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Can we estimate crisis death tolls by subtracting total population
estimates? A critical review and appraisal

Hampton Gaddy1

Maria Gargiulo2

Abstract

BACKGROUND
In the absence of high-quality data, the death tolls of epidemics, conflicts, and disasters
are often estimated using ad hoc methods. One understudied class of methods, which we
term the growth rate discontinuity method (GRDM), estimates death tolls by projecting
pre-crisis and post-crisis total population estimates using crude growth rates and then
subtracting the results. Despite, or perhaps due to, its simplicity, this method is the source
of prominent death toll estimates for the Black Death, the 1918 influenza pandemic, the
Great Chinese Famine, and the Rwandan genocide, among others.

OBJECTIVE
In this article, we review the influence and validity of GRDM and its applications.
METHODS
Using statistical simulation and comparison with better-validated demographic methods,
we assess the accuracy, precision, and biases of this method for estimating mortality in
absolute and relative terms.

RESULTS
We find that existing GRDM estimates often misestimate death tolls by large,
unpredictable margins. Simulations suggest this is because GRDM requires precision in
its inputs to an extent rarely possible in the contexts of interest.

CONCLUSIONS
If there is sufficient data to specify GRDM well, it is probably possible to also use a more
reliable method; if there is not sufficient data, GRDM estimates are so sensitive to their
assumptions that they cannot be considered informative.
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CONTRIBUTION
These findings question the empirical suitability of existing demographic and
econometric work that has used GRDM to analyse mortality crises. They also underscore
the need for improved data collection in crisis settings and the utility of qualitative
methods in contexts where quantification using better-validated methods is not possible.

1. Introduction

‘How many people have died?’ is a fundamental question underlying studies of
pandemics, conflicts, famines, and disasters. Ascertaining death tolls is a task of great
importance to many academic disciplines and practitioners from outside academia
because they form an input which contributes to the writing of histories. They are also a
means of advocating for both the dead and those still living (Checchi and Roberts 2008).
A count of the dead is not the only way to represent mass mortality, nor is it the only way
to do so quantitatively (Alburez-Gutierrez 2022; Robins and Greenland 1991), but
establishing death tolls that are accurate brings us closer to conveying historical truth and
promoting justice. The importance of that truth is emphasized in human rights work, in
which estimating an accurate death toll can be a step towards accountability and
reconciliation (Asher, Banks, and Scheuren 2008). However, human rights work also
emphasizes that producing statistics about mortality crises requires great care and caution
because the resulting numbers can be so consequential.

Estimating a death toll is often difficult, especially in the context of crisis.
Ascertaining the cause of a single death is often difficult for both empirical (Alter and
Carmichael 1996; Broadbent 2013) and political reasons (Gargiulo 2022; Rocco et al.
2021; Soto 2021). Quantifying the total number of deaths due to a single cause, such as
a pandemic or conflict, can be even more difficult. Furthermore, even if deaths can be
accurately ascribed to a particular cause, some deaths may go undocumented in moments
of crisis (Price and Ball 2015). Over time, some records may also be lost. The
incompleteness of the data that documents deaths further complicates estimates of crisis
mortality, creating additional space for uncertainty and error if not carefully addressed.
When the available data are too sparse to estimate mortality using standard demographic
tools – such as excess mortality modelling, counterfactual cohort-component methods,
multiple systems estimation, or retrospective mortality surveys – scholars and
practitioners often estimate crisis death tolls using ad hoc procedures. This article reviews
the influence and efficacy of one type of ad hoc method that has been independently
invented dozens of times but which lacks a common name. The many variants of this
method estimate a death toll by projecting pre-crisis and post-crisis total population
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estimates and subtracting the resulting discontinuity; for that reason, we name it the
‘growth rate discontinuity method’ (GRDM).

Ad hoc methods for estimating death tolls play an important role in the demography
of crisis contexts. Researchers working on both historical and modern mortality identify
the information they have available and then devise methods they think suitable for the
important work of accounting for the dead. In the case of the 6th century CE Plague of
Justinian, much of the evidence for the death toll comes from closely parsing
contemporary written sources (Mordechai and Eisenberg 2019; Sarris 2022). When
trying to estimate the pre-Columbian size of indigenous American populations, and
therefore the proportion of those populations lost in the following centuries, many ad hoc
methods and accompanying non-standard data sources are used. These include
extrapolating population sizes from the volume of rubble left by abandoned indigenous
settlements (Liebmann et al. 2016), extrapolating them from Aztec and Spanish tax
records (Borah and Cook 1969; Zambardino 1980; see also Smith 2014), and
extrapolating them by applying exponential decay backwards (Dobyns 1983; Thornton,
Miller, and Warren 1991). The estimate that a smallpox epidemic in the 8th century CE
killed one-third of the population of Japan results from an extrapolation from defaults on
loans of rice (Farris 1985: 66).

In more recent settings, ad hoc methods have been used to examine mortality due to
the COVID-19 pandemic in Yemen and Somalia (Koum Besson et al. 2021; Warsame et
al. 2021), as well as civilian and military casualties during the Russian invasion of
Ukraine (Haque et al. 2022; Meduza and Mediazona 2023). Sometimes, death toll
estimates produced by various, often ad hoc methods are added together to produce, for
example, composite tolls of the total number of global conflict deaths between 1740 and
1897 (Eckhardt and Köhler 1980) or the total number of global deaths due to the 1918
influenza pandemic (Johnson and Mueller 2002). In other cases, demographic losses are
estimated by analogy – for example, by assuming that the “plague” of unknown cause
that the Roman Empire began suffering in 165 CE “probably” caused mortality that was
proportional to measles outbreaks in 19th century Polynesia (McNeill 1977: 116).

Ad hoc methods like these are created and applied to mortality crises because
standard data sources are either limited or missing entirely. The answers to quantitative
questions about those crises have important implications for how we construct accounts
of the past and how we understand the present, and ad hoc methods can provide crucial
information about crises and their impacts that is not possible to glean using standard
methods. Due to the nature of the contexts in which these methods are applied, some ad
hoc demographic methods are not routinely subjected to detailed scrutiny, and
understandably so. When a particular ad hoc calculation is the only possible way to
estimate a death toll, there is an urge to accept its result as truth in the absence of any
alternative.
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However, quantifying a death toll is only a useful exercise if it can be done
accurately and with a useful level of precision. This is especially true because
quantification is not the only means of description. As historians have lamented in the
past, scrutinizing ad hoc methods may lead to the realisation that “the data available
cannot lead to a meaningful quantitative result but only to a qualitative assessment”
(Zambardino 1980: 7). Moreover, even if there is a commitment to quantifying a death
toll, scrutiny is still important. Comparing ad hoc estimates that derive from the same
demographic logic allows researchers who have been deploying that logic in isolation to
learn from one another. Like all methods, ad hoc procedures also deserve scrutiny
because they can be used to support inaccurate narratives about crises. For example, ad
hoc methods have led to deep and well-documented misunderstandings about the scale
and causes of 19th century famine in British India (see Chattopadhyay 2022; Hall-
Matthews 2008), state-sponsored killings in the 20th century (see Dulić 2004; Harff
1996), and violence during the 2013–2020 South Sudanese civil war (see Dawkins 2021).
In recent years, scholars have also realized that common ad hoc methods severely
underestimated mortality in the Central African Republic in the context of ongoing
conflict (Gang et al. 2023) and mortality in Puerto Rico during and after Hurricane Maria
in 2017 (Kishore et al. 2018; Santos-Lozada and Howard 2018). In both cases, this meant
that sufficient humanitarian relief did not go to communities that needed it.

This article unpacks a set of ad hoc methods that have often been used to estimate
historical and contemporary crisis death tolls but that, despite their popularity, appear in
no textbook, have no common name, and remain deeply understudied. In particular, we
review the use and reliability of seven related models that we collectively term the
‘growth rate discontinuity method’ (GRDM). Scholars, and especially historians of
disease and genocide, have independently invented some form of this method countless
times; we have only identified a few dozen instances. It is the source of prominent death
toll estimates for the Black Death, the Trail of Tears, the Armenian genocide, the 1918
influenza pandemic, the Great Chinese Famine, the Khmer Rouge regime, and the
Rwandan genocide, among many other contexts. GRDM has been independently
invented by so many scholars working on data-sparse contexts because its intuitive design
implies that it requires little data: each of the seven GRDM variants we identify tries to
estimate the scale of a population crisis by simply extrapolating between pre-crisis and
post-crisis estimates of the given population’s size and attributing any discontinuity to
the demographic impact of the crisis.

