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Abstract

BACKGROUND
Accurate and precise estimates of the under-5 mortality rate (U5MR) are an important
summary of the health of a population. Full survival curves on the entire age range are
additionally of interest to better understand the pattern of mortality in children under 5.
Modern demographic methods for estimating a full mortality schedule for children have
been developed for countries with good vital registration and reliable census data but
perform poorly in many low- and middle-income countries (LMICs).

OBJECTIVE
In LMICs, the need to utilize nationally representative surveys to estimate U5MR requires
additional statistical care to mitigate potential biases in survey data, acknowledge the
survey design, and handle aspects of survival data, such as censoring and truncation.
We wish to develop parametric and nonparametric approaches for estimating under-5
mortality across time that appropriately utilize complex survey data.

CONTRIBUTION
We propose a parametric approach that is particularly useful in scenarios where data is
sparse and estimation may require stronger assumptions. The nonparametric approach
we propose provides an aid to model validation. We compare a variety of parametric
models to two existing methods for obtaining a full survival curve for children under the
age of 5 and argue that a parametric, survey-weighted (pseudo-likelihood) approach is
advantageous in LMICs. We apply our proposed approaches to survey data from four
LMICs in sub-Saharan Africa. All code for fitting the models described in this paper are
available in the R package pssst.
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1. Introduction

Estimates of child mortality rates for specific age groups at a national and subnational
level provide important information on the health of a country and inform targeted public
health interventions. Historically, estimates of interest have been the neonatal mortality
rate (NMR: probability of dying before 1 month of age), the infant mortality rate (IMR:
probability of dying before 1 year of age), and the under-5 mortality rate (U5MR: proba-
bility of dying before 5 years of age). While these summaries give a rough picture of the
pattern of mortality under the age of 5, they do not constitute a complete pattern of mor-
tality before the age of 5. As such, producing a full, continuous survival curve for chil-
dren under the age of 5 is of interest for informing targeted interventions (Verhulst et al.
2022; Guillot et al. 2022) and quantifying the differences in mortality patterns between
countries. Such estimates are particularly important in low- and middle-income countries
(LMICs), where rates of child mortality are relatively high. In LMICs, demographic in-
formation is primarily collected via nationally representative surveys as opposed to vital
registration, and as such, additional statistical care must be taken to adequately account
for complex survey designs when computing estimates.

Modern demographic methods for estimating a full mortality schedule for children
under the age of 5 have been developed in a high-income country setting where vital reg-
istration information is readily available (Guillot et al. 2022; Verhulst et al. 2022). One
such method is the log-quad model (Guillot et al. 2022), which uses the recently devel-
oped Under-5 Mortality Database (U5MD) (Barbieri et al. 2015) to obtain a continuous
curve quantifying the relationship between age and the (log) probability of dying before
a given age. This approach uses the Human Mortality Database (HMD, an input to the
U5MD) to obtain parameter values, which are plugged into the log-quad model’s formula
to obtain full, continuous curves. Guillot et al. (2022) note that the patterns of mortality
that are estimated from the model are importantly different from the observed data in
LMICs. Eilerts et al. (2021), Romero Prieto, Verhulst, and Guillot (2021), and Verhulst
et al. (2022) note that sub-Saharan African and South Asian countries typically observe
higher levels of the child mortality rate (CMR: the probability of dying between ages 1
and 5 given survival to age 1) for a given IMR when compared to high-income countries.
Verhulst et al. (2022) call this a “very late” pattern of under-5 mortality.

Another popular method that makes use of HMD life tables is the singular value
decomposition (SVD) approach, described in Clark (2019). Here, the information from
HMD life tables are compressed into three or four principal components that summarise
observed full mortality schedules over an entire lifetime. Although this approach can
be used more generally with other life tables – see Alexander, Zagheni, and Barbieri
(2017), for example – the SVD approach used in conjunction with HMD life tables as
in Clark (2019) is intended to produce all-age mortality schedules at a yearly scale. As
this requires the assumption of a constant mortality hazard within yearly age groups,
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this specific application of SVD is not well suited for estimating child mortality, since a
constant hazard between ages 0 and 1 year is an unrealistic assumption.

In addition to different patterns of under-5 mortality between LMICs and high-
income countries, the difference in data structure (vital registration versus nationally rep-
resentative surveys) must also be considered when applying or translating demographic
and statistical methods across different scenarios. In most high-income countries, vi-
tal registration and reliable census information are readily available, hence the mortality
data is more granular and potentially subject to fewer biases than are present in data from
LMICs. The household surveys that are used to estimate mortality in LMICs typically
follow a two-stage, stratified, cluster-sampling design, and are conducted with reason-
ably high frequency (the aim is every 5 years). There are two major household survey
programs collecting data on child mortality: the Demographic Health Surveys (DHS) and
the Multiple Indicator Cluster Surveys (MICS). The methods we propose here are appli-
cable to both DHS and MICS, but here we focus on the DHS. To date, DHS has conducted
more than 400 surveys in over 90 countries, and is one of the primary data sources used
in the production of child mortality estimates by the UN Inter-agency Group for Child
Mortality Estimation (IGME) (Alkema and New 2014). Survey-weighted estimates of
health outcomes with variance estimates that account for the survey design are preferred
when there is enough data to obtain such estimates with high precision, so that resulting
estimates are reflective of the underlying population.

