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A Bayesian model for age at death with cohort effects

Matteo Dimai1

Marek Brabec2

Abstract

BACKGROUND
Ongoing mortality trends affect the distribution of age at death, typically described by
parametric models. Cohort effects can markedly perturb the distribution and reduce the
fit of such models, and this needs to be specifically taken into account.

OBJECTIVE
This study examines the integration of cohort effects in a three-component parametric
model for the age-at-death distribution, applying it to data with significant cohort effects.

METHODS
We employed a mixture model with a half-normal and two skew-normal components,
adapted to a Bayesian framework to include multiplicative cohort effects. The model was
applied to data from five Italian regions, with cohort effects estimated for the 1915–1925
cohorts.

RESULTS
Incorporating cohort effects significantly improved the model’s fit. A notable finding of
the comprehensive model is the shift in Italy from premature to middle-age mortality
components over time. Our results also demonstrate the tendency for mortality structures
to spatially homogenize over time in Italy.

CONCLUSIONS
The study underscores the importance of including cohort effects in mortality models in
order to provide a more detailed picture of mortality trends.

CONTRIBUTION
This work introduces a novel application of a Bayesian mixture model with cohort
effects, offering enhanced tools for demographic analysis and new insights into the
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evolution of mortality components in Italy. This approach is general but fully formalized
and hence it can be readily used for demographic studies in other regions as well.

1. Introduction

Life expectancy has seen remarkable global increases in the past century, resulting in
substantial shifts in the distribution of age at death. Everyone dies and everyone dies
once: hence the distribution of ages at death can be seen as a probability distribution,
which has historically been proven to be a popular choice for explaining and forecasting
mortality. Traditionally, demographers have employed a three-component framework to
describe this distribution, comprising infant, premature or young adult, and adult or old-
age mortality, leading to a mixture model. However, the age-at-death curve often departs
from the smooth patterns expected in a mixture of probability distributions. Notably,
cohort effects – persistently elevated or reduced mortality rates experienced by specific
birth cohorts throughout their lifetimes – create disruptions that a traditional smooth
component mixture model cannot fit. Empirical evidence, such as that observed in the
rapid mortality improvements among cohorts born in England and Wales between 1925
and 1945 (Willets 2004), underpins the impact of cohort effects.

These perturbations manifest as clusters of cohorts with distinct mortality rates,
introducing discontinuities or even multiple peaks in the age-at-death distribution.
Despite being localized, these irregularities can easily complicate parameter estimation
and hinder the model accuracy of the global smooth mixture approximation.

This paper contributes to structured mortality modeling in two significant ways.
First, it leverages a recently developed three-component parametric model for ages at
death (Zanotto, Canudas-Romo, and Mazzuco 2021) and situates it fully within a
Bayesian framework, an inherently suitable choice for modeling a probability
distribution. Second, driven by a strong empirical feature present in the data, the model
is extended to encompass cohort effects, enhancing model fit and producing convincing
information about the existence of specific cohort effects. We present the application of
this model to several Italian regions over the period 1974–2022.

The rest of this paper is structured as follows. Section 2 provides a review of relevant
literature, section 3 introduces the Bayesian three-component mixture model
incorporating cohort effects, section 4 presents the main results of the application, and
section 5 provides a conclusion and discussion.
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2. Literature review

There is considerable variety in the approaches to mortality modeling and forecasting.
Models differ in what they are trying to model; for instance, death rates (Lee and Carter
1992), life expectancy (Raftery et al. 2013), or odds ratios (Heligman and Pollard 1980).
The classical approach, pioneered by De Moivre in the 18th century and Gompertz in the
19th (1825), is to model a summary of mortality that lends itself to a suitable parametric
form, with parameters that can be explained in terms of known demographic phenomena.
On the other end of the scale are models that do not require specific functional forms,
i.e., the original Lee and Carter (1992) model. There is an unresolved tension between
model parsimony and fit, with intermediate approaches, like the procedure advocated by
Hunt and Blake (2014) that models mortality with a multiplicity of simple parametric
forms. Forecasting techniques can then be applied to the components of the model that
vary in time, be they distribution parameters or time terms.

More profound differences exist in the mechanism that drives the future evolution
of mortality, with extrapolation, explanation, and expert approaches (Stoeldraijer et al.
2013). Finally, there are differences in the statistical tools used. For example, Lee and
Carter (1992) propose likelihood-based bilinear models and Czado, Delwarde, and
Denuit (2005) Bayesian bilinear models, while more recently Scognamiglio (2022) and
Marino, Levantesi, and Nigri (2023) have suggested neural networks.

A popular choice, with a long history, is to describe mortality parametrically through
the distribution of deaths by age, which can be viewed as a probability distribution and
can be decomposed into multiple components. Lexis (1879) identified three components
to mortality – infant, premature, and adult – in what is arguably the most famous but not
the only approach (Barnett 1958; Pearson 1897). In a recent paper, Zanotto, Canudas-
Romo, and Mazzuco (2021) modeled the same three components identified by Lexis
(1879) using a mixture model with a half-normal and two skew-normal distributions
(Azzalini 1985). This model forms the basis of our study and is reviewed in more detail
in section 3.2.

Bayesian mortality models usually do not model the whole distribution of ages at
death. Girosi and King (2008) and Alexander, Zagheni, and Barbieri (2017) model
mortality rates, Raftery et al. (2013) model life expectancy. Yet, considering the age at
death as a random variable, the problem of building a stochastic mortality model becomes
quite naturally a hierarchical Bayesian model which is easy to generalize in many ways,
i.e., with a multipopulation mortality model or by describing the evolution of the
parameters in time and/or space as stochastic processes.

Cohort effects – that is, some birth cohorts experiencing higher or lower mortality
throughout their lives – are a known feature of demographic modeling. Renshaw and
Haberman (2006) introduced the first extension of the Lee–Carter model to cohort effects,
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those of English cohorts born between 1925 and 1945 (Willets 2004). The Cairns–Blake–
Dowd (CBD) model (Cairns, Blake, and Dowd 2006) has a cohort effect extension as
well (Cairns et al. 2009) and the model by Plat (2009) also incorporates cohort effects.
The inclusion of cohort effects in a Bayesian setting is more uncommon: Fung, Peters,
and Shevchenko (2019) provide an example where a Bayesian state–space approach
incorporates them in the model and Hunt and Blake (2021a) offer a Bayesian perspective
on the modeling of cohort effects within the context of Age–Period–Cohort (APC)
models reviewed in Hunt and Blake (2021b). To the authors’ knowledge, this study is the
first where cohort effects are included in a Bayesian mixture model of the age at death.

3. Model and data

3.1 Data

The data analyzed throughout this paper consist of the regional life tables published by
the Italian statistical institute (ISTAT) for the years 1974–2022. Five regions are
analyzed: Lombardy, Lazio, Sicily, Sardinia, and Friuli Venezia Giulia (FVG). The five
regions comprise about 39.5% of the Italian population and represent the full range of
differences found across Italian regions, with both small and large regions, northern and
southern regions, and varying degrees of urbanization, as outlined in Table 1. For brevity,
only male mortality was considered, but the model can be applied to female or unisex
mortality without modification.

Table 1: Key information about the Italian regions studied

Region NUTS 1
classification

Population
at 1.1.2022

Male life expectancy
at birth in 1974

Male life expectancy
at birth in 2022

Improvement in
life expectancy

1974–2022
Friuli Venezia Giulia North-East 1.194.647 67.847 80.652 12.805
Lazio Center 5.714.882 70.602 80.791 10.189
Lombardy North-West 9.943.004 68.071 81.137 13.066
Sardinia Islands 1.587.413 71.115 79.579 8.464
Sicily Islands 4.833.329 71.073 79.441 8.368

Source: ISTAT

Regional differences within Italy are significant, with southern regions lagging
behind in GDP per capita, and Bozzo, Levantesi, and Menzietti (2021) have linked GDP
levels to mortality differentials. The differences in life expectancy therefore reflect the
differences in development. Demographically, there is a long-standing pattern of
migration from the south to the north that was strongest in the 1960s and 1970s, but is
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still present today.3 Additionally, the southern regions used to have the highest fertility
in the country, though fertility differentials have greatly reduced since the turn of the
millennium. Notably, Sardinia went from having the highest fertility among all regions
in the 1950s to the lowest fertility of all in 2022, with a Total Fertility Ratio of 0.95.