Like many ad hoc methods, GRDM comes with very large uncertainty bounds.
Some scholars who have used the method have explicitly recognised this fact in their
work (e.g., Chandra 2013b; Gates 1984; Hilberg 2003; Kleinpenning 2002; Reydams
2021; Whigham and Potthast 1990; van der Eng 2023), and other scholars have critiqued
the use of GRDM from outside (e.g., Bijak and Lubman 2016; Blacker 2007; Cribb 2001;
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Kateb 2001; Nishimura and Ohkusa 2016; Riffe and Noymer 2017; Staveteig 2007;
Tabeau and Zwierzchowski 2013). However, these caveats and critiques have been
written in isolation from each other, only looking at one of the seven model variants we
identify and only focusing on a single crisis of interest. We synthesize and build on the
work of these scholars to offer an extensive review and appraisal of the use of GRDM.
We conclude that if there is enough demographic information to specify GRDM well, a
more reliable method can be used instead to estimate the death toll in question. In fact,
the extreme sensitivity of GRDM to its inputs means that, by itself, a GRDM estimate
should not be relied upon as an indication of the true death toll.

This article proceeds in five parts. In Section 2 we outline the mathematics of
GRDM and its many published applications to mortality crises. In Section 3 we
demonstrate the sensitivity of GRDM to uncertainty in its parameters and therefore when
it should be expected to yield accurate death toll estimates. In Section 4 we review the
accuracy of the death tolls that have previously been estimated using GRDM. In Section
5 we consider whether GRDM can yield accurate relative measures of crisis mortality
that can, for example, be included in a regression analysis of the causes or effects of that
mortality, even if it does not produce accurate death toll estimates in absolute terms.
Section 6 concludes.

2. The logic of GRDM

One strategy for identifying a mass death toll is to identify a large population loss.
Population decline can only occur through mortality or emigration, and if the size of a
population halves in only a few years, it can be assumed that significant excess mortality
has occurred. Large emigration flows can contribute to a population loss, but they
themselves are often due to mass mortality (e.g., Lardinois 1989; Steele 2019). For
example, the fall in the registered population of China between 1959 and 1961 can be
attributed to rural people simply emigrating to urban areas (where they then did not obtain
household registration) rather than to rural people dying from the famine of the period
(Yang 2021), but such efforts are not convincing (see Ashton et al. 1984; Houser, Sands,
and Xiao 2009; Ó Gráda 2013). Therefore, a popular method for estimating historical
death tolls in data-scarce contexts is to approximate the death toll as the difference
between the pre-crisis and post-crisis population.

Figure 1 presents a visual typology of GRDM methods, and this simple method of
subtraction is shown in the first panel of the plot. If P1 is the population size at some time
TP1 before the crisis of interest and P2 is the population size at some time TP2 after the
crisis, a population loss figure (L) can be estimated as P1 – P2. This will be referred to as
Method 1 for estimating L. Then, with B as the estimated number of births occurring in
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the population between TP1 and TP2, M as the number of net migrants into the population
in that period, and DNC as the number of deaths in that period that were not caused by the
crisis, the death toll of the crisis can be estimated as DC = L + B + M – DNC.

Figure 1: A visual typology of seven GRDM models

In the absence of much demographic information about a population of interest
besides longitudinal population sizes, Method 1 has been applied to a large number of
important mortality crises. Bijak and Lubman (2016) report that all available estimates
for the death toll of the Armenian genocide rely on this type of subtraction exercise.
Scholarly disputes about the toll stem solely from scholars relying on different estimates
for the pre- and post-genocide Armenian population (including refugees abroad). Method
1 is also the source of the death toll estimate that led to the 1556 Shaanxi earthquake in
China being ranked the deadliest earthquake in recorded history (e.g., Ritchie 2018) and
to the 8th century CE An Lushan rebellion in China being ranked as the deadliest war in
recorded history as a proportion of the global human population (e.g., Pinker 2011: 195).
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Other applications of Method 1 to estimate death tolls include the atrocities of the Khmer
Rouge in Cambodia and those of Leopold II in the Congo. Table 1 gives a non-exhaustive
but extensive list of death tolls estimated using the logic of Method 1, as well as the six
other GRDM models we have identified in the literature.

Table 1: Published examples of seven types of GRDM model

Method 1
755–763 CE civil war, China (White 2011; see also Fitzgerald
1936)
1556 earthquake, China (see Wang 2007)
1576 cocoliztli epidemic, Mexico (Acuna-Soto et al. 2004)
1779 ethnic cleansing of Iroquois, United States (Koehler 2018)
1885–1908 atrocities, Congo (Morel 1969, 109; Twain 1905:
25)
1904–1908 Herero genocide, Namibia (Whitaker 1985: 9)
1908 earthquake, Italy (Spitzer, Tortorici, and Zimran 2020)
1915–1917 genocide, Armenia (see Bijak and Lubman 2016)
1942–1945 war, Timor-Leste (see Dunn 1983: 26)
1975–1979 mortality under the Khmer Rouge (Vickery 1984:
187)
1975–1979 occupation, Timor-Leste (Hiorth 1985: 61)

Method 2
1838–1839 ethnic cleansing of Cherokee, United States
(Thornton 1984)
1850–1864 war, China (Cao 2024; Ge, Hou, and Zhang 1999:
109)
1876–1879 famine, China (Ge, Hou, and Zhang 1999: 110)
1918 influenza, British India (Chandra, Kuljanin, and Wray
2012; Tumbe 2020)
1918 influenza, Japan (Chandra 2013a)
1918 influenza, Java (Chandra 2013b)
1918 influenza, Sri Lanka (Chandra and Sarathchandra 2014)
1920s–1930s mortality under Stalin (Lorimer 1946: 135;
Rosefielde 1996)
1954–1962 war, Algeria (Ageron 1992; Yacono 1982)
1965–1966 mass killings, Java (e.g., Ash-Shidqi 2021;
Chandra 2017a)
1994 Tutsi genocide, Rwanda (Tissot 2020; Verpoorten 2012)

Method 3
1883 eruption, Krakatoa (Reid 2013)
1885–1908 atrocities, Congo (Twain 1905: 25)
1899–1903 war and epidemic, Philippines (Gates 1984; May
1986)
1914–1922 wars, Anatolia (McCarthy 1983: 137)
1914–1922 wars, Soviet Union (Kulischer 1948: 71; Lorimer
1946: 41)
1918 influenza, British India (Davis 1951: 237; Hill 2011)
1920s–1930s mortality under Stalin (Conquest 1986: 301;
Dyadkin 1983: 48)
1937–1938 mass killings, Dersim (Turkey) (Deniz 2020)
1941–1965 war and mortality under Tito (Rummel 1998: 169)
1944–1945 famine, Java (e.g., van der Eng 2024)
1947 partition, South Asia (Bharadwaj, Khwaja, and Mian 2008;
Hill et al. 2008)
1952–1960 war, Kenya (Elkins 2005: 429)
1975–1979 mortality under the Khmer Rouge (Kiljunen 1984:
44)
1975–1979 occupation, Timor-Leste (Kiernan 2003)
1992–1995 war, Bosnia (Prašo 1996)
1994 Tutsi genocide, Rwanda (Kuperman 2000; Reydams
2021)
1995–1998 famine, North Korea (Lee 2005)

Method 4
1864–1870 war, Paraguay (Reber 1988)
1941–1945 war, Soviet Union (Ellman and Maksudov 1994;
Sokolov 2014)

Method 5
1740–1741 famine, Ireland (Dickson, Ó Gráda, and Daultrey
1982: 165)
1845–1852 famine, Ireland (Cousens 1960)
1864–1870 war, Paraguay (Kleinpenning 2002; Whigham and
Potthast 1999)
1975–1979 occupation, Timor-Leste (Barbedo de Magalhães
1992: 33)

Method 6
1347–1348 plague, e.g., Provence (Benedictow 2021: 736)

Method 7
1959–1961 famine, China (Yao 1999)
1975–1979 occupation, Timor-Leste (Defert 1992: 148)

Method 3 differs from Method 2 in that it projects P1 forward all the way to TP2,
rather than also projecting backward from P2 to K2. Therefore, L is estimated as K1 – P2.
There are two reasons for wanting to use this method. One reason is if the death toll of
interest can be practically treated as instantaneous and there exists a good estimate of the
population’s size immediately after that death toll. For example, in one estimate of the
number of Tutsi killed in the Rwandan genocide, Reydams (2021) projects the Tutsi
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population forward from the 1956 census and then subtracts it from estimates of the
number of immediate survivors of the genocide, plus the size of the Tutsi diaspora (see
also Kuperman 2000; McDoom 2020). The other reason to use Method 3 is if the crisis
is a considerable time before TP2 but one wants to estimate the death toll of interest as the
counterfactually ‘missing’ population at TP2. In an instance of popular demography, Mark
Twain (1905) claimed that Leopold II’s regime killed 10 million people in the Congo on
the basis of the population decline in the period (Method 1), which seems to be the origin
of the popularly cited figure that 10 million people died (see e.g., Hochschild 1999: 233).
But Twain claimed that the Belgian regime could be considered to have killed 15 million
people if the number the population would have increased by in the period if not for
Belgian rule were taken into account (Method 3).