As noted in Hill (1995), Lawn et al. (2008), Guillot et al. (2022), and Romero Prieto,
Verhulst, and Guillot (2021), surveys such as the DHS may be subject to biases in addition
to other data limitations. One example of bias is age heaping, where more children are
recorded as having died at particular ages than is truly the case. In DHS surveys, this
often occurs at age 12 months (see Appendix A.2 for examples). Additionally, the ages
at death of most children are not observed exactly; they are censored. This combined
with the need to appropriately account for survey weights and potential biases from age
heaping form statistical modeling challenges that are unique to surveys in LMICs; all
of these considerations have not yet been addressed simultaneously in the literature in a
framework that constructs a full, continuous survival curve.

An additional challenge specific to U5MR estimation is distinguishing between co-
hort- and period-estimates of mortality. When estimating U5MR, we typically want to
obtain period-specific estimates rather than cohort-specific estimates, as the most recent
cohort-specific estimates of U5MR we can obtain will always be five years in the past.
Period estimates are for “synthetic” children, where the usual approach envisages a hy-
pothetical population of children that live their first five years of life within a single time
period. This is in contrast to a real cohort of children who are born in one time period
and move through time (periods) as they age. The concept of synthetic people (children
or otherwise) allows us to provide estimates of demographic indicators such as life ex-
pectancy or U5MR that are a reasonable summary of the current state of the mortality
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pattern. In practice, when estimating a demographic indicator for synthetic children, we
consider what a real child would contribute to each period as though they were a syn-
thetic child. As detailed in Section 2.3, in a survival analysis framework this corresponds
to treating the time period as a time-varying covariate. While existing methods have
made use of this approach in a discrete survival setting (Mercer et al. 2015), none have
explicitly formulated the problem as that of a time-varying covariate in continuous time.

In this paper we propose a pseudo-likelihood estimate of full mortality schedules for
children under the age of 5 in LMICs. Broadly, pseudo-likelihood methods account for
complex survey data, both in terms of point and uncertainty estimation. Our approach
takes full advantage of the granularity of the data available while accounting for both the
survey design and potential biases in the surveys. Rather than assume a model based on
data from high-income countries, we instead deal with DHS data directly to obtain an
estimate of the survival curve in LMICs at a national level. These methods can flexibly
incorporate a variety of parametric distributions, and are readily extendable to subnational
estimates. In Section 2 we reframe the production of period estimates for under-5 mor-
tality rates in LMICs using continuous survival models for mortality with a time-varying
covariate representation, accounting for potential censoring. In Section 3 we outline our
proposed methodology in addition to two existing methodologies currently used in child
mortality estimation. Section 4 contains an application to four LMICs, a discussion of
model validation, and results. We conclude with a discussion of benefits of our proposed
approach, limitations, and future work in Section 5.

2. Survival framework

Framing our estimation problem in a survival context has several benefits, which we
describe in greater detail in the following subsections. First, it is straightforward to dis-
tinguish between cohort and period estimates by recognizing that the latter creates a left
truncation structure in the data. Second, we can directly incorporate ages at death that are
not observed at exact times using methods for censored data. Finally, a survival formu-
lation imposes known structure on the resulting estimates – namely, that the cumulative
probability of death must be nondecreasing over time, as must be true. As Guillot et al.
(2022) note in their paper, the log-quad model can produce estimates that violate this
requirement when a certain parameter in their model is estimated outside of an empiri-
cal range (see Section 3.3.1). They note that a scenario in which this occurs would be
an extrapolation, and in such cases suggest their model should not be used to perform
estimation. Our approach provides protection in these situations, which may occur more
frequently in LMICs than in high-income countries.
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2.1 Time-to-event notation

To begin, we define common demographic and statistical notation that will be used
throughout the paper. Mortality, while colloquially referred to as a rate, is typically esti-
mated as a probability that a child dies before a certain age. Let X denote age at death for
an individual. We denote the probability that a child died between the ages of x and x+n,
given that they survived until at least age x, as nqx = Pr(X < x + n | X > x). With
age given in months, a convention we follow throughout, we therefore denote U5MR as
60q0, IMR as 12q0, and NMR as 1q0.

We treat mortality as a time-to-event outcome in a survival framework. In this
framework our estimand of interest is the survival curve S(x), which is the probabil-
ity of surviving to at least age x. We can directly translate xq0 to a survival curve via
S(x) = 1− xq0, and note also that nqx = 1− S(x+ n)/S(x).