The presence of cohort effects and their approximate magnitudes were estimated
empirically by calculating the excess deaths for each cohort over all the available life
tables compared to the mean of the adjacent cohorts. This preliminary analysis reveals
whether mortality patterns are strongly perturbed by cohort effects and suggests which
cohorts might be most affected, informing the decision on which ones to include in the
model. The results are presented in Figure 1. The data exhibit cohort effects that vary in
strength across regions and over time: Lombardy and FVG show the strongest cohort
effects, while they are much weaker in Sardinia. The effects are largest, and most similar
in magnitude, for the years between approximately 1915 and 1925. Therefore, the impact
of cohort effects on measures like life expectancy is largest in years when these cohorts
are close to the model age at death – the 1990s and the first part of the 2000s.

Figure 1: Excess life table deaths by cohort and region over the average of the
two adjacent cohorts, cohorts 1890–1960, selected Italian regions

3 Recent data on interregional migration is available on ISTAT’s website at https://demo.istat.it/tavole/?t=apr4.
Demo.istat.it is the source for all data in this section.
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3.2 Model structure

Mortality modeling describes the varying patterns of mortality across different ages 𝑥
and years 𝑡. The indicators modeled can vary, from (age-standardized) life table deaths
by age 𝐷𝑥 to mortality rates 𝜇𝑥 to death probabilities 𝑞𝑥. This study models life table
deaths 𝐷𝑥. That is, we assume that a fictitious population of size 𝑙0 at age 0 is exposed to
a series of mortality rates and for each year 𝑡 we model the number of deaths at each
completed age 𝑥 = 0, … ,𝑁. The model is limited to deaths occurring up to a maximum
age 𝑁 = 100, for a total of 𝐷𝑡 = ∑ 𝐷𝑥,𝑡

100
𝑡=0  deaths varying from year to year. The

mortality rates used to obtain the life table deaths are the actual death rates for all ages of
a real population in a given calendar year, and hence refer to different cohorts.

Since death only happens once, the age at death can be seen as a probability
distribution and modeled accordingly. Causes of death vary significantly with age,
leading to the usual identification of three components that describe mortality at various
ages, each with its separate evolution in time:

1) Infant mortality: high at birth, then rapidly declining. Causes of death due to infant
mortality are typically birth defects, pediatric diseases, complications during
childbirth, infectious diseases in less developed countries, etc.

2) Premature mortality: mortality due to causes that generally affect adults but are not
related to old age: accidental mortality, drug abuse etc.

3) Adult or old-age mortality: mortality due to the effect of bodily decay.

Usually, these components are modeled with continuous distributions, while ages at
death are recorded as whole years. Given a vector of parameters 𝜃𝑡 and 𝑃(𝑥;𝜃𝑡)
representing the probabilities of dying at a given age in year 𝑡, life table deaths 𝐷𝑡 ∼
𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃𝑡) and the subsequent likelihood are:

𝐿൫𝜃𝑡;𝐷𝑥,𝑡൯ = ෑ𝑃(𝑥;𝜃𝑡)𝐷𝑥,𝑡

𝑁

𝑥=0

.

The probability 𝑃(𝑥;𝜃𝑡) can therefore be calculated as:

න 𝑓(𝑢;𝜃𝑡)𝑑𝑢
𝑥+1

𝑥
,

with 𝑓(𝑥;𝜃𝑡) being the underlying continuous mixture of the three aforementioned
components.
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The focus of the analysis is mortality in a subset of the Italian regions. Italy is a
country with one of the highest life expectancies in the world; hence, the adult mortality
component is dominant, while infant and premature mortality are less important. The
present analysis is based on the eight-parameter model introduced by Zanotto, Canudas-
Romo, and Mazzuco (2021) with the frequentist approach, with 𝜃𝑡 being a vector of
parameters and 𝑓(𝑥;𝜃𝑡) the continuous distribution of the age at death:

𝜃𝑡 = {𝜂𝑡 ,𝛽𝑡 , 𝜇𝑚,𝑡 ,𝜎𝑚,𝑡 , 𝛾𝑚,𝑡 , 𝜇𝑀,𝑡 ,𝜎𝑀,𝑡 , 𝛾𝑀,𝑡},
𝑓(𝑥;𝜃𝑡)

= 𝜂𝑡 ⋅ 𝑓𝐼(𝑥) + (1− 𝜂𝑡) ቀ𝛽𝑡𝑓𝑚൫𝑥; 𝜇𝑚,𝑡 ,𝜎𝑚,𝑡 , 𝛾𝑚,𝑡൯+ (1− 𝛽𝑡)𝑓𝑀൫𝑥; 𝜇𝑀,𝑡 ,𝜎𝑀,𝑡 , 𝛾𝑀,𝑡൯ቁ.

Of the three components, 𝑓𝐼 represents infant mortality and is a half-normal with
parameters 0 and 1, with the mixing parameter 𝜂𝑡 acting as a measure of intensity of
infant mortality. We set the scale parameter to 1 to avoid identification issues. Therefore,
its density function is:

𝑓𝐼(𝑥) =
√2
√𝜋

𝑒𝑥𝑝 ቆ−
𝑥2

2 ቇ
 𝑥 > 0.

𝑓𝑚 and 𝑓𝑀 represent premature and adult mortality respectively, and are both skew-
normals (Azzalini 1985). The skew-normal is a class of probability distributions which
includes the normal distribution as a special case and has the following density:

𝑓(𝑥; 𝜉,𝜔, 𝜆) =
2
𝜔
𝜙 ൬

𝑥 − 𝜉
𝜔

൰𝛷 ൬𝜆
𝑥 − 𝜉
𝜔

൰,

where 𝜙(⋅) is the standard normal probability distribution function and 𝛷(⋅) is the
standard normal cumulative distribution function. The parameters 𝜉, 𝜔, and 𝜆 represent
location, scale, and skewness, respectively.

The distributions chosen for the mixture components allow a large variety of age-
at-death curves to be fit with relatively few parameters. Infant mortality has a strong
maximum close to birth and a steep decrease afterwards; hence, the one-parameter half-
normal is parsimonious and offers a good fit. The skew-normal, on the other hand, allows
for a more flexible fit for ages where the mortality curve is more complex, such as that
from early adulthood to middle age.

As in Zanotto, Canudas-Romo, and Mazzuco (2021), a slightly different
parametrization is used in the model, the centered parametrization, with parameters 𝜇
(mean), 𝜎 (standard error), and 𝛾 (skewness), compared to the direct parametrization 𝜉
(location), 𝜔 (scale), and 𝜆 (shape). The centered parametrization resolves some issues
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with the likelihood in the frequentist approach, namely an inflection in the profile
likelihood when the skewness parameter is equal to zero, and maps nicely into the mean,
standard error, and skewness index of the distribution, allowing for an easier
interpretation. The centered parameters (𝜇,𝜎, 𝛾) can be transformed into the direct
parameters (𝜉,𝜔, 𝜆) with the following equations:

𝑐 = 𝑠𝑔𝑛(𝛾) ൬
2𝛾

4− 𝜋
൰
1
3

𝜇𝑧 =
𝑐

√1 + 𝑐2

𝜉 = 𝜇 −
𝜎𝜇𝑧

ඥ1− 𝜇𝑧2

𝜔 =
𝜎

ඥ1− 𝜇𝑧2

𝜆 =
𝜇𝑧ට

𝜋
2

ට1− 𝜋𝜇𝑧2
2

Our aim is to produce a descriptive model that minimizes bias; therefore we do not
model temporal dynamics of the parameters through stochastic processes. This deliberate
choice to stratify the model by calendar year and region helps to reduce bias, a major
concern in standard frequentist approaches. By treating each year and region
independently, we avoid potential issues deriving from incorrect model assumptions that
could arise from stitching different strata together.

However, we acknowledge that this approach comes with the trade-off of increased
variability in parameter estimates due to the lack of temporal regularization. In Bayesian
modeling, borrowing strength across time periods can indeed lead to better estimates by
smoothing out the variations, particularly in smaller populations where actual death rates
can exhibit high variability.