Table 2: The general equations underlying seven types of GRDM model

Method 1

𝐿 = 𝑃1 − 𝑃2

Method 2

𝐾1 = 𝑃1 × 𝑅𝐹
𝑇𝐾1−𝑇𝑃1 ,

𝐾2 = 𝑃2 ÷ 𝑅𝐵
𝑇𝑃2−𝑇𝐾2 ,

𝐿 = 𝐾1 − 𝐾2, where 𝑇𝐾1 = 𝑇𝐾2

Method 3

𝐾1 = 𝑃1 × 𝑅𝐹
𝑇𝐾1−𝑇𝑃1 ,

𝐿 = 𝐾1 − 𝑃2, where 𝑇𝐾1 = 𝑇𝑃2

Method 4

Same as Method 2,
where 𝑇𝐾1 < 𝑇𝐾2

Method 5

Same as Method 3,
where 𝑇𝐾1 < 𝑇𝑃2

Method 6

𝐾2 = 𝑃2 ÷ 𝑅𝐵
𝑇𝑃2−𝑇𝐾2 ,

𝐿 = 𝑃1 − 𝐾2, where 𝑇𝐾2 = 𝑇𝑃1

Method 7

𝐿𝑖 = 𝑃𝑖 × 𝑅𝑃𝑖, 𝑃𝑖 + 1 − 𝑃𝑖 + 1,

𝐿 = ෍𝐿𝑖

𝑛

𝑖 = 1

Methods 1–3 are the most commonly used forms of GRDM, but we have also
identified four other methods that involve estimating a mass death toll based on projecting
a population’s size and identifying a discontinuity in it. Method 4 works like Method 2
but does not assume that the death toll of interest happened instantaneously. This method
has been used to estimate the death toll of the 1864–1870 Paraguayan War (Reber 1988),
allegedly one of the most proportionally lethal wars of modern times. Method 5 works
like Method 4 but can be applied when a population estimate exists for the period just
after the end of the crisis; e.g., the 1851 census of Ireland that roughly coincides with the
end of the Potato Famine (Cousens 1960). Method 6 can be applied when a population
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estimate for the period just before the crisis exists but the post-crisis population estimate
is from a long time after the crisis. Method 7 uses the logic of Method 3 but does so by
using the observed population estimates from throughout an extended crisis to estimate a
cumulative population loss over time (Yao 1999), or by assuming that the crisis death
rate was constant throughout the crisis and therefore iteratively estimating the population
change and death toll over time (Defert 1992).

Most of the GRDM estimates we are aware of have been published outside of the
field of demography proper and might be considered simplistic by some demographers,
but this does not mean that demographers should not engage with these estimates
seriously. Many GRDM death toll estimates constitute important statistics in the fields of
conflict studies, epidemiology, political science, and regional history, and demographers
are well-placed to help scholars in those fields understand these statistics. The COVID-
19 pandemic is a case study in how demographers can use their tools and training to
improve and, when needed, critique the population-related work undertaken by scholars
working in other fields (e.g., Dowd et al. 2020; Gaddy 2021; Meyerowitz-Katz and
Kashnitsky 2020). Demographers’ engagement with the demographic research conducted
in other fields is of great importance (see, e.g., Sheppard and Van Winkle 2020;
Sudharsanan et al. 2022; Gaddy, Fortunato, and Sear 2024), as is particularly well-known
among conflict demographers (Price and Ball 2014; see also Ball and Price 2014) and
demographers engaged with popular narratives around population decline (Sigle 2023;
Gietel-Basten 2023). Moreover, GRDM has been used to estimate mass death tolls in
‘demography proper’, namely in Demography (Chandra, Kuljanin, and Wray 2012),
Population Studies (Cousens 1960; Hill et al. 2008; Chandra 2013b), and Genus (Hill
2011). Therefore, this paper aims to guide both demographers and other scholars in the
use of GRDM and to encourage future systematic work by demographers to improve the
mortality, fertility, and migration research of those working in other fields.

In creating the typology of GRDM applications in Figure 1 and Table 1, we have
skimmed over some nuances in the logic used in each cited reference. For example, Davis
(1951) and Cousens (1960) only apply GRDM as a means of checking the first-order
validity of the mortality estimates they produce using actual death registration.
Meanwhile, some applications only focus on subpopulations (e.g., Gates 1984; Hill
2011), and others use a panel regression implementation of GRDM, rather than explicitly
using the equations shown in Table 1 (e.g., Chandra 2017a; Tumbe 2020). Several
applications fit only roughly into our typology for other reasons (e.g., Benedictow 2021;
Rosefielde 1996).

Table 1 also reflects a selective review of the use of GRDM (and GRDM-like)
thinking. The lack of a common name for any of the GRDM variants means that a
systematic review of the literature was not possible. As we have defined GRDM by its
reliance on estimates of a population’s total size – rather than estimates of age-specific
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populations or well-defined population samples – we have excluded work that uses
counterfactual intercensal cohort-component techniques (e.g., Spoorenberg and
Schwekendiek 2012; Kapend, Bijak, and Hinde 2020) or that follows up on the
respondents of pre-crisis household surveys to extrapolate a crisis death toll using Method
1 (e.g., Frankenberg et al. 2011; Kolbe et al. 2010). Nor do we review the use of GRDM
logic to estimate population loss (L) without an explicit interest in DC, such as in research
on the demographic impact of the Thirty Years War on Germany (e.g., Friedrichs 1997);
or estimate mass emigration as a projection residual, instead of mass mortality (e.g., Ó
Gráda and O’Rourke 1997; Rudnytskyi et al. 2015); or estimate changes in self-
identification as a projection residual (Shoemaker 1999). We also only review the validity
of GRDM in human populations, despite its parallel use by population biologists (e.g.,
Marburger and Thomas 1965; Pace et al. 2021).

However, by offering a relatively straightforward typology of methods and by
roughly mapping a large amount of literature onto it, we have demonstrated that GRDM
is used by demographers, historians, and human rights researchers to try to solve a wide
range of death toll estimation problems. By giving a name to this set of similar ad hoc
methods and by reviewing its uses, we have hopefully made it easier for researchers to
talk about these methods and to use them with a knowledge of their history – if they
choose to use them. By pointing to the application of GRDM to a large number of
disasters and conflicts of great importance, we demonstrate the value of critically
examining how sensitive GRDM is to uncertainty in its parameters and how accurate the
death tolls produced using it tend to be. We examine these issues of validity in the next
three sections of this paper.

3. The sensitivity of GRDM

GRDM has been used to claim a wide range of death tolls for the same event. Before
more precise methods were used to quantify the scale of mortality during the 1975–1979
phase of Indonesia’s occupation of Timor-Leste (Silva and Ball 2006), GRDM was used
to estimate a death toll in that period of less than 95,000 (Hiorth 1985: 61) to up to
345,000 (Defert 1992: 150). The lowest figure equals 14% of the estimated 1974
population of Timor-Leste (International Historical Statistics 2013), while the highest
figure equals 53% of the population. In the context of the 1864–1870 Paraguayan war,
Reber (1988) uses GRDM to estimate a death toll as low as 9% of the population, while
Whigham and Potthast (1999) use it to estimate that up to 69% of the population of
Paraguay died. These very large discrepancies suggest that GRDM may estimate death
tolls with a large amount of uncertainty.
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In this section we explain how GRDM can estimate death toll estimates that differ
wildly from the reality. In particular, we discuss three types of bias that can influence a
GRDM model: census incompleteness, unobserved intercensal growth rates, and any
fertility and migration effects of the crisis of interest. We then show how modest
uncertainty with respect to these three factors tends to produce very large amounts of
uncertainty in the estimated death toll. There are other factors that affect the accuracy of
GRDM estimates. For example, the choice of which GRDM variant (Methods 1–7) to
use is not trivial: a model should be chosen that best utilizes the available data, reflects
the timing of the crisis of interest with respect to the population estimates available, and
minimises uncertainty about the parameters the variant requires. However, the issue of
choosing the most appropriate model does then collapse into the issue of assessing the
certainty of the census completeness, growth rate, and non-mortality effect estimates.
Therefore, we focus primarily on these three issues in the theoretical and simulation work
that follows.

3.1 Census incompleteness

Figure 2 simulates how census incompleteness can impact the accuracy of GRDM death
toll estimates, using the example of the 1918 influenza pandemic in British India. Several
authors have applied GRDM to that context (Chandra, Kuljanin, and Wray 2012; Davis
1951; Hill 2011; Mills 1986; Tumbe 2020), and we are not commenting specifically on
their various findings. Instead, we point out how various reasonable assumptions about
the coverage of the pre-pandemic 1911 census and the post-pandemic 1921 census lead
to the estimation of an unhelpfully wide range of pandemic death toll estimates, using a
synthetic example that blends together different published applications of GRDM in this
context.3 In this synthetic example, GRDM estimates a death toll of 20.7 million people
as a base case. Then, if it is assumed that the 1911 census was between 90% and 95%
complete, and that the 1921 census was between 2% less and 2% more complete than in
1911, GRDM outputs a death toll of between 14.8 million and 30.5 million people. This
is a very large margin of error, given that only 50 million people are estimated to have
died in the 1918 pandemic worldwide (Johnson and Mueller 2002).