2.2 Period and cohort

An important distinction in demography is period versus cohort estimates. The age-
period-cohort distinction is subtle but well documented (see Carstensen (2007), for exam-
ple) in the demographic literature, but has important statistical consequences, which we
elucidate in this section. It is worth noting that if mortality by age is relatively constant
across time, cohort and period estimates are roughly equivalent. The need to distinguish
between them arises from the fact that they differ when mortality by age changes over
time, as we typically observe, particularly in LMICs.

The subset of data used to estimate cohort and period estimates differs. In Figure 1,
we illustrate this difference. For simplicity in this explanation, we assume all children are
born on January 1 of a given year. We see that the data used to obtain a cohort estimate
of U5MR for the cohort born in 2000 consists of children born only in the year 2000.
Note that we will always be five years behind schedule in terms of estimate production
because we need to observe the full first five years of a cohort before calculating cohort
U5MR. The data used to obtain a period estimate of U5MR for the year 2004 contains
data from five distinct cohorts: cohorts 2000, 2001, 2002, 2003, and 2004, as seen on the
right-hand side of Figure 1. Of note, when obtaining cohort estimates, both age and time
align, whereas when obtaining period estimates, age and time are distinct. This is because
the age of a synthetic child is not directly tied to time as we observe it. Therefore, we
introduce new notation xqn,p = Pr(X < x + n | X > x, period p) to allow xqn to vary
by period p. For example, the probability a child dies between the ages of 1 and 2 in the
year 2001 is 12q12,2001, where the deaths that inform this estimate must come from the
cohort of children born in 2000 who survive until at least age 1.
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Figure 1: Panel A: Potential lifespans of observations used to obtain a cohort
estimate of U5MR for the cohort born in 2000. Panel B: Potential
lifespans of observations used to obtain a period estimate of U5MR
for the year 2004.

Note: All children are assumed to be born on January 1 of a given year. Horizontal lines indicate the potential
lifespans of children up to January 1, 2005.

2.3 Left truncation

It is important to note that when computing period estimates, some of the data will be
subject to left truncation. In general, left truncation, also known as late entry, occurs if
an individual is not at risk of experiencing the event prior to a certain left truncation time.
If not dealt with, left truncation will generally induce selection bias, as individuals who
experience the event prior to left truncation time would inherently not be included in the
data. Truncation accounts for the potential bias that would be introduced into our estimate
from the individuals who were born in the earlier cohorts yet died before our time period
of interest. As an example, in Figure 1 (panel B), all individuals born at the beginning of
the year 2000 who are still alive by 2004 would be subject to left truncation at age 4 when
computing their contribution to the period U5MR estimate for 2004. If we compute the
period estimate of 60q0,2004 using five discrete values, 12q48,2004, 12q36,2004, 12q24,2004,
12q12,2004, and 12q0,2004, for each cohort born in 2000 through 2004, respectively, left
truncation is dealt with implicitly through the conditional probability structure of nqx, as
we will see in the discrete hazards approach (Allison 2014; Mercer et al. 2015) described
in Section 3.3.2. This accounts for the artificially smaller risk set that each individual
contributes to the period estimate, based on the age at which they enter a given period.

If we are interested in obtaining estimates of U5MR for multiple periods across
time, this truncation structure can be incorporated into a model by treating period as a
time-varying covariate. This is done implicitly in a discrete hazards approach, but can be
done explicitly in the parametric, survey-weighted approach we propose that allows us
to use continuous survival models for age. The discretely categorized variable, period,
is treated as a covariate that changes through time, and is simply an indicator for which
synthetic cohort we are considering.
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2.4 Censoring

A final piece of the survival framework is our approach for dealing with censored ob-
servations. Not all children die before 5 years of age. Since we are interested in our
application in estimating a continuous survival curve for children only up to the age of 5,
all children who do not die before 5 years of age will be right censored at that age since
they can no longer be at risk of dying under the age of 5 at later ages. Children who die in
a time period later than the period in which they were born also contribute right censored
observations to those earlier time periods. A survival framework also allows us to deal
with interval censoring, where we know only that an event has occurred for an individ-
ual between two ages. DHS surveys contain daily observed death dates for children who
died before the age of 1 month, monthly, interval censored observations for children who
died between 1 month and 24 months (e.g., we may observe a child that dies between
the ages of 2 and 3 months), and yearly, interval censored observations for children who
died after 2 years of age. There are some rare exceptions in the data where the DHS
records more detailed information for particular children. Interval censoring can be ap-
propriately addressed by discretely categorizing observations, as is done in some of the
existing approaches described in Section 3, but can also be addressed in the continuous
survival framework that we propose.

