************************************************************************************************ Demographic convergence in marriage timing: Intersecting gender and educational expansion Hanbo Wu (hanbo.wu@nyu.edu) and Luca Maria Pesando (lucamaria.pesando@nyu.edu) Demographic Research Software: Stata 18.5 ************************************************************************************************ ************************************************************************************************ Access to raw data Original data are publicly available through https://www.un.org/development/desa/pd/data/world-marriage-data and http://www.barrolee.com. ************************************************************************************************ ************************************************************************************************ Files in .zip archive 1_female_dta: Female data set 2_male_dta: Male data set 3_gender_difference_dta: Gender difference data set 4_replication_code.do: Stata dofile to replicate the results presented in this paper (Tables 1-3 and Figures 1-3) ************************************************************************************************ ************************************************************************************************ Variables in 1_female_dta country: Country name iso3n: Country code region_geo: World region region_geo_sub: World sub-region year: Year smam_f: SMAM, female yrs_f: Years of schooling, female pri_attained_f: % primary education attended, female pri_completed_f: % primary education completed, female sec_attained_f: % secondary education attended, female sec_completed_f: % secondary education completed, female ter_attained_f: % tertiary education attended, female ter_completed_f: % tertiary education completed, female ************************************************************************************************ ************************************************************************************************ Variables in 2_male_dta country: Country name iso3n: Country code region_geo: World region region_geo_sub: World sub-region year: Year smam_m: SMAM, male yrs_m: Years of schooling, male pri_attained_m: % primary education attended, male pri_completed_m: % primary education completed, male sec_attained_m: % secondary education attended, male sec_completed_m: % secondary education completed, male ter_attained_m: % tertiary education attended, male ter_completed_m: % tertiary education completed, male ************************************************************************************************ ************************************************************************************************ Variables in 3_gender_difference_dta country: Country name iso3n: Country code region_geo: World region region_geo_sub: World sub-region year: Year smam_d: SMAM, gender difference yrs_d: Years of schooling, gender difference ************************************************************************************************