In general, GRDM misestimates the death toll of a crisis if either or both of the pre-
and post-crisis estimates of the population’s size are inaccurate. If the post-crisis count is

3 In the base case, we input the 1911 and 1921 census populations of all of British India (i.e., the directly ruled
provinces and the princely states that together comprise contemporary India, Pakistan, Bangladesh, and
Myanmar) into the equations for Method 2 in Table 2, and then we assume that the unobserved 1911–1918
growth rate equals the observed 1901–1911 rate and the unobserved 1918–1921 rate equals the observed 1921–
1931 rate.
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more complete than the pre-crisis count the crisis death toll will be underestimated –
sometimes as a negative number – while if the converse is true the death toll will be
overestimated. Given that GRDM is typically applied in contexts in which detailed
demographic data is unavailable, the issues posed by variable census completeness
should be of significant concern to researchers wanting to use the method. When detailed
demographic data is not available for the population of interest, this may be a sign that
its government lacks the administrative capacity to ensure a complete enumeration at
census time, and when censuses are incomplete their completeness is often influenced by
a milieu of contemporary sociopolitical factors, such that censuses are unlikely to be
consistently incomplete over time. Enumeration completeness will also vary across the
geographic and social strata of the population, and the crisis of interest may itself have
an impact on post-crisis completeness. These factors create particular problems when
trying to use GRDM estimates for causal inference.

A review of the literature reveals that census incompleteness is often pervasive and
endogenous to crises of interest. This endogeneity can occur because the crisis mortality
and the census completeness are influenced by the same social patterns. For example, the
1950 census of the United States was estimated to be 3.5% incomplete nationally but
11.3% incomplete for the country’s non-white population (Coale 1955; US Bureau of the
Census 1960). The 1870 US census undercounted an estimated 6.6% of its total white
population (Hacker 2013), but in a single county in Massachusetts the undercount varied
between 10.7% among the wealthier towns and 39.8% among the poorer ones (Ginsberg
1988). The racial and socioeconomic patterns in census completeness such as these are
common in historical censuses and create clear problems for estimating the scale and
correlates of crisis mortality when relying on GRDM to estimate that mortality.

Error and endogeneity can also come about because the circumstances of the crisis
of interest directly influenced the pre- or post-crisis census completeness. It was a
common claim by early Western sinologists that the An Lushan rebellion killed roughly
70% of the population of 8th century CE China as there was a 70% decline between the
pre- and post-war proto-censuses (Method 1) (see e.g., Giles 1915; Wieger 1928: 191),
and this and similar GRDM estimates have persisted to the present (Pinker 2011: 195;
White 2011). However, the death toll was in fact much smaller and the war simply
decimated the capacity of the imperial tax authorities to count the post-war population
(Fitzgerald 1936, 1947; Yang 2023). Similarly, the repression of Tutsis that preceded the
Rwandan genocide means than the pre-genocide 1991 census greatly underestimated the
number of Tutsis in Rwanda (Verpoorten 2005), while in the first census in Bosnia and
Herzegovina after the country’s 1992–1995 war there seem to have been intentional
population overcounts motivated by the same ethnic tensions that caused the war (Hayden
2021; Žíla and Čermák 2021).
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Censuses are not impartial observers of the population: the ways in which they are
constructed and conducted reflect the biases of those who seek to enumerate (Bouk 2023).
In practice, GRDM leans heavily on the assumption that the available population
estimates are entirely and consistently complete, but this assumption often neglects the
biases and idiosyncrasies in the social processes by which population estimates are
generated. Moreover, adjusting population estimates for census incompleteness is not a
trivial task. When a census is incomplete, it is only with detailed data from outside of the
census – like post-enumeration surveys or detailed mortality and migration data – that
demographers can assess how incomplete it actually is. Whenever scholars have needed
to apply GRDM, that information is usually lacking, and this also means that they lack
the ability to confirm the model assumptions of GRDM. This lack of detailed data means
that there is no consensus about the actual extent of census completeness in South Asia
around the 1918 pandemic (see Chandrasekhar 1972: 33; Mukerji 1982), but even the
fairly narrow range of uncertainty as to the completeness of the 1911 and 1921 census
that we allow for in Figure 2 has massive consequences. GRDM is such a sensitive tool
that uncertainty about the completeness of two censuses in a single country can have the
effect of nearly halving or doubling the global death toll of the 20th century’s most deadly
pandemic.

3.2 Unobserved growth rates

Figure 2 also simulates the effect that uncertainty regarding intercensal growth rates has
on GRDM death tolls. In the case of the 1918 influenza pandemic in British India,
scholars have had to estimate the true growth rate of British India’s population between
the 1911 census and the 1918 pandemic, as well as the true growth rate between the
pandemic and the 1921 census. However, intercensal growth rates are difficult to
ascertain, as we will discuss. In our simulation, we assume that the true pre- and post-
pandemic growth rates were 25% higher or lower (in relative terms) than what we
assumed in the base case. Assuming that all other parameters are the same as in the base
case (e.g., there is no census under-enumeration), that fairly narrow range of uncertainty
in the true intercensal growth rate results in another very wide range of death tolls –
between 14.6 million and 26.9 million people.



Gaddy & Gargiulo: Can we estimate crisis death tolls by subtracting total population estimates?

754 https://www.demographic-research.org

Figure 2: Simulated results of the effect of parameter uncertainty on the death
tolls estimated by GRDM Method 2, using the 1918 influenza
pandemic in British India as an example

Many GRDM applications assume that the growth rates within the intercensal period
of interest are equal to the observed growth rate(s) in the adjacent intercensal period(s).
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For example, Verpoorten’s (2012) estimate of the Tutsi death toll during the 1994
Rwandan genocide assumes that the growth rate from the 1991 census to the beginning
of the genocide was equal to the average growth rate during the baseline period between
the 1978 and 1991 censuses. We also make this type of assumption in our base case in
Figure 2. The rationale for this assumption is clear, but when it is applied in a strong form
– as it often is – it neglects the fact that population growth often varies from period to
period. Even with a large amount of demographic input data or well-informed
expectations about a population’s demographic behaviour, models can fail to predict
population trends reasonably accurately (e.g., Gietel-Basten and Sobotka 2021a, 2021b;
Gaddy 2021). Moreover, the expectation that population growth will continue at the rate
it has in past is not necessarily well-informed, and this can be shown empirically. In the
absence of high-quality data, the annual population of a country must be estimated using
interpolation, extrapolation, graduation, and other techniques that have the effect of
smoothing time series (e.g., Frankema and Jerven 2014; Gerland 2014), but this has the
effect of obscuring how variable growth can be over short timespans. Instead, that
variability can be gleaned from the high-quality annual population estimates in the
Human Mortality Database (HMD).

Using the HMD data from 1751 to 2024, we have tested how well the observed
growth rate in each 10-year period observed (e.g., the Netherlands from 1860–1870)
predicted the (normally unobserved) growth rate over the following 5 years in the same
population (e.g., the Netherlands from 1870–1875). The data allows for 2,773 such
comparisons, and the mean absolute difference between the predicted and observed rate
was 0.32% growth per year. Compounding that difference over a 10-year intercensal
period suggests that growth rate misestimation will routinely cause GRDM to
misestimate a death toll by 3% of the starting population, which is a very large margin of
error for many mortality crises. In 5% of comparisons the error exceeded 0.90% per year,
which would produce an even larger error when estimating a death toll. This analysis of
the HMD has limitations (see Figure A-1 and its accompanying notes), but it shows how
difficult it is to precisely predict intermittent intercensal growth rates in general.

We also note that the growth rate of a population ‘at baseline’ can be misestimated.
Our analysis of the HMD suggests that it can be misguided to use the growth rate from
the intercensal period(s) before or after a crisis to predict the intermittent growth in the
same intercensal period as a crisis, but estimating the intermittent growth rate in the
surrounding intercensal periods is also not trivial if the population of interest experiences
many crises. Chandra, Kuljanin, and Wray (2012) note that using the average growth rate
for 1891–1911 to predict the growth rate of British India between 1911–1918 assumes
that growth in the immediate pre-pandemic period was somewhat like in the 1890s, even
though that period contained highly deadly famines and the early 1910s did not (see
Dyson 2018). When they, more reasonably, only use the 1901–1911 period to predict the
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growth in the early 1910s, their estimate of the death toll of the 1918 pandemic in British
India increases by 11% in one model and 49% in the other. This type of problem is also
important in other contexts. For example, Thornton (1984) assumes that the Cherokee
population grew fairly smoothly between their ethnic cleansing in 1838–1839 and the
end of his series of population estimates in 1880. However, a large proportion of the
Cherokee population also died during the 1861–1865 American Civil War. Thornton
notes this but does not accordingly increase the intermittent growth rate that he calculates
for the post-1840 period. Depending on the scale of the losses during the civil war,
accounting for them could increase the Trail of Tears death toll that he estimates by 10%–
20% (see Figure A-2).