3. Methods

In Sections 3.1 and 3.2 we describe two proposed approaches for estimating continuous
survival curves for synthetic children across multiple time periods. Both methods are
based on a finite population, survey-weighted approach – one nonparametric and one
parametric – and are novel in the context of child mortality estimation in LMICs. Existing
models for comparison are described in Section 3.3.

The statistical methods used in the proposed approaches are often referred to as
pseudo-likelihood approaches in the statistical literature (Binder 1983), in which each
individual’s likelihood contribution is weighted by their sampling weight, and the pseudo-
likelihood is maximized to give weighted (pseudo) maximum likelihood estimators
(MLEs). The variance of the estimates is computed via sandwich estimation (Binder
1983). In a pseudo-likelihood setting, we are interested in estimating finite population pa-
rameters, or summary measures for a population at a fixed point in time, given data from
a survey. The practical consequence of this is that the statistical methods used in typical
maximum likelihood estimation to quantify uncertainty are inappropriate when we aim to
estimate finite population parameters from data with a design that is not simple random
sampling. A brief description of the general approach to pseudo-likelihood estimation
described in Binder (1983) is given in Appendix B. Historically, survival methods have
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been extended to complex survey settings in the context of the Cox proportional hazards
model (Binder 1992; Lin 2000; Breslow and Wellner 2007, 2008), but to our knowledge
have yet to be extended directly to a setting that involves both left truncation and interval
censoring, such as is required in the context of mortality estimation in LMICs.

As noted above, the variance estimation in a pseudo-likelihood approach is what dis-
tinguishes this methodology statistically from more commonly used weighted methods.
Bootstrap and jackknife procedures have been developed for variance estimation for var-
ious complex survey designs, including the two-stage stratified cluster design common to
DHS surveys. To obtain bootstrapped variance estimates, nh−1 clusters are sampled with
replacement within strata h, where nh is the number of clusters in strata h (Rao and Wu
1988). We can then quantify uncertainty via pointwise confidence intervals, constructed
using percentiles of the bootstrap samples. A jackknife procedure for the same setting is
described in Pedersen and Liu (2012).

3.1 Nonparametric approach

The classic and most popular nonparametric estimate of a survival curve is the Kaplan-
Meier estimator (Kaplan and Meier 1958). Let ti be a time when at least one event (death)
occurred, di be the number of events that occurred at time ti, and ni be the number of
children who had not had an event or been censored up to time ti. Then the Kaplan-Meier
estimator of the survival curve at time t is

Ŝ(t) =
∏

i:ti≤t

(
1− di

ni

)
.

Under noninformative right censoring and left truncation, the Kaplan-Meier estima-
tor is the nonparametric maximum likelihood estimator (NPMLE) of the survival curve.
However, the Kaplan-Meier estimator, in its simplest form, is unsuitable for interval cen-
sored data. A generalization of the Kaplan-Meier estimator to arbitrarily truncated and
censored observations is the Turnbull estimator (Turnbull 1976). The identifiability of the
Turnbull estimator for the interval censoring case we consider was proven by Wang, Gar-
diner, and Ramamoorthi (1994). In Appendix C.1 we introduce notation for the Turnbull
estimator and describe the estimator alongside an example for our motivating application.
We develop an extension of the Turnbull estimator that incorporates survey weights in Ap-
pendix C.1. Notably, this produces a survey-weighted NPMLE for arbitrarily truncated
and censored data, which to our knowledge is the first of its kind.

While this approach can produce point estimates for survival curves in an LMIC
context, uncertainty quantification is not straightforward. First, it should be noted that due
to the fixed structure of interval censoring present in DHS data (as noted in Section 2.4),
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the Turnbull estimator will never, in practice, allow us to obtain any information about
the survival curve within age groups defined by this structure. In theory, since deaths are
recorded daily in the first month of life and children can die in any given month, given
enough data the Turnbull estimator would produce what is essentially a complete survival
curve with the only information missing being between 24 hour periods. However, since
child deaths are rare, we end up with large gaps of information in the survival curves
produced from this method when applied to DHS data.

Second, Groeneboom and Wellner (1992) note that, compared to the Kaplan-Meier
estimator, the Turnbull estimator has less appealing asymptotics. In the interval censoring
case we consider in this paper, the estimator converges pointwise (i.e., at a fixed value t)
at a rate of (n log(n))1/3 to a non-Gaussian distribution. The question of obtaining valid
confidence bands for the Turnbull estimator remains an open statistical question. Though
some have recommended using a bootstrap procedure for variance estimation (see Sun
(2001), for example), the coverage of these procedures is not well justified (and therefore
not necessarily correct) due to the rate of convergence and non-Gaussian asymptotics.

Although the bootstrap is not well justified for the Turnbull estimator, we do use the
bootstrap procedure appropriate for a two-stage stratified sampling design from Rao and
Wu (1988), described at the beginning of this section, to assist with model comparison
in our application. In our model comparison approach, we treat the Turnbull estimator
as a baseline estimate of the survival curve, and aim to determine whether a given para-
metric model is ‘reasonably’ close to the Turnbull estimator. Obtaining some measure of
uncertainty for the Turnbull estimator facilitates this comparison.