Despite this, it is crucial to first establish a robust benchmark model that is free of
bias introduced by temporal smoothing. This baseline allows us to later introduce
temporal dynamics in a controlled manner and compare the results against the unbiased
estimates. As discussed in Section 5, our future work will involve developing a model
that incorporates temporal and spatial dynamics, with the current model serving as a
necessary foundation. This step-wise approach ensures that any biases introduced by
temporal smoothing in future models can be accurately assessed and mitigated by
comparison with the benchmark established here.
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For both flexibility and computational reasons, we formulate the model in a
Bayesian way, assuming a set of priors on the parameters (see Appendix for details). The
posterior simulations are then obtained by Hamiltonian Monte Carlo (Homan and
Gelman 2014). Stan is used to obtain estimates of the posterior distributions. The model
by Zanotto, Canudas-Romo, and Mazzuco (2021) is ported to Stan with minor
adaptations. The two mixing parameters 𝜂 and 𝛽 are reparametrized with a three-
dimensional mixing parameter 𝜁, distributed as a Dirichlet variable, with no loss of
generality. Additionally, the dispersion parameter for infant mortality is parametrized
with 𝜎𝐼, to be estimated instead of setting 𝜎𝐼 = 1, as preliminary results suggested that 1
was not a value providing adequate fit and that 𝜎𝐼 could be estimated without significant
identification issues. The main contribution of the model is the way it handles cohort
effects, as described in section 3.2.1, and, to a lesser degree, the simplifications that speed
up the estimation phase with a negligible impact on parameter estimates.

In order to speed up the estimation phase, some approximations are used.
Calculating actual probabilities 𝜃𝑡 of death at a given age from the three-component
model slows down estimation considerably. To address this, we investigated methods to
expedite model estimation while maintaining the accuracy of the estimates. We modeled
deaths𝐷𝑥,𝑡 at age 𝑥 as a continuous variable, assuming that deaths at age 𝑥 have happened
at age 𝑥 + 0.5 (0.1 at age 0), approximating 𝑃(𝑥;𝜃𝑡) with 𝑓(𝑥 + 0.5;𝜃𝑡). This
approximation led to a marked increase in estimation speed, with minimal impact on the
accuracy of the parameter estimates. The model is restricted to ages between 0 and 100,
while the mortality components are not; therefore normalization of the premature and
adult mortality components is necessary. Each of them is normalized by dividing it by
the probability of assuming a value between 0 and 100. That is, 𝑓𝑚(𝑥;𝜃𝑡) is actually
replaced with 𝑓𝑚∗(𝑥;𝜃𝑡) = 𝑓𝑚(𝑥+0.5;𝜃𝑡)

𝐹𝑚(100;𝜃𝑡)−𝐹𝑚(0;𝜃𝑡)
, with 𝐹 being the cumulative distribution

function of 𝑓, and the same applies to 𝑓𝑀 and 𝑓𝑀∗. The infant mortality component is
defined for ages 0 and above and is essentially zero well before the maximum age; hence
no normalization is necessary.

3.3 Cohort effects

The Italian data exhibit cohort effects: that is, some cohorts exhibit a higher or lower
mortality throughout their lives (Carfora, Cutillo, and Orlando 2017). Empirically,
comparing the death of a cohort with the deaths of the adjacent cohorts and calculating
excess (or missing) deaths against the two adjacent cohorts, the cohorts most affected by
these effects are those born during World War I and in the years shortly afterwards. The
full model that reflects these effects, as well as the temporal evolution of the parameters,
is as follows:
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𝑃(𝑥;𝜃𝑡 , 𝑡,𝛼) =
𝛼𝑡−𝑥𝑓(𝑥;𝜃𝑡)

∑ 𝛼𝑡−𝑥𝑓(𝑥;𝜃𝑡)100
𝑥=0

,

with 𝑥 denoting age, 𝑡 the year of the life table, 𝑡 − 𝑥 the cohort (year of birth), 𝛼𝑡−𝑥 the
multiplier that represents the cohort effect for cohort 𝑡 − 𝑥,

𝑓(𝑥;𝜃𝑡) = 𝜁1,𝑡 ⋅ 𝑓𝐼൫𝑥;𝜎𝐼,𝑡൯+ 𝜁2,𝑡 ⋅ 𝑓𝑚∗൫𝑥; 𝜇𝑚,𝑡,𝜎𝑚,𝑡 , 𝛾𝑚,𝑡൯+ 𝜁3,𝑡 ⋅ 𝑓𝑀∗൫𝑥; 𝜇𝑀,𝑡 ,𝜎𝑀,𝑡 , 𝛾𝑀,𝑡൯

being the mixture adapted from Zanotto, Canudas-Romo, and Mazzuco (2021) and where
𝜁 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(3) is a mixing parameter with 2 degrees of freedom, 𝑓𝐼 is a half-normal
with mean 0 and variance 𝜎𝐼, and 𝑓𝑚 and 𝑓𝑀 are skew-normals. 𝑃(𝑥;𝜃, 𝑡,𝛼) is therefore
the probability of an individual born in the year 𝑡 − 𝑥 dying at age 𝑥 in year 𝑡 given their
cohort effect 𝛼𝑡−𝑥 and the probability of dying in year 𝑡 𝜃𝑡. The cohorts for which 𝛼𝑡−𝑥
can deviate from 1 are chosen by the researcher, with 𝛼𝑡−𝑥 set to 1 for the other cohorts.

The mixture model is formulated for a single calendar year 𝑡; hence to fit 1974–
2022 we stratify the estimation on the year. The cohort terms 𝛼𝑡−𝑥 are therefore the only
common terms across multiple years. Theoretically, each 𝛼𝑡−𝑥 term could be any non-
negative number, although in practice it is reasonable to expect them to be close to 1. In
order to regularize estimates while allowing the 𝛼𝑡−𝑥 parameters wide flexibility, the
distributions of the 𝛼𝑡−𝑥 parameters depend on a common parameter 𝛼𝜇, further discussed
in the Appendix.

Modeling cohort effects as multipliers that differ by cohort, but are constant for each
cohort at all ages, is a typical choice in Age–Period–Cohort (APC) models, a large family
recently reviewed by Hunt and Blake (2021b). The main issue in those models is
collinearity, since cohorts (years of birth) are equal to periods (years) minus age. As
discussed by Hunt and Blake (2020), in APC models this means that linear trends in the
parameters cannot be uniquely split between cohort, age, and period effects. Mixture
models are not part of the APC class of models, even though there are some similarities.
The mixture models the probability of dying at a given age for a person of age 0, as do
some APC models, and with a logarithmic transformation the multiplicative cohort term
becomes an additive term, just as in APC models. However, there are no proper age–
period terms, since the underlying mixture does not lend itself to being represented as a
sum of bilinear age–period terms. Consequently, the relationships between model
parameters in mixture models are more complex, and collinearity does not result in quite
the same issues as in APC models. However, it is conceivable that trends that affect both
age and period can also conflict with the estimation of cohort effect multipliers in mixture
models.

In both our mixture model and the APC models there is an assumption of
independence between cohort effects and age–period effects: an assumption which is, as
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stated by Hunt and Blake (2020), both practical and parsimonious. In order to select the
cohort effects to model, the models were run without cohort effects (that is, with all 𝛼𝑡−𝑥
set to 1), the presence of cohort effects was established through residual graphs, as
advocated in Hunt and Blake (2014), and an empirical estimate was produced, as shown
in Section 3.1, to select the cohorts with the most prominent effects.

4. Results

The following results were obtained by sampling with 4 chains, 10,000 iterations per
chain with a burn-in of 5,000 iterations, for a total of 20,000 sampling iterations, unless
otherwise specified. Cohort effects were estimated for the 1915–1925 cohorts, where they
are most prominent.

4.1 Parameter estimates

The parameter estimates for the three-component mixture model are shown in Table 2.
The proportion of deaths due to infant mortality, 𝜁1, declines by an order of magnitude in
all regions over the period. On the other hand, premature mortality undergoes a
transformation: in 1974 it is a proper premature mortality component, with average age
at death 𝜇𝑚 ranging between 18.03 (Lombardia) and 34.24 (Sardinia), while in 2022 it is
more of a middle-age mortality component, ranging between 55.07 (Sardinia) and 74.29
(Lombardy). Tables with the 10th and 90th percentiles of the parameter estimates are in
the Appendix.