Error in the growth rates applied in a GRDM exercise also compounds exponentially
the longer the intercensal interval. This is especially problematic because for some
contexts of interest only very infrequent population estimates are available. For example,
in Reber’s (1988) attempt to estimate the death toll of the 1864–1870 Paraguayan War,
she projects forward from a population estimate for 1846 to the start of the war (18 years)
and then projects backward from an estimate for 1899 to the end of the war (29 years).
In an attempt to ascertain the death toll of the 1850–1864 Taiping Rebellion, Ge, Hou,
and Zhang (1999) project forward from 1851 to the end of the war (13 years) and then
backward from 1911 to the end of the war (47 years), assuming that the intermittent
growth rate throughout the entire 60-year period was equal to the 0.31% annual rate
observed between 1820 and 1851. However, Figure 2 shows that uncertainty in the
intermittent growth rate estimate that GRDM requires can be very consequential even
within a 10-year projection interval.

3.3 Fertility and migration effects of the crisis

Finally, Figure 2 also simulates how a crisis’ effect on birth and migration rates can
impact GRDM’s ability to estimate the death toll of that crisis. If a crisis decreases
fertility and net in-migration, the population loss estimate at the time of the crisis will be
greater than the crisis’ death toll, all else being equal. If the crisis boosts fertility and net
in-migration, the discontinuity will be less than the death toll of interest. It is conceptually
difficult to formally account for these effects so that the net population-loss estimate that
GRDM produces (L) can be converted into a crisis death toll estimate (DC), and this is
rarely done in a rigorous way in the literature.4

4 These effects can be accounted for by either (1) adjusting the assumed growth rate between the crisis and the
post-crisis population estimate to reflect the crisis’ impact on fertility and migration, or (2) setting the post-
crisis growth rate equal to what would have been expected in the absence of the crisis but roughly decomposing
L (i.e., the population discontinuity estimated) into a death toll, a net fertility effect of the crisis, and a net
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In the case of the 1918 pandemic in British India, it is difficult to estimate both the
magnitude and direction of the pandemic’s effects on fertility and migration. However,
using assumptions that we think are reasonable has a massive effect on the death toll that
GRDM estimates.5 Assuming that all other parameters are the same as in the base case, a
plausible range of fertility and migration effects caused by the 1918 pandemic suggests
the pandemic killed between 11.7 million and 22.7 million in British India.

One reason that it is important to correct for fertility and migration effects is that
mortality crises are often associated with fluctuations in fertility. Mortality can decrease
fertility because it kills people who otherwise would have had children (Polizzi and
Tilstra 2022); this is especially true of epidemics and conflicts that disproportionately hit
reproductive ages (García and Aburto 2019; Jdanov, Glei, and Jasilionis 2010; Viboud et
al. 2013). However, on balance, crises can have very heterogeneous associations with
birth rates. The 1918 influenza pandemic was associated with a much stronger fertility
decline than the pandemic deaths of reproductive-age people alone would predict (Gaddy
and Mølbak Ingholt 2024), while the 2004 tsunami in Indonesia was associated with a
strong increase in fertility overall (Nobles, Frankenberg, and Thomas 2015). Other
mortality crises have no discernible effect on fertility (Svallfors 2022; Floridi, Gargiulo,
and Aburto 2023), while some crises have positive effects on fertility in some populations
but negative ones in others, like the COVID-19 pandemic (Bailey, Currie, and Schwandt
2023; Cozzani et al. 2023; Sobotka et al. 2023). The fact that excess mortality can
strongly dampen, strongly boost, or have no short-term net effect on fertility means that

migration effect of the crisis. In Section 2 of this paper we assume the former approach when introducing
Method 2, so that, for the sake of introductory simplicity, we can say that ‘DC can be taken as directly equal to
L… if the instantaneity assumption is reasonable’. However, we adopt the latter approach in Figure 2 in order
to hopefully give a wider audience a better intuition of why a crisis’ effect on birth and migration rates will
affect GRDM’s estimate of the crisis’ death toll. However, neither of these correction strategies is commonly
employed in the literature that uses GRDM. Most GRDM applications are only interested in DC, but conflate L
with DC without accounting for these fertility and migration effects.
5 Vital statistics in the period suggest a large reduction in fertility (Dyson 1989; Gaddy and Mølbak Ingholt
2024; Mills 1986), and Hill’s (2011) GRDM work concurs, suggesting a deficit of roughly 7 million births
around the time of the pandemic. However, there are several reasons to be unsure about this. Vital statistics
completeness in part of the post-pandemic period may have been disrupted severely by the Non-Cooperation
Movement (Chandrasekhar 1972: 33; see Gaddy and Mølbak Ingholt 2024); indeed, the first detailed study of
post-pandemic fertility anywhere in India (in this case, in Chennai) finds only a minor drop in birth rates
(Chandra, Sarkar, and Rynjah 2024). Also, GRDM is not a precise method of estimating changes in birth rates,
and classical demographic theory does suggest that mortality spikes in pre-transitional populations should cause
spikes in fertility (Livi Bacci 2000). Therefore, we allow for between a net birth deficit of 8 million and a net
birth surplus of 1 million between the pandemic and the 1921 census, independent of the counterfactual growth
rate applied in that period. Understandings of migration in South Asia in this period are even poorer – but we
note that there was appreciable international migration in and out of British India in this period (Elahi and
Sultana 1985; Jain 2012) and the pandemic seems to have affected lives and livelihoods in British India such
that it affected migration decisions (Jha 2023; Donaldson and Keniston 2016). Therefore, we allow for between
a net migration deficit of 1 million and a net migration surplus of 1 million in the immediate post-pandemic
period.
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scholars using GRDM need to know about fertility trends in their context of interest, even
though such information may be lacking.

Mortality crises can also be associated with migration shocks that bias GRDM
estimates of death tolls. Often, the social conditions that cause mass mortality can also
drive mass out-migration from a population – sometimes with the out-migration being
much greater than the triggering mortality (Steele 2017). These conditions can similarly
slow in-migration to a population (Shrestha 2019). On the other hand, mass mortality
causing land availability caused mass in-migration to the regions most affected by the
Taiping Rebellion and the Black Death (Hao and Xue 2017; Jedwab, Johnson, and
Koyama 2022). Overall, the association between mortality crises and migration trends is
highly dependent on social context (Alvarado and Massey 2010). However, some GRDM
applications have not been conscientious in accounting for migration effects. For
example, Wang (2007) argues that the GRDM estimate of the death toll of the 1556
Shaanxi earthquake (830,000 people, or more than 1% of the population of all of
contemporary China; see Deng 2004 for population estimates) is so large simply because
there was mass emigration from the region the earthquake hit.

3.4 Simulation overview

GRDM can be used to estimate a wide range of death tolls whenever there is a small
amount of uncertainty in the values of its parameters. Unfortunately, if a scholar resorts
to using GRDM it likely means that they do not have the strong understanding of the
census completeness and intercensal birth, death, and migration trends in the period that
are required to specify the method. Taking the case of the 1918 influenza pandemic in
British India, if all six discussed parameters are varied – the 1911 and 1921 census
completeness, the unobserved 1911–1918 and 1918–1921 counterfactual growth rates,
and the unobserved net effects of the pandemic on fertility and migration in the 1918–
1921 period – within the bounds we consider plausible, GRDM suggests a true death toll
between –0.8 million and 39.4 million (not shown). That is an unhelpfully wide interval
between no one dying and 12% of the contemporary population dying.

These results demonstrate the importance of simulating the uncertainty bounds that
are implicit in GRDM estimates. As we show, this can be done by identifying reasonable
bounds of the census completeness and intercensal growth rates in the context of interest
and then estimating a range of plausible population loss estimates. Those estimates can
then be combined with estimates of the fertility and migration effects of the crisis of
interest to produce a death toll estimate. It is unfortunate that few published GRDM
estimates have considered the effect that any amount of input uncertainty has on their
death toll estimates, with rare exceptions, including Gates (1984), Reber (1988), and
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Chandra, Kuljanin, and Wray (2012). Simulating the uncertainty of GRDM estimates
may be an important next step in the study of the many historical mortality crises listed
in Table 1. However, our conclusion is that in most contexts of interest it will not be
possible to estimate reasonable (nor helpfully narrow) bounds of the GRDM parameters.
Meanwhile, if the data to accurately estimate the census completeness and intercensal
growth rates does exist, then it is possible to use a more trusted and informative method
of death toll estimation than GRDM.

4. The performance of GRDM for death toll estimation

The previous section suggests that GRDM is too sensitive a method to provide a
reasonably narrow range of death toll estimates – at least in contexts where the data is
not good enough to use a better method. This section examines whether this prediction is
borne out by existing literature by comparing published death toll estimates that have
been produced using GRDM with published death toll estimates for the same crisis that
have been produced using standard demographic techniques.

