******************************************************************************************************************************************** This readme file is related to the paper "Job creation, job destruction, and fertility in Germany Author: Chen Luo & Ewa Jarosz Software: R, version 4.3.2 ******************************************************************************************************************************************** ******************************************************************************************************************************************** 1) Accessing the data ******************************************************************************************************************************************** Job creation and destruction data are calculated using employee records from the Federal Employment Agency of Germany. County-level data can be purchased by contacting Zentraler Statistik-Service at Zentraler-Statistik-Service@arbeitsagentur.de. More information is available on their website: https://statistik.arbeitsagentur.de/. Data for all other variables, except for the Consumer Price Index (CPI), can be accessed through the Regional Database Germany: https://www.regionalstatistik.de/. CPI data were obtained from GENESIS-Online, the database of the Federal Statistical Office of Germany. The specific variable codes for these datasets are listed below. ******************************************************************************************************************************************** 2) Description of the ZIP file ******************************************************************************************************************************************** A. Clean data and impute missing values on employee records and calculate job creation and job destruction (LM1 - LM5) - LM1 Data_cleaning_labour market dynamic pool_workers - LM2 Data_cleaning_labour market dynamic all female - LM3 Data_cleaning_labour market dynamic all male - LM4 Data_cleaning_labour market dynamic female dominated - LM5 Data_cleaning_labour market dynamic male dominated B. Clean data on other variables (V1 - V4) - V1 Data_cleaning_TFR - V2 Data_cleaning_controls - V3 Data_cleaning_population density - V4 Data_cleaning_robustness C. Main model (M1) - M1 Model_main D. Robustness check (S1 - S2) - S1 Sensitivity_RDW - S2 Sensitivity_other controls E. Full data file: data_review.csv ******************************************************************************************************************************************** 3) Codes of variables on the website of the Regional Database Germany and the Federal Statistical Office of Germany ******************************************************************************************************************************************** V1 Data_cleaning_TFR: - Total fertility rate (TFR): * Live births by age of mothers (12612-93-01-4) * Population by sex and age group (12411-02-03-4) V2 Data_cleaning_controls - GDP and real GDP * GDP per capita (82111-01-05-4) * CPI (61111-0010) - Share of women in the labour force aged 20-29 * Population by sex and age group (12411-02-03-4) * Employees subject to social security contributions by sex and age group (13111-04-02-4-B) - Share of non-German nationals * number of people by age, sex, and nationality (12411-03-02-4) V3 Data_cleaning_population density - Population density * Area of the counties (11111-01-01-4) * Total population by counties (12411-01-01-4) V4 Data_cleaning_robustness - Sex ratio (women to men) * Population by sex and age group (12411-02-03-4) - Share of women between 20 and 45 * Population by sex and age group (12411-02-03-4) Please be advised that the data cleaning code is for reference only. Please adjust the file paths and filenames according to your own settings.