The adult mortality component evolves as expected, with an increase in average age
at death 𝜇𝑀 over the period (shift) and a decrease in variability 𝜎𝑀 (compression). The
component is strongly negatively skewed and in all regions the skewness parameter 𝛾𝑀
is more extreme than in 1974.
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Table 2: Median parameter estimates by region: median, 1974 and 2022
estimates

Region Estimate 𝜻𝟏 𝜻𝟐 𝜻𝟑 𝝈𝑰 𝝁𝒎 𝝈𝒎 𝜸𝒎 𝝁𝑴 𝝈𝑴 𝜸𝑴

Friuli Venezia
Giulia

1974 0.017 0.02 0.96 0.54 20.87 11.56 0.02 70.74 13.74 –0.75
2022 0.002 0.07 0.93 0.63 57.62 21.88 0.03 82.21 10.13 –0.80
Median 0.003 0.03 0.96 0.63 33.22 15.06 0.04 76.88 11.90 –0.73

Lazio
1974 0.018 0.03 0.95 0.54 26.05 18.26 0.09 73.94 11.93 –0.66
2022 0.002 0.10 0.90 0.64 66.18 22.95 0.02 82.71 9.82 –0.78
Median 0.004 0.05 0.94 0.58 41.83 18.58 0.05 78.11 11.09 –0.68

Lombardy
1974 0.017 0.02 0.96 0.56 18.10 12.19 0.03 70.88 12.73 –0.72
2022 0.002 0.12 0.87 0.65 74.41 25.54 0.02 83.14 9.26 –0.78
Median 0.003 0.04 0.95 0.62 33.34 13.39 0.02 77.28 11.47 –0.68

Sardinia
1974 0.020 0.07 0.91 0.60 34.31 27.83 0.11 75.54 12.36 –0.73
2022 0.002 0.07 0.93 0.63 55.44 21.46 0.04 81.55 10.77 –0.81
Median 0.004 0.06 0.93 0.60 35.46 18.40 0.03 78.17 11.71 –0.72

Sicily
1974 0.024 0.05 0.92 0.57 31.35 31.14 0.11 75.50 11.96 –0.71
2022 0.003 0.11 0.89 0.59 66.33 24.24 0.02 81.64 9.84 –0.77
Median 0.006 0.05 0.94 0.58 38.52 22.12 0.07 77.78 11.13 –0.71

Figure 2 shows the temporal evolution of a few selected parameters, namely infant
mortality proportion 𝜁1, premature mortality proportion 𝜁2, premature mortality average
age at death 𝜇𝑚, and adult mortality average age at death 𝜇𝑀. All the major demographic
trends are clearly visible. Infant mortality declines from around 2% of all deaths to about
0.2%. Adult mortality average age at death 𝜇𝑀 steadily increases, with a sharp drop in
2020 due to the COVID-19 pandemic, especially apparent in Lombardy, with a
subsequent partial recovery. Also, 𝜇𝑀 estimates for the different regions converge.

But the most interesting result is the evolution of premature mortality. Its importance
increases over the years, with substantial variability in 𝜁2 in all regions and most notably
in Sardinia. On the other hand, the average age at death 𝜇𝑚 also increases steadily, with
values commonly over 50 years and rather ‘wiggly’ estimates in the later years.
Therefore, we argue that premature mortality transitions from describing the mortality
hump between 20 and 40 years of age to a ‘middle-age’ mortality component. Zanotto,
Canudas-Romo, and Mazzuco (2021) report similar results for France, Sweden, and East
Germany.

Throughout the years the mortality hump does not disappear: an increase in
mortality between ages 10–15 and 20–24 is still clearly visible from the life tables.
However, its importance as a fraction of all deaths diminishes to the point where the
premature mortality component better fits a larger span of ages, as evidenced by the
corresponding increase in the variability parameter 𝜎𝑚 in Friuli Venezia Giulia, Lazio,
and Lombardy, the three regions where 𝜇𝑀 was under 30 years in 1974.
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Figure 2: Parameter estimates by calendar year and region: infant mortality
proportion, premature mortality proportion, premature mortality
average age at death, adult mortality average age at death, 1974–
2022

4.2 Cohort effects

Figure 3 shows the magnitude of the estimated cohort effect by region and cohort.
Cohorts born in 1916 and 1917 experienced higher mortality throughout their lives, while
the cohorts 1919–1921, and especially the 1920 cohort, had substantially lower mortality.
The magnitude of the effects varies by region, with the strongest cohort effects estimated
for Friuli Venezia Giulia and Lombardy, while cohort effects in Sardinia are the weakest.
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Figure 3: Multiplicative cohort effect by region and cohort, 1915–1925 cohorts

The cohort effects are tabulated in Table 3. Eighty percent uncertainty intervals have
in general a width between 0.007 and 0.008 that is rather consistent across regions and
birth cohorts.
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Table 3: Cohort effects by region and cohort: 10th, 50th (median), and 90th

percentile
Region Perc. 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925

Friuli Venezia
Giulia

10 1.059 1.094 1.082 1.002 0.917 0.906 0.940 0.975 0.997 1.006 1.003
50 1.063 1.098 1.086 1.005 0.920 0.909 0.943 0.979 1.000 1.010 1.006
90 1.067 1.102 1.089 1.009 0.924 0.913 0.947 0.982 1.004 1.013 1.010

Lazio
10 1.025 1.051 1.054 1.012 0.939 0.919 0.934 0.983 1.018 1.019 1.017
50 1.029 1.055 1.057 1.016 0.942 0.922 0.938 0.987 1.022 1.023 1.021
90 1.032 1.059 1.061 1.020 0.946 0.926 0.941 0.990 1.026 1.026 1.025

Lombardy
10 1.034 1.078 1.086 1.030 0.940 0.910 0.928 0.970 1.001 1.007 0.993
50 1.038 1.082 1.090 1.034 0.943 0.914 0.931 0.973 1.005 1.011 0.997
90 1.042 1.086 1.094 1.038 0.946 0.917 0.934 0.977 1.008 1.015 1.000

Sardinia
10 1.006 1.026 1.024 1.013 0.980 0.956 0.967 0.987 0.990 0.998 1.014
50 1.010 1.030 1.028 1.017 0.984 0.960 0.971 0.991 0.993 1.002 1.018
90 1.014 1.034 1.032 1.021 0.987 0.964 0.975 0.994 0.997 1.006 1.022

Sicily
10 1.027 1.056 1.059 1.035 0.966 0.926 0.940 0.968 0.991 0.996 1.004
50 1.031 1.060 1.063 1.039 0.969 0.930 0.944 0.972 0.995 1.000 1.008
90 1.035 1.064 1.067 1.043 0.973 0.933 0.947 0.976 0.998 1.004 1.012

4.3 Goodness of fit

The inclusion of cohort effects in the model allows us to fit, in a satisfactory way,
complex, even multimodal, distributions of age at death, as Figure 4 can attest. Less
populous regions like Sardinia and Friuli Venezia Giulia exhibit substantial variation in
age at death, which makes modeling especially challenging. The absence of a pronounced
cohort effect in Sardinia is not due to the distribution of ages at death being regular, but
due to the inconsistent variation around the main three-component curve.

The improvement due to the inclusion of cohort effects is also noticeable with a
traditional metric such as the Mean Squared Error (MSE), as shown in Figure 5. The
improvement is especially noticeable for the years when the 1915–1925 cohorts are close
to the modal age at death and the impact of the cohort effects is the greatest, while it is
reduced essentially to zero in the last years, when the affected cohorts have mostly died
off.
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Figure 4: Actual (black) and fitted (blue) life table deaths, with 95% confidence
interval (red), by age and region, selected years
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Figure 5: Mean squared error by year and model

The better fit of the model with cohort effects is also evident when looking at the
residuals, as shown in Figure 6. The effects of the 1915–1925 cohort are distinctly visible
in the graphs on the right, which do not incorporate cohort terms, whereas in the graphs
on the left, where these terms are included, their presence is minimized. Cohorts not
included in the plots show smaller effects, with weaker diagonal lines visible (especially
for Lazio, Lombardy, and Sicily). As the colors in the diagonal lines show, the residuals
in the affected cohorts follow the distribution of the age at death, with the largest residuals
around the modal age at death, supporting the choice to model cohort effects as
multipliers. Taken all together, the presence of the cohort effects in Italian regional data
is firmly established.
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Figure 6: Model residuals by age and year, model with cohort effects (left)
vs. model without cohort effects (right)
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While the impact of the introduction of cohort effects on residuals is significant,
summaries like life expectancy at birth are less affected. As Figure 7 shows, the estimated
life expectancy at birth is rather similar both with and without cohort effects: however, it
should be noted that the prediction intervals are always tighter when cohort effects are
included, sometimes substantially so, like for Lazio in 2013 and FVG in 2018.

Figure 7: Estimated life expectancy at birth by year, model with and without
cohort effects, median and 95% prediction intervals, 1974–2022

The inclusion of cohort effects trades better fit for increased model complexity. An
appropriate way to assess whether the trade-off is worth it is to compare models using a
predictive information criterion. We use the Widely Applicable Information Criterion
(Watanabe 2010), where the log pointwise predictive density is counterbalanced by its
variance to penalize overly complex models. As indicated by Table 4, the model’s WAIC
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score is lower when cohort effects are incorporated, demonstrating that the augmented
model complexity is outweighed by the improvements in model fit.

