 years. We observe that the approximation works suitably
in all cases, although depending on the country a certain initial age can produce better
results. To determine the optimal age range, for each country and sex we evaluate the
accuracy of our approximation by computing the mean absolute error (MAE)

MAE(âH) =
1

T

T∑
i=1

∣∣âH(ti)− aH(ti)
∣∣ ,
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and the root mean square error (RMSE)

RMSE(âH) =

√√√√ 1

T

T∑
i=1

(âH(ti)− aH(ti))2 ,

for the three Gompertz onsets over the available years t1, . . . , tT . Here, aH(ti) denotes
the empirical threshold age of year ti calculated via (11), and âH(ti) the approximated
threshold age obtained with (2a). We rank each of the errors, by country and sex, from
lowest (ranking 1) to highest (ranking 3): The age with the smallest sum of rankings will
lead, in general, to the most accurate results.

To complement this analysis and validate the outcome, we perform identical cal-
culations using 32,904 sex-specific life tables from UN WPP, covering more than 225
countries and territories from 1950 to 2021 (United Nations 2022). As summarised in
Table 1, for the two data sets both the MAE and the RMSE indicate 40 years as the
preferable choice for women and 50 years for men.

Table 1: Sum of the rankings of the mean absolute error (MAE) and
the root mean square error (RMSE) for the different
Gompertz starting ages calculated using life tables from the
Human Mortality Database (2023) and United Nations World
Population Prospects (2022)

Sum of rankings

Females Males

HMD UN WPP HMD UN WPP

Starting age MAE RMSE MAE RMSE MAE RMSE MAE RMSE

30 98 101 603 615 127 122 643 643

40 77 78 369 369 95 93 418 413

50 125 121 408 396 78 85 301 306

These findings align with the sex differences caused by the “young adult mortal-
ity hump” that have long been observed in human populations (Thiele 1871; Remund,
Camarda, and Riffe 2018). This phenomenon consists in higher mortality among males
towards the end of adolescence and early adulthood due to increases in violent, acciden-
tal, and disease mortality (Goldstein 2011). As a result, men’s Gompertz onset is delayed,
and the log-linearisation of death rates is postponed to older ages.
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Figure 4: Threshold age of the life table entropy aH (blue), its
approximation âH = M − γ / β (red), and life expectancy at birth
eo (yellow). Females of England and Wales, Italy, Japan, and USA,
1900–2021 (Human Mortality Database 2023)
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5.2 Results

Figure 5 displays the 95% central distribution of âH − aH = (M − γ/β) − aH , split
by sex and over two periods, 1900–1950 and 1951–2000. We estimate β and M using
the age range 40 to 90 years for females and 50 to 90 for males to calculate âH . We
restrict our results to data from the HMD since the UN WPP covers only the period 1950–
2021. Because we let the analysis begin in 1900 for countries with available data (such
as Sweden, Finland, France, or Denmark), high-mortality regimes are also represented.

In all four panels of Figure 5, the mean and mode of the distributions are nearly
zero. In particular, approximation (2a) works best in recent years, as for both females and
males the distributions shrink. Negative values on the x-axis indicate underestimation
of aH by M − γ

β : This error is much reduced for females, while for males it slightly
increases, mirroring the overestimation experienced in the 1900–1950 period. Yet men’s
mode shifts from 0.26 to 0.04 years, implying an almost perfect approximation of aH by
Equation (2a) for the majority of cases in the second half of the 20th century. Considering
that aH and M are usually larger than 60, the inaccuracy level is overall small.

When M is replaced by the observed mode Mobs, the resulting estimates of aH

worsen. This can be ascertained from the distribution of Mobs − γ/β − aH (Appendix
Figure A-1). For all the sex-period combinations, the mode is closer to zero, but the
variance is higher, and the maximum errors greater (larger x-axis values). Ultimately, the
empirical mode is more affected by mortality crises than the threshold age. A striking
example is Spain, heavily hit by the flu pandemic between 1918 and 1919. As shown
in Appendix Figure A-2, a dramatic drop in Mobs is only partially reflected in aH and
âH . The Gompertz parameters can be then considered suitable candidates to estimate aH ,
regardless of the underlying mortality pattern.

As already anticipated by Aburto et al. (2019, 2020), Figure 4 also clearly shows
the convergence of the threshold age and life expectancy in recent years. This confirms
relationship (2b) and proposes eo as an alternative way to approximate aH . Nevertheless,
this is not true in high mortality settings (Figure 3). Our results instead empirically prove
that (2a) works even for populations not actually following Gompertz and that may be
affected by mortality crises or shocks like wars and epidemics.

6. Conclusion

The life expectancy revolution that started in the mid-19th century among the longevity
vanguard countries (Oeppen and Vaupel 2002) has been accompanied by a decrease in
lifespan variation: As people live longer, ages at death are becoming more similar (Ed-
wards and Tuljapurkar 2005; Permanyer and Scholl 2019; Vaupel, Villavicencio, and
Bergeron-Boucher 2021, among others). This inverse relationship, though, has been
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questioned as some populations experienced growing levels of inequality in the length of
life, even amidst overall improvements in life expectancy. Over the last 40 years, exam-
ples are found in different contexts, like Spain (Permanyer et al. 2018), the United States
(Sasson 2016), or Denmark (Brønnum-Hansen 2017), where stagnation or increases in
lifespan variation are observed among socially disadvantaged groups, notwithstanding
an averagely longer life. Aburto et al. (2020) identify the reasons behind these trends in
the ages at which mortality improvements are concentrated. In particular, there exists
a threshold age separating early from late deaths, above and below which saving lives
respectively increases or decreases lifespan inequality.