Our literature review has identified alternative death toll estimates for the same
crises, produced using both GRDM and one of three methods from the standard
demographic toolkit: (1) excess mortality modelling, (2) intercensal cohort-component
techniques, and (3) multiple systems estimation (MSE; also called capture-recapture in
some disciplines). Reviewing the mechanics of these three methods is beyond the scope
of this paper, but each method is much more widely relied upon as a means of estimating
death tolls than GRDM. This is, in part, because they have already been subjected to
many independent examinations of their limitations and are informed by a much larger
amount of input data than GRDM. Excess mortality models use time series of registered
deaths to construct a counterfactual of how many deaths would have occurred in the
absence of a crisis, and therefore how many excess deaths are attributable to that crisis
(see Wakefield and Knutson 2025). They are the standard technique for estimating
epidemic death tolls when information about death registration completeness is available
(e.g., Paglino et al. 2023). Cohort-component models use age-specific census counts,
model life tables, and assumptions about migration to yield intercensal cohort-specific
mortality in excess of that predicted by the model life table (see Preston, Heuveline, and
Guillot 2001). They are the standard technique when crisis death registration is poor but
census quality is high and the baseline mortality conditions are well understood (e.g.,
Heuveline 2015). MSE work on mortality crises uses the overlaps between linked lists of
victims to statistically infer the whole number of victims, including unobserved cases
(see Lum, Price, and Banks 2013). It is the standard technique when civil death
registration is poor but deaths are recorded in multiple, overlapping sources (e.g.,
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Brunborg, Lyngstad, and Urdal 2003). In comparison, GRDM is used only in isolated, ad
hoc contexts, is being systematically examined for the first time in this article, and is
informed by very little input data. The outputs of the three better-validated methods are
not beyond criticism and improvement – which we subject them to below – but they are
a fair benchmark for assessing GRDM’s accuracy and precision.

Figure 3 compares GRDM death toll estimates to the better-validated estimates
available for 8 mortality crises. Of these 8 crises, 3 have been analysed using excess
mortality methods (the 1918 influenza pandemic in British India, Japan, and Java), 3 have
been analysed using cohort-component methods (the 1845–1852 Irish potato famine, the
1952–1960 Mau Mau uprising in Kenya, and the 1975–1979 regime of the Khmer Rouge
in Cambodia), and 2 have been analysed using MSE (the 1975–1979 phase of Indonesia’s
occupation of Timor Leste and the 1992–1995 Bosnian war). The notes below the figure
list the references for the GRDM and better-validated exercises in each case. We are not
aware of any other mortality crises for which both GRDM and better-validated death toll
estimates are available in the literature.

In general, Figure 3 shows that in these cases there is very low and very inconsistent
concordance between the GRDM and better-validated estimates. In four contexts (Japan,
Bosnia, Java, and Cambodia) a narrow range of GRDM estimates is available, none of
which are close to a better-validated value. In one context (Kenya) there is a wide range
of GRDM estimates available, none of which are close to a better-validated value. In two
contexts (British India and Timor-Leste) there is a wide range of GRDM estimates, only
some of which overlap with a better-validated value. Only in the case of the Irish Potato
Famine is the sole GRDM estimate (Cousens 1960; 860,000 deaths) fairly concordant
with the better-validated estimate (Boyle and Ó Gráda 1986; 1 million deaths). However,
the overall low level of concordance between GRDM and better-validated estimates
means that if there were no better-validated death toll estimate available for the Potato
Famine, we would not know that Cousens’ (1960) estimate was fairly accurate. We also
would not know that Chandra, Kuljanin, and Wray’s (2012) GRDM estimate of the death
toll of the 1918 influenza pandemic in British India was accurate but Hill’s (2011) GRDM
estimate was far too low and Tumbe’s (2020) GRDM estimate was somewhat too high.
None of the GRDM estimates we cite in Figure 3 come with thoroughly simulated
uncertainty bounds, but the poor concordance between them and the available, better-
validated estimates suggests that they have very large implicit uncertainty bounds. In the
contexts with available, better-validated estimates, it is common for GRDM estimates to
be two or three times higher or lower than the better-validated estimate.
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Figure 3: Comparison of death toll estimates for 8 mortality crises, produced
with GRDM versus better-validated demographic techniques, in
terms of the proportion of the pre-crisis population killed

Note: The denominators for the death toll estimates are all for the year before the crisis began.
Source: Death toll estimates: 1845–1852, Ireland (Boyle and Ó Gráda 1986; Cousens 1960: 64); 1918, British India (directly ruled
territory only) (Chandra, Kuljanin, and Wray 2012; Davis 1951: 237; Hill 2011: 16, 21; Mills 1986: 39; Murray et al. 2006, adjusted with
the registration incompleteness estimate in Hill 2011; Tumbe 2020: 56); 1918, Japan (Chandra 2013a; Hayami 2015; Murray et al.
2006; Ohmi and Suzuki 2018; Richard et al. 2009; Shimada and Urashima 2010); 1918, Java (Chandra 2013b; Gallardo-Albarrán and
De Zwart 2021, adjusted with the registration incompleteness estimate in Gardiner 1981: 42); 1952–1960, Kenya (Blacker 2007; Elkins
2005: 429; see also Elkins 2011); 1975–1979, Cambodia (Heuveline 2015; Kiljunen 1984: 44; Vickery 1984: 187); 1975–1979, Timor-
Leste (Barbedo de Magalhães 1992: 33; Budiardjo and Liem 1984: 51; Defert 1992: 150; Hiorth 1985: 61; Kiernan 2003; Silva and Ball
2006); 1992–1995, Bosnia (Prašo 1996; Tabeau and Zwierzchowski 2013). Denominators: Nitisastro (1970: 102) (Java), India Office
(1922: 204) (directly ruled British India), and International Historical Statistics (2013) (otherwise).

This presents a problem for a swathe of historical and conflict demography, given
that there are many mortality crises for which the only apparently credible death toll
estimate available comes from GRDM. In many cases, the only indication of a death toll
that we have besides GRDM estimates comes from contemporary accounts that are
understood to be primarily illustrative in nature, or that may be an accurate description
of the death toll in one context but are not appropriate for drawing generalizations. These
cases include the 1838–1839 Trail of Tears of the Cherokee (see Thornton 1984) and the
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1965–1966 mass killings in Java (see Cribb 1990, 2001; Kammen and McGregor 2012;
Roosa 2020). For other crises there is a similar problem: standard demographic methods
have been applied to a crisis, but the quality of the data used in them is sufficiently poor
or uncertain that those methods cannot be systematically trusted, and so it is unclear
whether the available GRDM estimates are accurate. These cases include the 1918
influenza pandemic in Sri Lanka (see Langford and Storey 1992; Murray et al. 2006) and
the 1994 genocide of the Tutsi in Rwanda (see Armstrong, Davenport, and Stam 2020;
Guichaoua 2020).6 These are all cases in which the available data does not allow
researchers to externally validate the available GRDM death toll estimates.

Some of the discordance between the GRDM estimates and the better-validated
estimates in Figure 3 may be attributable to deficiencies in the better-validated work.
However, these concerns do not greatly affect the conclusions we draw from Figure 3.
The better-validated estimates that come from excess mortality modelling are subject to
some uncertainty due to the current lack of consensus as to what is the most accurate way
of calculating excess deaths (see Andreasen and Simonsen 2011; Duerst and Schöley
2024; Li et al. 2018; Nepomuceno et al. 2022; Wakefield and Knutson 2025), but that
amount of uncertainty is small relative to the difference between the excess mortality and
GRDM estimates in Figure 3. We also lack confidence in the better-validated estimate
that we offer for the 1918 influenza pandemic in Java, due to the relative crudeness of
the figure that we use to adjust for death registration incompleteness in that context.
However, the five crises in Figure 3 with available cohort-component and MSE estimates
tell much the same story as when we include the contexts with available excess mortality
estimates.7

Some of the discordance can also be attributed to differences in what the GRDM
and better-validated estimates are measuring. A general problem is that many of the
GRDM ‘death toll’ estimates are upper bounds of excess mortality, given that they may
be biased upwards by a net negative effect of the given crisis on fertility. However,
adjusting the GRDM figures in Figure 3 for fertility deficits does not rehabilitate the track

6 Other cases in which we know of no standard demographic methods being applied include the 1850–1864
Taiping Rebellion (see Meyer-Fong 2015) and the 1876–1879 Northern Chinese Famine (see Ó Gráda 2011:
192–193). Other cases in which standard demographic methods have been applied but with highly uncertain
results include the 1899–1903 Philippine–American war (see De Bevoise 1995: 13), the 1920s–1930s excess
mortality under Stalin (see Anderson and Silver 1985), the 1954–1962 Algerian war of independence (see
Locoh, Nizard, and Vallin 1974), and the 1959–1961 Great Chinese Famine (see Ó Gráda 2013).
7 Some of the discordance in Figure 3 can also be attributed to differences between the denominators used in
calculating the better-validated proportions of the pre-crisis population killed for Figure 3 and between the
denominators (i.e., K1) implicit in GRDM. However, the net effect of this is negligible, given that the patterns
in Figure 3 remain the same when comparing only the absolute death tolls estimated in each source (see Figure
A-3). Additionally, in the case of Timor-Leste, the better-validated estimate we use covers the entire period of
Indonesia’s occupation (1975–1999), rather than just the period that the GRDM estimates specifically focus on
(1975–1979). However, the vast majority of the deaths identified by Silva and Ball (2006) for the longer period
occurred just in the period focused on by the GRDM work.
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record of GRDM for estimating death tolls. Adjusting for a fertility deficit would increase
the discordance between the GRDM and better-validated values for the Irish Potato
Famine and the Khmer Rouge, given that, as it stands, the GRDM toll already
underestimates the better-validated toll. Meanwhile, adjusting for a fertility deficit in
British India in the 1918 pandemic makes Tumbe’s (2020) GRDM estimate much more
plausible but would make the GRDM estimates by Chandra, Kuljanin, and Wray (2012)
much less plausible. Then, in the cases of the 1918 influenza pandemic in Japan (Chandra
and Yu 2015), the Mau Mau uprising (Blacker 2007), and the Bosnian war (Staveteig
2011), we know that the post-crisis fertility deficits were not nearly large enough to
explain the discordance for those crises in Figure 3.