Table 4: WAIC and its standard error by region, 3-component mixture model
with and without cohort effects

Region WAIC,
cohort effects

WAIC s.e.,
cohort effects

WAIC,
no cohort effects

WAIC s.e.,
no cohort effects

Friuli Venezia Giulia 38,503,454 141,392.8 38,515,221 142,631.2
Lazio 38,180,492 98,147.1 38,196,890 99,749.5
Lombardy 38,226,800 138,742.1 38,240,171 140,094.8
Sardinia 38,687,094 109,528.1 38,705,649 109,569.8
Sicily 38,173,785 88,089.7 38,195,678 90,342.2

4.4 Derived quantities

The Bayesian approach enables straightforward computation and visualization of the
distribution of various indicators over time, including rather complicated nonlinear
characteristics. Following Debón et al. (2017) and Bohk-Ewald, Ebeling, and Rau (2017),
we select a set of indicators in order to characterize both average lifespan and lifespan
disparity, namely life expectancy at birth 𝑒0, residual life expectancy at age 65 𝑒65,
conditional standard deviation at age 10 𝑆10 (Edwards and Tuljapurkar 2005), and
average number of years lost at birth 𝑒0

† (Vaupel and Canudas-Romo 2003). The results
are presented in Figure 8: dispersion measures appear to have a more variable distribution
than life expectancy measures.
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Figure 8: Distribution of various indicators by year and region, selected pairs,
median (blue) and 90% uncertainty intervals (red): life expectancy at
birth, residual life expectancy at age 65, conditional standard
deviation at age 10, average years of life lost at birth, 1974–2022
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4.5 Graphic representation of mortality convergence or spatial homogenization

Regions in a country share many common characteristics and, as shown in Section 4.1,
parameter estimates of the different regions converge over time. Considering the age at
death as a random variable allows us to compare the distribution across regions in various
years with the Kullback-Leibler divergence, which is as follows, given two discrete
probability distributions 𝑃 and 𝑄:

𝐷𝐾𝐿(𝑃 ∥ 𝑄) = 𝑃(𝑥)𝑙𝑜𝑔 ቆ
𝑃(𝑥)
𝑄(𝑥)ቇ

𝑥∈𝑋

The Bayesian approach employed allows us to calculate the average of the two
Kullback-Leibler divergences (𝐷𝐾𝐿(𝑃 ∥ 𝑄) and 𝐷𝐾𝐿(𝑄 ∥ 𝑃)) for each of the 20,000
simulations. In this way, for each pair of regions we obtain the distribution of the
similarity between their mortality for each year. We can then represent regions in a given
year as a network, with the strength of the edge between two regions being equal to the
proportion of simulations closer to each other than a set threshold. This set of
relationships can be represented as a weighted graph, as shown in Figure 9. The threshold
was set to 0.009 in order to emphasize the differences between the three graphs.

The convergence of mortality between regions is particularly strong in the first half
of the years observed, with the average degree of the graph nodes increasing from 0.8 in
1974 to 3.6 in 1998. In 1974 the relationships are expressed across strictly geographical
lines: the only pairs with any simulation below the threshold are the two northern regions,
FVG and Lombardy, and the two southern regions, Sicily and Sardinia. The latter graph
edge is conspicuously absent in 1998, only to return in 2022, when Lombardy stops being
connected with Sicily and Sardinia and the average degree drops to 3.2.
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Figure 9: Weighted network graph, with each edge representing the percentage
of simulations with average Kullback–Leibler distance lower than
the 0.009 threshold, years 1974, 1998, and 2022

5. Discussion

A common goal in mortality modeling is to simplify summaries of mortality, in this case
life table deaths, with a few notable figures. The above analysis shows that the three-
component parametric model introduced by Zanotto, Canudas-Romo, and Mazzuco
(2021) can be successfully applied in a Bayesian setting, showing a satisfactory fit. The
three components and the parameters in general have a clear demographic interpretation
and are easy to understand. The ability to meaningfully estimate a three-component
model in a setting where two components are small but not negligible is a significant
methodological challenge and one that, as long as mortality continues to improve, will be
more relevant in the future.

Italian regional mortality data is significantly perturbed by cohort effects. The
effects are present for the cohorts born from World War I up to World War II, but are
most prominent for the cohorts born in 1915–1925. The magnitude of the effects varies
between regions, highlighting the need for a solution that is flexible enough to fit regions
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with strong effects like Lombardy and Friuli Venezia Giulia and regions with little to no
effects like Sardinia. Our model formulation is satisfactory in this regard and substantially
improves the model fit, as confirmed both graphically and in terms of WAIC in Section
4.3. While our approach represents, to our knowledge, the first implementation of cohort
effects in a Bayesian mixture model for age at death, further work is needed to enhance
the model’s capability to estimate all cohort effects up to 1945 comprehensively and
completely address the issue of cohort effects for all relevant cohorts, not just the most
affected ones. For that future work, cohorts will need to be modeled together in order to
reduce the risk of overparametrization.

During the period considered, the premature mortality component, which was
clearly identifiable in the 1970s, becomes progressively closer to adult mortality, with an
increase of its average age and an overall reduction in skewness. This is consistent with
some of Zanotto, Canudas-Romo, and Mazzuco’s results (2021), with the premature
mortality component becoming a sort of ‘middle-age mortality’ component. Skewness
has to be constrained to non-negative values to avoid this component confounding itself
with adult mortality, impacting model convergence. In general, the choice of initial values
for the parameters has non-negligible effects on posterior estimates; therefore plausible
values need to be provided in order to guarantee convergence.

In terms of mortality indicators, the well-known shift of mortality to later ages and
its compression are both confirmed. Life expectancy both at birth (𝑒0) and at 65 years
(𝑒65) trends up throughout the period, with a strong negative effect of the Covid-19
pandemic, while dispersion indicators trend down, save for a brief period in the mid-
1990s. In this regard, the advantage of the Bayesian approach is that it allows an easy
quantification of the distribution of these quantities: the estimates of dispersion indicators
appear substantially more uncertain than life expectancy.

The lack of relationships between model parameters from different years, with the
exception of cohort effects, is both a deliberate choice and a limitation. Stratification on
the year, i.e., estimating the parameters for each year separately, reduces bias at the
expense of increasing the variability in parameter estimates. The model in the present
study is the first block towards building a forecasting model with temporal and spatial
dynamics, and should be viewed as a benchmark model that minimizes bias.

We do acknowledge that without any temporal regularization MCMC chains are not
well behaved in all years, with rising variability in estimates of premature mortality
parameters. Premature mortality parameters start behaving differently around the year
2000. Why is that? The estimates point to an increase in the relative importance of
middle-age mortality, and much-discussed themes like lifespan inequality spring to mind.
But in order to explore this change in behavior it is important to have a clear picture of
the temporal evolution of the parameters. At the turn of the century the cohorts most
affected by cohort effects approach the modal age at death, and therefore cohort effects
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have the maximum impact in absolute terms. It is therefore important to use a
foundational model, such as the one presented, to remove the cohort effects in order to
have a clearer picture of the temporal dynamics before modeling them. Modeling the
parameters as a temporal process would regularize the estimates and possibly improve
effective sample size. This is a milestone to be achieved in the future, a model that will
have to be compared to the one in the present study to ascertain its bias. It is conceivable
that a model with temporal dynamics will have estimates with lower variability and
achieve good fit in most years, with severe bias in years where the temporal dynamics do
not fit as well – 2020 and the disparate impact of the pandemic on Italian regions springs
to mind. In order to assess that bias, a model like the present one, stratified on each year,
is needed.

Our model uses mildly informative priors, and some restrictions on parameters and
initial values in order to achieve convergent chains and stable estimates. The restrictions
are imposed in order to induce the model components to represent the known
demographic phenomena that they are meant to represent, not other specific features of
the age-at-death curve. However, the need for these restrictions suggests that especially
in the 21st century, when the chain convergence is more difficult, the age-at-death curve
is becoming more complex and may need a more complex model to be represented
adequately. This is a promising path for future research.