As a well-justified variance estimator is not available for the Turnbull estimator,
we do not recommend using the Turnbull estimator for official estimates of full mortality
schedules for children under the age of 5 in LMICs. It is especially important in scenarios
where the data does not come from a census or other vital registration source to accurately
quantify the uncertainty of estimates. The Turnbull approach does, however, produce a
point estimate of the survival function, and therefore is a useful reference when assessing
how well a parametric distribution summarizes the pattern of U5MR in LMICs, as its
point estimates do not rely on parametric assumptions.

3.2 Parametric approach

In this section, we describe our parametric survival approach if we were interested in
estimating child mortality for a single time period. The notation involved in extending the
approach to multiple time periods is complex, and is included in Appendix C.2, though
we emphasize that the ideas behind the derivation are similar.

Suppose we have children i = 1, . . . ,n, whose death times are independent. Let Ii
be an indicator that child i’s death is interval censored between ages t0i and t1i, where if
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Ii = 0, child i is either right censored or has an exact death time. Let Ei be an indicator
that child i’s death is exactly observed at time ti, where if both Ei and Ii equal zero, ti
is the right censoring time for child i. Finally, let the survey weight for child i be given
by wi.

Following standard probability notation, let Fθ(x) denote the cumulative distribu-
tion function for a parametric distribution evaluated at x that depends on a set of unknown
parameters θ. Then we can write the pseudo-likelihood as

L(θ) =

n∏
i=1

[1− Fθ(ti)]
wi(1−Ii) [Fθ(t1i)− Fθ(t0i)]

wiIi [fθ(ti)]
wiEi . (1)

We obtain pseudo-MLEs (Binder 1983) of the distribution-specific parameters by
maximizing Equation (1) with respect to the unknown parameters θ. To obtain finite pop-
ulation variance estimates, we use a trick in which we treat our estimator as a weighted
total, and use R’s survey package. The details of this calculation are given in Appendix
B. At a high level, the extension of this approach to account for multiple time periods
involves rewriting the likelihood in terms of cumulative hazard functions as opposed to
cumulative distribution functions, and allowing those cumulative hazards to vary by time
period. The resulting pseudo-MLEs have all the convenient statistical properties of MLEs
(asymptotic unbiasedness, normality, efficiency) conditional on a correct parametric as-
sumption.

Of note, Schöley (2019) proposes a continuous, parametric approach model for in-
fant mortality. There are similarities between it and our proposed approach, notably the
use of a continuous hazard to assist in defining a survival curve for children. The method
differs in its focus on the pattern of infant mortality as opposed to U5MR, the use of daily
observed deaths from a high-income country that removes the need to account for interval
censored observations, and the use of data that does not come from a survey and therefore
does not need to account for the survey design. The methods described in Schöley (2019)
serve as high income country analogues to our proposed methods, and we consider one
family of hazards from Schöley (2019) that produces the best fitting survival curve for
US data in our proposed methodology.

Our proposed approach can handle age heaping by lengthening the intervals in which
children die, surrounding the time when age heaping is assumed to occur. In our applica-
tion, we address age heaping at 12 months by interval censoring observations recorded as
having died between 6 and 18 months for that entire 12 month period, [6, 18). We chose
this window to capture a wide range of potential age heaping surrounding 12 months, but
other windows could instead be chosen, depending on assumptions about when age heap-
ing occurs. In aggregating data over these longer intervals, we will lose some precision
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in our estimate of the survival curve but should decrease bias due to age heaping, without
needing to discard the information that age-heaped individuals provide for our estimates.
We emphasize that the benefit of this straightforward approach to addressing age heap-
ing is that the assumptions involved are made transparent – in this case, that the only
age heaping in our data occurs between 6 and 18 months. Incorporating additional as-
sumptions about where age heaping occurs is straightforward; we can include additional
intervals surrounding the dates where age heaping is thought to occur (for example, ages
3 to 10 days for age heaping at 7 days).

3.3 Existing approaches

As our proposed methodology focuses on providing a continuous, age-specific mortality
curve for children under the age of 5, we focus on two existing methods that can provide
this, modulo a few assumptions: the log-quad model (Guillot et al. 2022), and the discrete
hazards model (Li et al. 2019; Wu et al. 2021). The latter requires the assumption that the
discrete hazards nqx, estimated for each x, are constant within the interval [x,x + n) in
order to obtain a full survival curve.