Instead, most of the discordance between the GRDM and better-validated death toll
estimates in Figure 3 must come from inaccuracy in the parameter values that underlie
the GRDM work cited. As demonstrated in Section 3, small amounts of uncertainty in
the GRDM parameters create large amounts of uncertainty in the death toll of interest.
This high sensitivity of GRDM means that many things can go wrong when specifying it
– and it is beyond the scope of this paper to dissect the assumptions that underpin each
of the GRDM exercises cited in Figure 3 – but the sources of the inaccuracy are fairly
clear in two of the cases cited. Blacker (2007) explains that Elkins’ (2005) GRDM work
overestimates the death toll of the Mau Mau uprising because of changes between the
pre- and post-crisis censuses in enumeration completeness, ethnic self-identification, and
colonial classification. In the case of Japan in 1918, in which the high quality of the death
registration available means that excess mortality methods will work very well to
estimate the pandemic’s mortality (Morita 1963; Riffe and Noymer 2017; Takase 1991;
see also Johansson and Mosk 1987), we observe that the discrepancy between Chandra
(2013a) and the available excess mortality work can be explained precisely by the change
in how Japan’s population was estimated around the time of the pandemic.8 It is telling
that in each of these cases, the key problem seems to be GRDM’s assumption that
censuses are complete and are stable in their enumeration practices.

Like the simulations in Figure 2, the real-world examples in Figure 3 suggest that
GRDM is unreliable because of its extreme sensitivity to its inputs, and a GRDM death
toll can only be relied on if another demographic method can be used to verify it.

8 Prior to 1920, de facto population estimates came from de jure household registration adjusted for estimates
of long-term and short-term migration, while from 1920 onwards they came from a de facto census (see Taeuber
1958). The discrepancy between the GRDM population loss estimated in Chandra (2013a) and the excess
mortality estimate in Hayami (2015) can be explained away entirely if the 1920 post-pandemic census was
complete but the pre-pandemic population estimate that Chandra (2013a) uses (the end-of-year 1913 type B de
facto estimate) was roughly a 1.4% overcount. Indeed, comparing the population estimates that Chandra
(2013a) uses for 1913 and 1920 to the current, official estimates for what Japan’s population was at those points
in time suggests that the latter was highly accurate, while the former was a 1.7% overcount (Ministry of Health,
Labour and Welfare 2023).
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5. Can GRDM capture the relative spread of crisis mortality?

Sections 3 and 4 have suggested that GRDM is not a useful method for estimating the
size of death tolls in absolute terms – i.e., for answering whether an epidemic killed
10,000 or 100,000 people in Population A. However, this does not necessarily mean that
GRDM cannot be used to estimate excess mortality in relative terms – i.e., for answering
whether an epidemic probably killed a greater proportion of Population A than Population
B. Since excess mortality has a causal effect on population growth, GRDM may be able
to reliably pick up a signal of the relative scale of that mortality. Therefore, in this final
analytical section we examine whether GRDM death toll estimates tend to capture the
relative spread of crisis mortality well, such that it can at least serve as a proxy for the
variation in real, unobserved death tolls.

This is an important question to ask because it is a common practice to use GRDM
outputs in this way in econometric work. In particular, the population loss (L) estimated
by GRDM is used as a proxy for crisis mortality within a regression framework in order
to estimate the community-level determinants of who was most likely to die in that crisis,
or, to estimate the community-level consequences of that crisis. For example, Verpoorten
(2012) uses GRDM to test the neo-Malthusian hypothesis that land scarcity predicted
violence in the Rwandan genocide, and Chandra (2017a) uses GRDM to estimate patterns
of violence during the mass killings in Java in 1965–1966 (see also Ash-Shidqi 2021;
Chandra 2017b, 2019a, 2019b; Chandra and Zhang 2023; Winward and Chandra 2023).
The use of GRDM outputs as a regression proxy has also played a major role in the
literature on the population change caused by the 1918 influenza pandemic in South Asia
and the subcontinent’s partition in 1947 (see Bharadwaj, Khwaja, and Mian 2008, 2015;
Bharadwaj and Quirolo 2016; Jha and Wilkinson 2012; Tumbe 2020; Xu 2023: Appendix
C).

In order to test whether GRDM outputs are good proxies for ground-truth mortality,
we have collected subnational better-validated mortality estimates for 11 mortality crises.
These crises are from varying sociodemographic and historical contexts, and they have
high-quality mortality estimates available at varying levels of geographic granularity. For
each of these crises we have identified better-validated subnational mortality estimates in
the literature, matched them to subnational population estimates, applied a GRDM model,
and then compared the resulting GRDM discontinuity outputs to the available better-
validated mortality estimates. Specifically, we look at plague mortality across cities in
Italy in 1624–1657 (Method 1); smallpox mortality across neighbourhoods in Amsterdam
in 1870–1872 (Method 2); influenza mortality across county boroughs, metropolitan
boroughs, urban districts, and rural districts in England and Wales in 1918–1919 (Method
1); influenza mortality across provinces in Spain in 1918–1919 (Method 2); influenza
mortality across cities in the United States in 1918–1919 (Method 2); influenza mortality
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across prefectures in Japan in 1918–1920 (Method 2); conflict mortality among soldiers
across municipalities in Austria in 1939–1945 (Method 6); famine mortality across
municipalities in the Netherlands in 1944–1945 (Method 1); conflict mortality across
departments in El Salvador in 1980–1992 (Method 5); state-level COVID-19 mortality
in Brazil in 2020–2021 (Method 5); and county-level COVID-19 mortality in the United
States in 2020–2022 (Method 5).

Figure 4 shows how well GRDM outputs serve as a proxy for the better-validated
death toll estimates available in 11 crisis contexts. The figure compares whether
communities with larger GRDM population loss estimates also had larger better-
validated death tolls, and how tight the relationship between those two variables is. For
example, in the case of the United States in 1918–1919, we compare the excess
pneumonia and influenza death rates estimated by Markel et al. (2007) for 43 cities to a
GRDM exercise that estimates a population discontinuity for end-of-year 1918 by
extrapolating between the 1900–1940 census populations for each city. In the case of the
United States in 2020–2022, we compare the excess all-cause death rates estimated by
Paglino et al. (2023) for 2,963 counties to a GRDM exercise that estimates the
discontinuity between projected population values for the beginning of the pandemic and
the officially estimated populations for mid-year 2022. In both of these cases,
communities with larger population loss estimates did have larger death tolls on average
– this is shown by the positive associations in Figure 4 – but there is also a large amount
of variance in this relationship. In the 1918–1919 case, the GRDM outputs only capture
2.7% of the variance in the better-validated death rates (R2), and in the 2020–2022 case
they only capture 1.1% of that variance.