Spatial and temporal dynamics are not the only possible development. Location
parameters like 𝜇𝑚 and 𝜇𝑀 could be regressed on an external variable such as regional
GDP, building on Bozzo, Levantesi, and Menzietti (2021), who find a relationship
between the level of GDP by region and the 𝑘𝑡 time index in a Lee–Carter model, or on
additional external variables as in Dimai (2024).
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Appendix

Prior distributions

The prior distributions are as follows:

 𝑙𝑜𝑔(𝛼𝑡−𝑥) ∼ 𝑈൫𝑙𝑜𝑔൫𝛼𝜇൯ − 0.7, 𝑙𝑜𝑔൫𝛼𝜇൯+ 0.4൯;
 𝛼𝜇 ∼ 𝐵𝑒𝑡𝑎(1.5,1.5) + 0.5;
 𝜁𝑡 ∼ 𝐷𝑖𝑟(1,1,8);
 𝜎𝑖,𝑡 ∼ 𝑈(0,1);
 𝜇𝑚,𝑡 ∼ 𝑁(30,5);
 𝜎𝑚,𝑡 ∼ 𝐼𝑛𝑣.𝛤(0.001,0.001);
 𝛾𝑚,𝑡 ∼ 𝑁(0,1), restricted to (0, +0.99527) (Aliverti, Mazzuco, and Scarpa

2022; Pewsey 2000);
 𝜇𝑀,𝑡 ∼ 𝑁(80,10);
 𝜎𝑀,𝑡 ∼ 𝐼𝑛𝑣.𝛤(0.001,0.001);
 𝛾𝑀,𝑡 ∼ 𝑁(0,1) restricted to (−0.99527, +0.99527) (Pewsey 2000).

In selecting the priors for our model, we aimed to achieve a balance between several
objectives: ensuring a realistic representation of the age-at-death distribution,
maintaining clear separation of the three mortality components to reduce the chance of
label switching, and minimizing influence on the posterior distributions.

The issue we faced with cohort effect multipliers was the desire to have as little
information as possible embedded in the prior distributions, while keeping estimates
within a reasonable range. A flat prior on the logarithmic scale was chosen, as the
[−0.7; 0.4] interval on the log scale corresponds approximately to the [0.5; 1.5] interval
on the real scale, with the probability of death after applying cohort effects potentially
ranging between 50% and 150% of the probability without cohort effects – a very wide
range. While we deemed a range of 100 percentage points to be sufficiently wide, we did
not want to put hard limits on the maximum size of a cohort effect. Hence, we shrunk the
estimates of the 𝛼𝑡−𝑥 parameters towards a parameter 𝛼𝜇, thus theoretically allowing for
larger cohort effects as long as the range of cohort effects remains under 100 percentage
points. On the other hand, cohort effects describe the impact of cohort on mortality net
of age and period effects and a common restriction in APC models is for them to have a
zero mean on the log scale (Hunt and Blake 2020); hence we expect them to have a prior
mean of 0 on the log scale as well (1 on the original scale). This consideration led us to
choose a weakly informative distribution, 𝐵𝑒𝑡𝑎(1.5,1.5), over the uniform.

mailto:matteo.dimai@phd.units.it
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For the 𝜁𝑡 parameter, the prior was chosen in order to obtain, on average, a
distribution of 10% for both infant and premature mortality, and 80% for adult mortality.
This distribution ensures that the adult mortality component accounts for the majority of
deaths, while still permitting the infant and premature components a substantial range of
plausible values, in line with the empirical share of deaths at ages 0–2 and under 40 years.
In our tests the specific choice of the prior of the 𝜁𝑡 parameter did not affect estimates
significantly as long as the adult mortality component represented the majority of deaths.

The mean parameters of the two skew-normal distributions, 𝜇𝑚,𝑡 and 𝜇𝑀,𝑡, are
assigned Gaussian priors. We decided not to choose a more heavy-tailed distribution for
the priors in order to keep the components distinct and with separate demographic
interpretations. A central issue is that the mortality hump is a rather small part of the age-
at-death curve, although one that retains demographic significance and whose inclusion
is meaningful. Even though to a certain degree all deaths before the modal age at death
in old age can be seen as premature, a premature mortality component with a mean age
at death close to the mean of old age mortality can no longer be considered a proper
premature mortality component. The 95% credibility intervals for the prior means are
slightly tighter than [20; 40] and [60; 100], ensuring a wide range of prior parameters,
but also minimizing the risk of overlap. The variance parameters 𝜎𝑚,𝑡 and 𝜎𝑀,𝑡 have very
weakly informative distributions. Lastly, the skewness parameters 𝛾𝑚,𝑡 and 𝛾𝑀,𝑡 have
truncated Gaussian priors, rather than uniform priors. This choice is intended to mildly
shrink the estimates towards zero, thereby regularizing them, since we found that uniform
priors led to unstable estimates in our testing. The restriction to (−0.99527, +0.99527)
is due to unstable estimates with values of the skewness parameter being close to ±1, as
discussed by Pewsey (2000), and its practical effect is to regularize estimates akin to the
use of weakly informative priors advocated by Gelman et al. (2008).

Parameter restrictions and initial values

The model presents several challenges that require careful handling to ensure meaningful
estimation in Stan. To address these challenges, we impose specific restrictions.

First, we restrict the 𝛼𝑡−𝑥 cohort effects. Their geometric mean is set to 1, expressed
as ∏ 𝛼𝑐𝐶

𝑐=1
𝐶

= 1. This is equivalent to the common constraint in APC models that the cohort
parameters should be centered around zero, as discussed in Hunt and Blake (2020).
Additionally, we constrain 𝛾𝑚,𝑡 and 𝛾𝑀,𝑡 to fall within the range of (−0.99527,0.99527).
This constraint is based on insights from Pewsey (2000), who note inference issues with
more extreme values, since the skew-normal distribution becomes increasingly
degenerate as the skewness parameter 𝛾 approaches 1. We also enforce non-negativity
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for 𝛾𝑚,𝑡, extending Aliverti, Mazzuco, and Scarpa’s model (2022) where the premature
mortality component is restricted to a normal distribution.

A common challenge with Bayesian mixture models is label switching, where
MCMC can misidentify and swap mixture components. In our case, this risk arises with
the two skew-normal components, premature and adult mortality. To mitigate this risk,
we carefully select prior distributions, in line with demographic expertise, and initial
values. In fact, label switching is the only issue to which the choice of prior distributions
is sensitive: this has led us to choose normals as prior distributions for 𝜇𝑚,𝑡 and 𝜇𝑀,𝑡 with
reasonable parameters for premature and adult mortality, respectively. While the choice
of priors ensures sufficient separation, as a further precaution and as a safeguard against
accidental label switching during MCMC sampling, we enforced 𝜇𝑚,𝑡 ≤ 𝜇𝑀,𝑡 by
declaring the two parameters as an ordered vector: this restriction can be safely dropped
if the components are clearly separated.

Throughout our analysis, we observed that overly broad prior distributions and
incorrect initial parameters cause the model components to fail to consistently describe
the same features of the age-at-death curve, leading to poor chain mixing, multimodality
in posterior distributions, and low effective numbers of draws (𝑛𝑒𝑓𝑓).

Of particular concern are the starting values for the share of adult mortality 𝜁3, 𝜇𝑚,
𝜎𝑚, and 𝜎𝑀, as well as the difference in starting values 𝜇𝑀 − 𝜇𝑚. Starting values for these
parameters must be such that the model components adequately describe the
demographic phenomena that we wish to model. Our experience suggests that good chain
mixing can be consistently achieved with the following ranges for these initial values:

 𝜁3 >= 0.5 (adult mortality accounts for the majority of the deaths)
 20 < 𝜇𝑚 < 40 (mean age at premature death is at young ages)
 75 < 𝜇𝑀 < 85 (mean age at adult death is close or slightly lower than modal

age at death)
 5 < 𝜎𝑚 < 12 (95% of premature mortality probability lies in a 20 to 40-year

interval)
 5 < 𝜎𝑀 < 12 (95% of adult mortality probability lies in a 20 to 40-year interval)
 0.15 < 𝛾𝑚 < 0.5 (moderate positive skewness of adult mortality)
 −0.9 < 𝛾𝑀 < −0.15 (adult mortality is negatively skewed)

While the ranges may appear arbitrary, they reflect reasonable expectations of what
the model components are expected to represent. Adult mortality accounts for the
overwhelming majority of deaths, hence 𝜁3 >= 0.5. As for 5 < 𝜎𝑚 < 12 and 5 < 𝜎𝑀 <
12, a small variance parameter implies that the component only governs death over a
narrow range of ages, which leads to the mixing parameter being reduced accordingly
and the other parameter compensating, thus trying to model both components and failing.
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On the other hand, a larger 𝜎, for example 20, means that the component is trying to fit
almost the whole age-at-death curve and therefore resembles more of a background
mortality component, more similar to a Gompertz–Makeham setting.