3.3.1 Log-quad model

The log-quad model described in Guillot et al. (2022) builds on the approach in Wilmoth
et al. (2012), and can provide an estimate of a continuous survival curve from ages 0 to
5 using only an observed or previously estimated 60q̂0. Other optional inputs to the log-
quad model include values xq0 for different ages x. Following Clark (2019), we call the
model “empirical” because the coefficients input to the model are not estimated during
the modeling process, but instead are computed beforehand using data from the U5MD
(Guillot et al. 2022). The model specifies

log(xq0) = ax + bx log(60q̂0) + cx log(60q̂0)
2 + vxk,

where x takes on any one of the 22 values {7d, 14d, 21d, 28d, 2m, 3m, 4m, 5m, 6m,
7m, 8m, 9m, 10m, 11m, 12m, 15m, 18m, 21m, 2y, 3y, 4y, 5y}. The age-specific
coefficients {ax, bx, cx, vx} are provided by the U5MD, 60q̂0 is input to the model as a
fixed covariate, and the parameter k is an optional parameter describing whether the age
pattern of mortality is “early” or “late.” By “early,” we mean that NMR and IMR are
higher than what is usually observed when compared to U5MR, and by “late” we mean
that NMR and IMR are lower than what is usually observed when compared to U5MR,
based on the patterns of mortality before the age of 5 in countries with highly reliable
child mortality data, such as those included in the U5MD. When all 22 possible values
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for x are supplied to the model, Guillot et al. (2022) propose an uncertainty band around
the estimated survival curve, based on the deviation of the shape of the estimated curve
from an overall average curve estimated using data from the U5MD. The derivation of
their uncertainty band relies on a few key assumptions (including that the deviations of
the estimated curve from the overall average curve are independent across ages) that are
detailed in Appendix C.4.

Multiple follow-up papers (e.g., Eilerts et al. (2021); Verhulst et al. (2022); Romero Pri-
eto, Verhulst, and Guillot (2021)), as well as Guillot et al. (2022), note that the log-quad
model is generally unsuitable for use in LMICs, or in countries with (broadly) early or
late patterns of child mortality. This is unsurprising given that the coefficients in the
U5MD are estimated from high-income countries, which likely have differing health care
systems and structural and programmatic support for decreasing child mortality. Guil-
lot et al. (2022) and Romero Prieto, Verhulst, and Guillot (2021) also note that there are
known biases in the data sources available in LMICs. One of these issues, age heaping,
can be addressed by excluding data. As we have noted, in DHS surveys especially, age
heaping typically occurs at age 12 months. Rather than input all 22 possible age groups
into the model for estimating the k parameter, the user may instead leave out a range of
ages (Guillot et al. (2022) suggest 9 to 21 months) that they believe covers the ages where
data is heaped. Note that this is distinct from treating deaths between the ages of 9 and
21 months as interval censored. The rationale for this approach is that in removing those
deaths, the estimated curve will essentially smooth over any age heaping that occurs. It
is worth noting that Romero Prieto, Verhulst, and Guillot (2021) find that estimates of
IMR from the log-quad model for most surveys/countries they considered did not deviate
greatly when compared to a model adjusting for age heaping. Regardless, a significant
downside to this approach is that it involves throwing away useful information about the
pattern of U5MR, and they additionally caution that their results may not extend to sub-
Saharan African or South Asian countries.

While the log-quad model can address age heaping, it has additional characteris-
tics that may be unsuitable in LMICs. Due to its formulation, the log-quad model’s
prediction of U5MR is identical to the value of U5MR input as a covariate with zero
uncertainty (when x = 5y, the age-specific coefficients from the model are estimated
as {ax, bx, cx, vx} = {0, 1, 0, 0}). In settings with reliable data, this may be a reason-
able (even desirable) property. However, in LMICs where U5MR is often estimated with
considerable uncertainty, we do not necessarily want our predicted value of U5MR to
align perfectly with a point estimate, but rather to lie within a range of reasonable values
defined by the confidence interval for U5MR.
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3.3.2 Discrete hazards approach

The discrete hazards approach described in Allison (2014) (as well as Mercer et al.
(2015); Li et al. (2019); Wu et al. (2021)) formulates child mortality data in an explicit
survival framework. This framework is currently used by the UN and DHS for estimating
subnational U5MR in LMICs (Li et al. 2019; Wu et al. 2021). The discrete hazards model
splits the time before the age of 60 months into J discrete intervals [x1,x2),[x2,x3), . . . ,
[xJ ,xJ+1), where xj+1 = xj + nj , x1 = 0. Then, the U5MR can be computed as

60q0 = 1−
J∏

j=1

(1− nj
qxj

). (2)

Mercer et al. (2015) divide the first 60 months of life for individuals into six inter-
vals, J = 6: [0, 1), [1, 12), [12, 24), [24, 36), [36, 48), [48, 60), where (x1, . . . ,x6) =
(0, 1, 12, 24, 36, 48), (n1, . . . ,n6) = (1, 11, 12, 12, 12, 12). Data is tabulated into bino-
mial counts indexed by age group j, and potentially indexed by time period p as well,
where the number of observations yjp corresponds to the number of deaths observed in
that age group and time period, and the number at risk, defined as Njp, corresponds to
the number of children alive in that age group and time period. Note that by construction
of the age intervals, we can also estimate NMR and IMR from this model.