GRDM outputs have similarly low predictive values in all the case studies we
examine. The R2 values across all 11 cases only range between 0.056% and 9.8%, and in
2 of the 11 cases the association between the GRDM outputs and better-validated death
tolls is not even in the right direction. In Amsterdam in 1870–1872 and in Brazil in 2020–
2021, subpopulations for which GRDM predicted a relatively large death toll in reality
had a relatively small death toll. This means that GRDM outputs are an extremely poor
proxy for ground truth when estimating the determinants or consequences of mortality,
and the statistical associations found may even be of the wrong sign. GRDM’s fit of the
better-validated data is very poor even when population estimates from relatively shortly
before and after the crisis are used (e.g., 1918–1920 in Japan and 1944–1945 in the
Netherlands).
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Figure 4: The associations between GRDM estimates and the subnational
death tolls estimated for 11 mortality crises using standard
demographic methods

Note: The sign convention for the population loss is that a positive value implies a reduction in the population at the time of the crisis,
while a negative value implies an increase in the population.
Source: 1624–1657, Italy (Alfani and Percoco 2019; Malanima 2005); 1870–1872, Amsterdam (Muurling, Riswick, and Buzasi 2023);
1918–1919, England and Wales (Johnson 2001a, 2001b; Nomis 2022); 1918–1919, Spain (Chowell et al. 2014; Instituto Nacional de
Estadística, 2004); 1918–1919, US (Gibson 1998; Markel et al. 2007); 1918–1920, Japan (Hayami 2015; Japan Statistical Association
1987); 1939–1945, Austria (Eder 2022); 1944–1945, Netherlands (Ekamper et al. 2020); 1980–1992, El Salvador (Centro
Centroamericano de Población 2008; Hoover Green and Ball 2019); 2020–2021, Brazil (IBGE 2019, 2023; Robles Colonia et al. 2023);
2020–2022, US (Manson et al. 2023; Paglino et al. 2023; US Census Bureau 2024).
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GRDM is such a poor fit for the relative spread of excess mortality for the same
reasons that it is described to be a poor estimator of mortality in Sections 3 and 4 of this
paper. In the subnational estimation case, the biases presented by unobserved intercensal
migration rates are particularly concerning. Washington D.C. and Nashville, Tennessee
both saw an estimated 0.61% of their population die at the peak of the 1918–1919
influenza pandemic, but variable migration rates mean that GRDM predicts very
divergent pandemic death tolls for the two cities. This is because Washington’s
population boomed between 1910 and 1920, growing 32% in total compared to an
average of 15% per decade in the two decades on either side, while Nashville’s population
stagnated, growing just 7% in total compared to 33% on average in the surrounding
decades. In the case of 17th century Italy, divergent migration rates mean that even though
San Servo and Cagliari both saw roughly 60% of their populations die from plague in
1656–1657, the former’s population fell by half between 1600 and 1700, while the latter’s
population more than doubled.

Even if a strong association is found between GRDM outputs and a suspected cause
or consequence of mortality, this may solely be a data artifact. This is because the sources
of bias described in Section 3 may not be orthogonal to the variable of interest. For
example, if the interest is in the association between relative death tolls (as proxied by
GRDM outputs) and some demographic, economic, or political variable, but that variable
is associated with one of the parameters of GRDM, the estimated association between
that variable and the proxied death toll may be entirely spurious. Population groups that
are relatively poorly counted in the post-crisis census will appear to have had a relatively
high death toll even if they did not actually die at higher rates, and the post- or pre-census
completeness may be associated with the variable of interest, independent of the crisis.
Communities that are estimated to have had relatively high intercensal growth rates, e.g.,
because their growth between the two censuses before the crisis was high, will also appear
to have suffered badly in the crisis, all else being equal. The ratio between the net fertility
and migration response to the crisis of interest and the mortality response may also vary
across populations in a way that is confounded with the variable of interest. Since GRDM
tends to capture true death rates poorly, small amounts of these biases can easily skew its
outputs significantly.

The mortality crises we consider in Figure 4 are not necessarily representative of all
crises to which scholars might want to apply GRDM, but they do present a cautionary
tale. Like in Figure 3, the results suggest that we cannot trust that GRDM estimates are a
good proxy for reality without confirming that fact with standard demographic analysis,
at which point researchers can and should use the output of that more-standard analysis.
The fit between the GRDM and better-validated estimates in Figure 4 does increase
markedly if certain outliers are dropped – for example, the R2 in the case of Spain in
1918–1919 increases from 0.04 to 0.17 if the Canary Islands are omitted – but if we do
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not have access to higher-quality mortality estimates we cannot assess which GRDM
estimates are the outliers.

Therefore, we conclude that GRDM tends to be a highly unreliable method for
assessing both the absolute size of death tolls and their relative size across local units of
analysis. In particular, in a regression setting, GRDM may often be a biased indicator;
this is because the factors that bias GRDM are bound up with the social, political, and
economic contexts that prevail both before and after the crisis of interest. As a result,
GRDM’s measurement error will often be correlated with the variable of interest, making
it difficult to estimate the variable’s true association with crisis mortality.

6. Conclusion

Knowing the size of a crisis death toll is an important task in demography, economic and
social history, epidemiology, conflict studies, and disaster studies, among other fields.
Outside of academia, knowing a death toll can improve a human rights or humanitarian
organization’s ability to seek resources and justice in the face of tragedy. However, death
tolls are sometimes estimated with a large amount of inaccuracy or imprecision. The class
of statistical methods that we term GRDM, which crudely estimate death tolls by
projecting pre- and post-crisis total population estimates and then calculating any
resulting population discontinuity, produce estimates with very large amounts of
imprecision and often with large amounts of inaccuracy. This is especially problematic
because the contexts in which GRDM is resorted to are the exact ones in which the basic
demographic parameters required as inputs to GRDM are not known with much certainty.

In effect, GRDM is a method in want of a proof of concept. After reviewing dozens
of published applications of GRDM, the only cases in which a GRDM death toll estimate
tracks an externally better-validated estimate are Cousens’ (1960) work on the Irish
Potato Famine, Chandra, Kuljanin, and Wray’s (2012) work on the 1918 influenza in
British India, and Hiorth (1985) and Kiernan’s (2003) work on the occupation of Timor-
Leste. Moreover, in the 1918 British India case, GRDM death toll estimates exist that use
similar data and assumptions to Chandra, Kuljanin, and Wray (2012) which are 50%
lower (Hill 2011) or 25% higher (Tumbe 2020) than the better-validated death tolls in
that case, while in the case of Timor-Leste there are GRDM estimates that are up to 235%
higher than the better-validated work (Defert 1992). Future analysis may reveal a well-
justified set of use cases for GRDM, but this first systematic attempt to identify contexts
in which GRDM works well has not identified them. We come to these conclusions based
on simulation work (Section 3), comparisons between published GRDM death toll
estimates and better-validated work for the same crises (Section 4), and comparisons of
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how well GRDM outputs tend to capture the relative spread of better-validated death tolls
in crisis contexts (Section 5).

Scholars have used GRDM because they want to understand crisis mortality in
contexts in which it is difficult to do so, but in those contexts, GRDM estimates come
with very large uncertainty bounds. In Section 3 we have shown one approach to
estimating a range of plausible GRDM death tolls from a technical point of view, using
plausible variation in input parameters. However, a practical concern is that the
uncertainty implicit in GRDM estimates might always be so large as to mean that it may
not be possible to draw reliable insights into the scale, causes, or consequences of
mortality from GRDM work alone. In contexts in which both GRDM and better-validated
death toll estimates are available in the literature, scholars should assess the reasons why
those estimates may diverge and therefore assess which estimates are likely to better
reflect reality. In cases in which only a GRDM death toll estimate is available, scholars
should focus their efforts on gathering the data that can allow them to use standard
demographic techniques for death toll estimation or that will allow them to develop new
reliable methods.

In the absence of such data, we encourage scholars to describe and study mortality
crises qualitatively. Quantitative analysis does have advantages over qualitative analysis:
accurate statistics about mortality crises allow for advocating for the dead and still-living
in ways that accurate qualitative description cannot. However, even in a complete
absence of statistics, witnesses of disease and conflict can and often do provide detailed
qualitative accounts of the scale, causes, and consequences of those crises’ mortality.
There are many historical mortality crises and some contemporary ones for which the
most objectively accurate information available is qualitative, not quantitative. We
question how many academic and activist objectives can be achieved by applying ad hoc
demographic methods to data of very uncertain quality, as opposed to using the
qualitative accounts available from the same context. Some claims can only be made
using numbers, but when a death toll estimate is wildly inaccurate or imprecise, as is
often the case with GRDM, it can negatively affect the desired aim in terms of both
scholarship and justice.
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Supplementary figures

Figure A-1: Absolute differences between the annualized growth rate in a
population between year t and t+10 and between year t+10 and t+15
in the Human Mortality Database (2025)

Note: The HMD focuses disproportionately on the histories of countries that are currently high-income, but its key advantage in this
case is that its annual population estimates result from comparatively large amounts of high-quality data. We calculated the difference
between observed and expected growth rates (as described in the text) for all 40 distinct national populations with no major changes
in their definitions over time, using the HMD as available in February 2025. The years included in the analysis for each population are
shown in the figure.
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Figure A-2: Replication of the Cherokee death toll estimate during the Trail of
Tears in Thornton (1984) (panel a), and a modification of the
estimate accounting for a hypothetical death toll of 7,000 suffered by
the Cherokee during the American Civil War (panel b)

Note: There does not seem to be a better-validated death toll estimate available for the Cherokee death toll during the American Civil
War, but we have taken the figure of roughly 7,000 deaths from Mooney (1975, 149) simply to illustrate this methodology problem.
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Figure A-3: Comparison of death toll estimates for 8 mortality crises produced
with GRDM versus better-validated demographic techniques and
data in terms of the absolute number of people killed

Source: See the notes below Figure 3 for the death toll sources.
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