The skewness settings have been chosen along similar lines. The adult mortality
component is known to be negatively skewed and a wide range such as −0.9 < 𝛾𝑀 <
−0.15 ensures that the component adequately models adult mortality without leaving out
too much of middle-age mortality (if 𝛾𝑀 > −0.15) and without degenerating to an
excessively skewed distribution (if 𝛾𝑀 < −0.9). On the other hand, premature mortality
is less skewed than adult mortality, with posterior parameters often relatively close to
zero. Initial parameters indicating moderate positive skewness allow the posterior to
accomodate a wider range of values while still retaining salience. Initial skewness values
closer to zero lead to both components, one symmetrical and one asymmetrical, modeling
adult mortality. Higher positive skewness, on the other hand, can result in the premature
mortality component becoming excessively skewed and degenerate.

Finally, the mean of premature mortality is set to values within its 95% prior
credibility interval and the mean of old age mortality is set to values in the vicinity of the
mode.

Actual generation of the initial values was performed according to the following
distributions. Other distributions that meet the criteria outlined above may be equally
appropriate.

 𝜁1,𝑡 ∼
𝑈(0.05,0.15)
∑ 𝜁𝑖3
𝑖=1

;

 𝜁2,𝑡 ∼
𝑈(0.2,0.3)
∑ 𝜁𝑖3
𝑖=1

;

 𝜁3,𝑡 ∼
𝑈(0.6,0.8)
∑ 𝜁𝑖3
𝑖=1

;

 𝜎𝐼 ∼ 𝑈(0.8,1);
 𝜇𝑚,𝑡 ∼ 𝑈(20,35);
 𝜎𝑚,𝑡 ∼ 𝑈(5,12);
 𝛾𝑚,𝑡 ∼ 𝑈(0.15,0.5);
 𝜇𝑀,𝑡 ∼ 𝑈(75,85);
 𝜎𝑀,𝑡 ∼ 𝑈(5,12);
 𝛾𝑀,𝑡 ∼ 𝑈(−0.9,−0.15);
 𝑙𝑜𝑔(𝛼𝑡−𝑥) ∼ 𝑈(−0.22,0.18).

Overall, the rationale behind the parameter restrictions and choice of initial values
is to fit the distribution of deaths from a starting curve where each parameter retains an
unambiguous and meaningful demographic interpretation.
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Convergence of chains

Convergence of the MCMC chains is assessed through the Gelman–Rubin statistic 𝑅,
which quantifies the mixing of the chains and how well they achieve a stationary
distribution, and the effective sample size 𝑛𝑒𝑓𝑓, which measures the equivalent number
of independent and identically distributed samples that would provide the same quantity
of information in the MCMC sample.

As shown in Table A-1, 𝑅 is below 1.1 in all 49 years for all regions and parameters
except for 𝜎𝐼 in Lazio and Sardinia and 𝜁1 in Sardinia. 𝜁1 is usually very small, below
1%, but in some years after 2000, due to low infant mortality and a slightly larger
mortality hump, one of the chains temporarily diverges towards a higher proportion of
infant mortality than warranted and also a higher variability. This issue may be resolved
by substituting the infant mortality component with a point probability at age 0, but since
infant mortality is usually well identified, we decided to keep the half-normal in order to
improve fit.

Table A-1: Number of years (out of 49), by region and parameter, where 𝑹 <
𝟏.𝟏

Parameter Friuli Venezia Giulia Lazio Lombardy Sardinia Sicily
𝜁1 49 49 49 48 49
𝜁2 49 49 49 49 49
𝜎𝐼 49 48 49 48 49
𝜇𝑚 49 49 49 49 49
𝜎𝑚 49 49 49 49 49
𝛾𝑚 49 49 49 49 49
𝜉𝑚 49 49 49 49 49
𝜇𝑀 49 49 49 49 49
𝜎𝑀 49 49 49 49 49
𝛾𝑀 49 49 49 49 49
𝜉𝑀 49 49 49 49 49
𝛼1915 49 49 49 49 49
𝛼1916 49 49 49 49 49
𝛼1917 49 49 49 49 49
𝛼1918 49 49 49 49 49
𝛼1919 49 49 49 49 49
𝛼1920 49 49 49 49 49
𝛼1921 49 49 49 49 49
𝛼1922 49 49 49 49 49
𝛼1923 49 49 49 49 49
𝛼1924 49 49 49 49 49
𝛼1925 49 49 49 49 49

In Figure A-1 the effective sample size 𝑛𝑒𝑓𝑓 is shown for all years and regions for
𝜁2, the proportion of deaths attributed to premature mortality, which is the parameter most
likely to diverge and be less stable over time. Average 𝑛𝑒𝑓𝑓 across all regions and years
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is 1,171.5. Minimum effective sample size for 𝜁2 is 151.0 (FVG, 1986), with a value
lower than 500 in 19 cases (7.7%). For more stable parameters the effective sample size
is substantially higher: mean age at death of adult mortality 𝜇𝑀 has an average 𝑛𝑒𝑓𝑓 of
2,075.0 and a minimum of 413.8 (Sardinia, 1975). In both cases, effective sample size is
lower after 1990. Each cohort effect has a single estimate for all years and the effective
sample size is much higher: for the 1920 cohort the average across all regions is 19,029.0.

Figure A-1: Effective sample size for the proportion of deaths due to premature
mortality, by region and year

Sensitivity to number of iterations

The model for Lombardy was run with a lower number of iterations per chain in order to
assess whether the results were sensitive to the length of the chains. The results are
presented for 4,000 iterations per chain with a burn-in of 2,000 iterations, and 2,000
iterations per chain with a burn-in of 1,000 iterations. The differences are minimal and
are presented in Figures A-2 and A-3 for the year 2004, one of the years when the
differences are most noticeable.
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Figure A-2: Premature mortality average age at death, density, year 2004, 1,000
iterations (blue) and 2,000 iterations (red)
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Figure A-3: Premature mortality and adult mortality average ages at death, year
2004, 1,000 iterations (blue) and 2,000 iterations (red)

There is no noticeable difference in the forecasts of the number of deaths by age,
which are therefore not shown.

Sensitivity to starting values

As previously mentioned, the starting values for the model should be chosen carefully in
order for the chains to initialize and converge. An example from a model estimated
without cohort effects on single years is shown in Figure A-4: the plots show how the
proportion of deaths attributable to premature mortality rises over time, but with
convergence issues (𝑛𝑒𝑓𝑓 as low as 2) and implausibly high estimates more common with
higher starting values of 𝜁2.
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Figure A-4: Median posterior estimate and effective sample size by year for
premature variability proportion, model without cohort effects

Model parameters

The model parameters for age 𝑥, year 𝑡, and cohort 𝑡 − 𝑥, with their respective prior
distributions, are as follows:

Mixing parameter:

 𝜁𝑡 ∼ 𝐷𝑖𝑟(1,1,8), with 𝜁1,𝑡 representing the proportion of infant mortality deaths,
𝜁2,𝑡 the proportion of premature mortality deaths, and 𝜁3,𝑡 the proportion of adult
mortality deaths;

Cohort effects parameters:

 𝛼𝜇 ∼ 𝐵𝑒𝑡𝑎(1.5,1.5) + 0.5;
 𝑙𝑜𝑔(𝛼𝑡−𝑥) ∼ 𝑈൫𝑙𝑜𝑔൫𝛼𝜇൯ − 0.7, 𝑙𝑜𝑔൫𝛼𝜇൯+ 0.4൯;

Infant mortality parameter:

 𝜎𝑖,𝑡 ∼ 𝑈(0,1);
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Premature mortality parameters:
Centered parametrization:

 𝜇𝑚,𝑡 ∼ 𝑁(30,5), restricted to be positive and ≤ 𝜇𝑀,𝑡;
 𝜎𝑚,𝑡 ∼ 𝐼𝑛𝑣.𝛤(0.001,0.001), restricted to be positive;
 𝛾𝑚,𝑡 ∼ 𝑁(0,1), restricted to (0, +0.99527);

Direct parametrization:

 𝜉𝑚,𝑡 = 𝜇𝑚,𝑡 −
𝜎𝑚,𝑡𝜇𝑚,𝑧,𝑡

ට1−𝜇𝑚,𝑧,𝑡
2

;