Mercer et al. (2015) fit a logistic regression model,

yjp | Njp, nj
qxj ,p ∼ Binomial(Njp, nj

qxj ,p),

logit(nj
qxj ,p) = βjp,

where βjp is an age-period specific intercept. Pseudo-MLEs of βjp are obtained by fitting
this model in R’s survey package, using the svyglm() function. We can use the
pseudo-MLEs estimated from the logistic regression model to construct estimates of 60q0
using Equation (2). Although the binomial likelihood does not reflect the exact data
generating mechanism, the correctly specified likelihood closely corresponds to a product
of binomial distributions. Many sampling schemes in LMICs (including that used by the
DHS) allow data to be aggregated to binomial counts by cluster.

The discrete hazards approach assumes a constant hazard within the specified age
groups. Therefore, while we can estimate a full survival curve for children under the age
of 5, we know its shape will not be realistic, as the probability of survival should change
smoothly with age rather than make discrete jumps. To obtain a more continuous survival
curve, we could have 60 age groups for each 1-month breakdown in the discrete hazards
approach, if the data were available at a monthly level for all 60 age groups. There
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is a balance here between flexibility and parsimony: The model fitted with more age
groups better reflects the underlying smooth changes in hazard, but each hazard estimate
is less precise than we might get fitting a more parsimonious model (if that model is
appropriate).

In contrast with the log-quad model, age heaping can be handled in the discrete
hazards model by construction of the age intervals. For example, one could consider
age intervals (J = 7): [0, 1), [1, 9), [9, 21), [21, 24), [24, 36), [36, 48), [48, 60), where
we group deaths recorded between the ages of 9 and 21 months into a single age group.
Additional notes on the discrete hazards model in conjunction with DHS surveys are in
Appendix C.5.

4. Application

We apply our proposed parametric pseudo-likelihood approach to child mortality data
from Burkina Faso, Malawi, Senegal, and Namibia. We chose single DHS surveys from
each of these countries, and used the proposed approach to obtain continuous survival
curves for the time periods [2000, 2005) and [2005, 2010) to demonstrate the ability of our
approach to produce period estimates throughout time. The data used in the application
is described in detail in Section 4.1, and all parametric models considered are catalogued
in Section 4.2. We additionally fit a survey-weighted version of the Turnbull estimator,
with boostrapped confidence bands, to informally compare the parametric approaches, as
described in Appendix C.1.

For further comparison, we contrast our approach to estimates from the log-quad
model using all 22 age inputs (calculated from the Turnbull estimate) and the discrete
hazards model from Mercer et al. (2015).

For all parametric approaches, we estimate the survival curves in each time period,
uncertainty bands surrounding each survival curve (95% confidence bands based on finite
population variances for all approaches other than log-quad, and the derived uncertainty
band from Guillot et al. (2022) for the log-quad approach), and estimates of NMR, IMR,
and U5MR from these survival curves. We note that the uncertainty band for the log-quad
model does not have a clear interpretation as a 95% confidence interval for the mortality
rate at a given age, and point readers to the derivation in the Supplement of Guillot et al.
(2022) for details.

Software for implementing the proposed methodology is available in the R package
pssst, available at https://github.com/taylorokonek/pssst.
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4.1 Data

All data used in our application comes from the DHS program. Child death data is col-
lected via interviewing mothers and asking them the birth and death dates of all children
they have had. We treat deaths prior to one month as exact and interval censored after-
wards with the interval given as a single month or a single year depending on when the
child died, as discussed previously in Section 2.4.

It has previously been noted that DHS surveys are subject to potential biases that
may negatively impact the resulting estimates of child mortality (Hill 1995; Lawn et al.
2008; Guillot et al. 2022). The main concern for estimates of mortality under the age of 5
years is age heaping at age 12 months, where more children are recorded as having died
at 12 months than would otherwise be expected. Lawn et al. (2008) additionally note that
age-heaping in DHS surveys may occur at 7 days, 14 days, and 1 month. As noted in
Section 3.2, in our proposed approach we address age heaping at 12 months by interval
censoring all observations recorded as having died between 6 and 18 months for that
entire 12 month period [6, 18). Additionally, we compare estimates from our proposed
approach that account for age heaping in this way to estimates that do not make this
adjustment. Further details relating to DHS survey design can be found in Appendix A.1.