Figure 5: The 95% central distribution of âH − aH , by sex and period. 8,022
life tables from the Human Mortality Database (2023)
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There are several indicators of lifespan variation for which the threshold age has
been identified, such as life disparity (Zhang and Vaupel 2009), the variance of the ages
at death (Gillespie, Trotter, and Tuljapurkar 2014), the Gini coefficient and Drewnowski’s
index (Aburto et al. 2022), or the coefficient of variation (Martin, Aburto, and Permanyer
2023). In this paper we focus on the threshold age aH of the life table entropy, an indicator
of the relative variation in the length of life compared to life expectancy at birth. In
Equation (2b) and Figure 2 we show that the closeness between eo and aH is implicit in
a Gompertz framework; in (1) and (2a), we prove that both indicators are a negative shift
of the modal age at death M .

However, reality can be more complex than the exponential risk of death described
by the Gompertz law. Figures 3 and 4 show that (1) and (2b) clearly hold in low-mortality
settings, as eo and aH tend to converge over time. But this has not always been the case.
As depicted in Figure 3 for Swedish females before 1950, eo was notably lower than aH ,
while aH and M progressed steadily and much more gradually over the whole period
1900–2019. Our empirical results in Section 5 prove that the relationship aH ≈ M−γ / β
in (2a) is stronger and holds even when the Gompertz assumptions are not respected.
Previous research has shown that the effects of mortality crises on the threshold age vary
depending on the selected indicator of lifespan variation (Vigezzi et al. 2022). Here, we
have seen that parameters β and M obtained by fitting a Gompertz model to mortality
data for late-adult ages (40 to 90 years for females and 50 to 90 for males) can be used to
estimate the threshold age of the life table entropy, even when eo << aH or populations
are hit by exceptional catastrophes.

While we are not able to establish a causal link between the two, similar mecha-
nisms seem to drive the advances of the mode and the threshold age. The adult modal age
at death is mostly determined by old-age mortality (Horiuchi et al. 2013) and illustrates
changes from a dominance of child mortality reductions to a dominance of adult mor-
tality reductions (Canudas-Romo 2008). Figure 6 reflects these ideas. In 1900, Swedish
females enjoyed a life expectancy at birth of eo = 53.63 years, while M = 78 and
aH = 70.02. A century later, eo increased by 28.39 years, mainly thanks to remarkable
and unprecedented reductions of infant and child mortality. Improvements in M and aH

were less sensational, 9.4 and 12.01 years, respectively. One could speculate that the rela-
tionship between M and aH in (2a) is a feature of human populations, while (1) and (2b)
hold only when mortality becomes roughly Gompertzian.

The success of the Gompertz model is mostly explainable by its accurate simplicity.
Over the years, many have studied the interrelationships of the main parameters defining
it. With this paper, we contribute to the existing literature investigating the dynamics of
three lifespan indicators: the life expectancy at birth eo, the adult modal age at death M ,
and the threshold age of the life table entropy aH . Our research builds upon previous
work by James W. Vaupel and illustrates the beauty of the mathematical relationships
between demographic concepts.
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Figure 6: Age-at-death distribution of Swedish females in 1900 and 2000
(Human Mortality Database 2023). Comparison of the threshold
age of the life table entropy (blue), the modal age at death (green),
and life expectancy at birth (yellow)
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Appendix

Table A-1: Sample of combinations of the Gompertz parameters β and M for
which Equation (7) is a good approximation (γ ≈ 0.5772157)

M β eo w = βeo
βeo+1 ϕ−1(w) − log

[
ϕ−1(w)

] ∣∣γ + log
[
ϕ−1(w)

]∣∣
40 0.16 36.46 0.854 0.570 0.561 0.016
45 0.14 40.97 0.852 0.573 0.557 0.020
45 0.15 41.21 0.861 0.563 0.575 0.002
45 0.16 41.43 0.869 0.554 0.591 0.014
50 0.13 45.64 0.856 0.568 0.566 0.011
50 0.14 45.93 0.865 0.558 0.584 0.007
50 0.15 46.18 0.874 0.549 0.601 0.024
55 0.12 50.27 0.858 0.566 0.570 0.007
55 0.13 50.61 0.868 0.555 0.589 0.012
55 0.14 50.90 0.877 0.545 0.606 0.029
60 0.11 54.84 0.858 0.566 0.570 0.007
60 0.12 55.24 0.869 0.554 0.591 0.014
65 0.10 59.33 0.856 0.568 0.566 0.011
65 0.11 59.81 0.868 0.555 0.589 0.012
70 0.09 63.72 0.852 0.573 0.557 0.020
70 0.10 64.30 0.865 0.558 0.584 0.007
70 0.11 64.79 0.877 0.545 0.606 0.029
75 0.09 68.68 0.861 0.563 0.575 0.002
75 0.10 69.27 0.874 0.549 0.601 0.024
80 0.08 72.93 0.854 0.570 0.561 0.016
80 0.09 73.65 0.869 0.554 0.591 0.014
85 0.08 77.89 0.862 0.562 0.577 0.000
85 0.09 78.63 0.876 0.546 0.605 0.028
90 0.07 81.93 0.852 0.573 0.557 0.020
90 0.08 82.86 0.869 0.554 0.591 0.014
95 0.07 86.88 0.859 0.565 0.571 0.006
95 0.08 87.84 0.875 0.547 0.604 0.027
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Figure A-1: The 95% central distribution of Mobs − γ/β − aH , by sex and
period. 8,022 life tables from the Human Mortality Database
(2023)
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Figure A-2: The threshold age of the life table entropy aH (blue), its
approximation âH = M − γ / β (red), the life expectancy at birth
eo (yellow), and the observed mode Mobs (green). Spanish females,
1908–2021 (Human Mortality Database 2023)
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