 𝜔𝑚,𝑡 = 𝜎𝑚,𝑡

ට1−𝜇𝑚,𝑧,𝑡
2

;

 𝜆𝑚,𝑡 = 𝜇𝑚,𝑧,𝑡ඥ𝜋/2

ඨ1−
𝜋𝜇𝑚,𝑧,𝑡

2

2

 𝑐𝑚,𝑡 = 𝑠𝑔𝑛൫𝛾𝑚,𝑡൯(
2𝛾𝑚,𝑡
4−𝜋

)1/3;
 𝜇𝑚,𝑧,𝑡 = 𝑐𝑚,𝑡

ට1+𝑐𝑚,𝑡
2

;

Adult mortality parameters:
Centered parametrization:

 𝜇𝑀,𝑡 ∼ 𝑁(80,10), restricted to be positive and ≥ 𝜇𝑚,𝑡;
 𝜎𝑀,𝑡 ∼ 𝐼𝑛𝑣.𝛤(0.001,0.001), restricted to be positive;
 𝛾𝑀,𝑡 ∼ 𝑁(0,1) restricted to (−0.99527, +0.99527);

Direct parametrization:

 𝜉𝑀,𝑡 = 𝜇𝑀,𝑡 −
𝜎𝑀,𝑡𝜇𝑀,𝑧,𝑡

ට1−𝜇𝑀,𝑧,𝑡
2

;

 𝜔𝑀,𝑡 = 𝜎𝑀,𝑡

ට1−𝜇𝑀,𝑧,𝑡
2

;

 𝜆𝑀,𝑡 = 𝜇𝑀,𝑧,𝑡ඥ𝜋/2

ඨ1−
𝜋𝜇𝑀,𝑧,𝑡

2

2

 𝑐𝑀,𝑡 = 𝑠𝑔𝑛൫𝛾𝑀,𝑡൯(
2𝛾𝑀,𝑡
4−𝜋

)1/3;
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 𝜇𝑀,𝑧,𝑡 = 𝑐𝑀,𝑡

ට1+𝑐𝑀,𝑡
2

;

Infant, premature, and adult mortality components:

 𝑓𝐼൫𝜎𝑖,𝑡൯ is the density function of a half-normal (0, 𝜎𝑖,𝑡);
 𝑓𝑚൫𝜉𝑚,𝑡 ,𝜔𝑚,𝑡 , 𝜆𝑚,𝑡൯ is the density function of a skew-normal (𝜉𝑚,𝑡 ,𝜔𝑚,𝑡 , 𝜆𝑚,𝑡);
 𝑓𝑀൫𝜉𝑀,𝑡 ,𝜔𝑀,𝑡 , 𝜆𝑀,𝑡൯ is the density function of a skew-normal (𝜉𝑀,𝑡 ,𝜔𝑀,𝑡 , 𝜆𝑀,𝑡);

Probability of dying at age 𝑥 in year 𝑡, mixture without cohort effects, not
normalized:

 𝑓(𝑥;𝜃𝑡) = 𝑓൫𝑥; 𝜁𝑡 ,𝜎𝑖,𝑡 , 𝜉𝑚,𝑡 ,𝜔𝑚,𝑡 , 𝜆𝑚,𝑡 , 𝜉𝑀,𝑡 ,𝜔𝑀,𝑡 , 𝜆𝑀,𝑡൯ = 𝜁1,𝑡𝑓𝐼൫𝑥;𝜎𝑖,𝑡൯+
𝜁2,𝑡𝑓𝑚൫𝑥; 𝜉𝑚,𝑡 ,𝜔𝑚,𝑡 , 𝜆𝑚,𝑡൯/൫𝐹𝑚(100) − 𝐹𝑚(0)൯+ 𝜁3,𝑡𝑓𝑀൫𝑥; 𝜉𝑀,𝑡 ,𝜔𝑀,𝑡 , 𝜆𝑀,𝑡൯/
൫𝐹𝑀(100) − 𝐹𝑀(0)൯, with 𝐹𝑚 and 𝐹𝑀 being the cumulative distribution
functions of 𝑓𝑚 and 𝑓𝑀, respectively, with the same parameters.

Probability of dying at age 𝑥 in year 𝑡 including cohort effects:

 𝑃(𝑥;𝜃𝑡 , 𝑡,𝛼) = 𝛼𝑡−𝑥𝑓(𝑥;𝜃𝑡)
∑ 𝛼𝑡−𝑥100
𝑥=0 𝑓(𝑥;𝜃𝑡)

.

Uncertainty of parameter estimates

Table A-2: 10th percentile of parameter estimates by region: Median, 1974 and
2022 estimates

Region Estimate 𝜁1 𝜁2 𝜁3 𝜎𝐼 𝜇𝑚 𝜎𝑚 𝛾𝑚 𝜇𝑀 𝜎𝑀 𝛾𝑀

Friuli Venezia
Giulia

1974 0.016 0.02 0.96 0.52 20.17 10.86 0.00 70.66 13.67 –0.75
2022 0.002 0.06 0.92 0.58 54.04 20.47 0.00 82.10 10.02 –0.81
Median 0.003 0.03 0.96 0.59 30.98 13.37 0.01 76.78 11.81 –0.74

Lazio
1974 0.017 0.03 0.95 0.53 23.99 16.19 0.02 73.85 11.85 –0.67
2022 0.002 0.08 0.88 0.59 61.86 21.68 0.00 82.59 9.68 –0.79
Median 0.004 0.05 0.94 0.55 39.62 17.16 0.01 77.99 10.99 –0.70

Lombardy
1974 0.016 0.02 0.96 0.55 17.35 11.34 0.00 70.81 12.67 –0.73
2022 0.002 0.11 0.86 0.60 70.63 24.38 0.00 83.06 9.15 –0.79
Median 0.003 0.04 0.95 0.58 32.42 12.77 0.00 77.20 11.40 –0.69

Sardinia
1974 0.019 0.06 0.90 0.58 30.61 24.80 0.02 75.42 12.25 –0.74
2022 0.001 0.06 0.91 0.57 51.32 19.88 0.01 81.40 10.61 –0.81
Median 0.003 0.06 0.92 0.58 34.04 16.14 0.01 78.09 11.59 –0.73

Sicily
1974 0.023 0.05 0.92 0.56 27.96 27.10 0.02 75.42 11.88 –0.71
2022 0.002 0.09 0.88 0.55 62.19 22.90 0.00 81.54 9.72 –0.78
Median 0.006 0.05 0.93 0.56 36.20 20.56 0.01 77.69 11.04 –0.72
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Table A-3: 90th percentile of parameter estimates by region: Median, 1974 and
2022 estimates

Region Estimate 𝜁1 𝜁2 𝜁3 𝜎𝐼 𝜇𝑚 𝜎𝑚 𝛾𝑚 𝜇𝑀 𝜎𝑀 𝛾𝑀

Friuli Venezia
Giulia

1974 0.017 0.03 0.96 0.56 21.68 12.40 0.07 70.81 13.81 –0.74
2022 0.002 0.08 0.94 0.68 61.82 23.45 0.11 82.32 10.24 –0.80
Median 0.003 0.03 0.97 0.67 36.25 17.30 0.13 76.98 11.99 –0.72

Lazio
1974 0.018 0.04 0.95 0.56 28.98 21.02 0.27 74.03 12.02 –0.65
2022 0.002 0.12 0.92 0.69 70.55 24.37 0.07 82.83 9.96 –0.77
Median 0.005 0.06 0.95 0.62 44.27 21.02 0.15 78.22 11.19 –0.68

Lombardy
1974 0.018 0.02 0.96 0.58 18.80 13.30 0.10 70.94 12.78 –0.71
2022 0.002 0.14 0.89 0.70 78.16 26.73 0.06 83.22 9.36 –0.77
Median 0.004 0.05 0.96 0.65 34.61 14.23 0.07 77.37 11.54 –0.67

Sardinia
1974 0.020 0.08 0.92 0.61 38.41 31.39 0.27 75.65 12.46 –0.72
2022 0.002 0.09 0.94 0.69 60.88 23.37 0.13 81.72 10.90 –0.80
Median 0.005 0.07 0.94 0.63 38.41 20.13 0.11 78.28 11.82 –0.71

Sicily
1974 0.024 0.06 0.93 0.59 35.31 35.16 0.28 75.58 12.04 –0.70
2022 0.003 0.12 0.91 0.63 69.68 25.42 0.07 81.73 9.96 –0.76
Median 0.007 0.06 0.94 0.61 41.70 24.08 0.21 77.88 11.23 –0.70
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