4.2 Parametric models

The parametric distributions considered for our proposed approach are listed in Table
1. The exponentially truncated shifted-power (ETSP) family of hazards we consider is
slightly different than that considered in Schöley (2019), as we set c = 0 as opposed to
estimating it via profile likelihood. This parameter c can be fixed in our applications, as
the finest time scale we have in our observations is daily, and the c parameter controls
the hazard in the first hours of life. The generalized Gamma distribution is parametrized
as in the flexsurv package in R, as it is more numerically stable than the original
parameterization (Prentice 1974).
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Table 1: Parametric distributions considered and their characterizations in
terms of a probability density function f (x) or hazard h(x)

Distribution Characterization Parameters

Piecewise Exponential h(x) = β0I [x < 1] + β1I [1 ≤ x < 12] + β2I [x ≥ 12] β0,β1,β2

Gompertz f (x) = βkek+βx−keβx
β, k

Weibull f (x) = βk(βx)k−1e−(βx)k β, k

Lognormal f (x) = 1
xσ

√
2π

e−
1

2σ2 (log(x)−µ)2 σ,µ

Generalized Gamma f (x) = |Q|(Q−2)Q
−2

σxΓ (Q−2) eQ−2(Qω−eQω) Q,σ,ω

Exponentially truncated

shifted power (ETSP)*
h(x) = a(x + c)−pe−bx a, b, c , p

Note: *The ETSP hazard as described in Schöley (2019) contains four parameters, but in our applications we set
c = 0.

4.3 Model validation

To assist with model validation, we fit a survey-weighted version of the Turnbull estima-
tor, with bootstrapped CIs, to provide a guideline for how well each of the parametric
distributions is able to capture the underlying survival curve in each time period. This is
treated as a reasonable reference point for the underlying survival curve as it is free of
parametric assumptions. However, despite our use of bootstrapped CIs there are no well-
justified variance estimates for the Turnbull estimator (Section 3.1), making our compar-
isons to the Turnbull estimator only crudely calibrated.

Let a sample k at age x from the boostrapped distribution of the Turnbull estimate at
age x be denoted θ̃

(k)
x , and a sample k from the asymptotic distribution of the parametric

survival curve at age x be denoted θ̂
(k)
x . We obtain k = 1, . . . , 500 samples, and compute

θ̂
(k)
x − θ̃

(k)
x to obtain samples from the empirical distribution of the difference between

the Turnbull and parametric distribution at a given age x.
We calculate the proportion of uncertainty intervals derived from θ̂

(k)
x − θ̃

(k)
x at ages

x that contain 0 as a rough estimate of how closely each parametric model aligns with the
Turnbull estimate. This is not a formal hypothesis test but rather a means of assessing how
close the parametric estimate is to the Turnbull estimate while accounting for uncertainty
in both estimates.
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4.4 Results

In this section, we display a subset of results from the application of the seven parametric
models, log-quad model, and discrete hazards model to DHS data from Malawi. The
results shown for Malawi are representative of the results for Burkina Faso, Senegal, and
Namibia, which can be found in the Appendices. Additional results for all four countries
can be found in Appendix D, with comparisons to models where the data is not adjusted
for age heaping in Appendix E. Results for models that adjusted for age heaping were
very similar to results for models that did not adjust for age heaping.

4.4.1 Proposed approach

In Figure 2 we display the fitted survival curves for the Weibull and lognormal models us-
ing our proposed methodology in both time periods for Malawi, and compare them to the
Turnbull estimator, log-quad model, and discrete hazards model. While other parametric
models were estimated in addition to the Weibull and lognormal, we chose to include
only these two in Figure 2 for visual clarity (two parametric estimates as opposed to six).
The Weibull was chosen because it is one of the most commonly used parametric sur-
vival models, and the lognormal was chosen because the fit was particularly close to the
Turnbull estimator. Additional visualizations for all parametric models fit can be found
in Appendix D.
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Figure 2: Estimated Weibull and lognormal survival curves for time periods
[2000, 2005) (top) and [2005, 2010) (bottom) for Malawi, compared to
estimated survival curves from the discrete hazards and log quad
approach
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Compared to the Turnbull estimator, the Weibull model tends to estimate higher
survivorship at younger ages and lower survivorship at older ages. The lognormal model
captures the sharp increase in mortality within the first 12 months of life more accurately
than the Weibull model. In Figure 3 we compare estimated lognormal survival curves
across all countries in our application and both time periods.

Figure 3: Estimated lognormal survival curves for time periods [2000, 2005)
(left) and [2005, 2010) (right) for Burkina Faso, Malawi, Namibia, and
Senegal
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Showing just summary measures of mortality (NMR, IMR, U5MR), we see the
same patterns in Figure 4. The Weibull model in each time period underestimates NMR
and overestimates U5MR relative to the Turnbull estimator, particularly for the period
[2000, 2005). In contrast, the lognormal model confidence intervals cover NMR, IMR,
and U5MR in both time periods, with the exception of IMR in [2005, 2010), where only
the Weibull model captures the Turnbull estimate, and U5MR in [2005, 2010), where
the lognormal confidence interval is slightly too low to capture the Turnbull estimate of
U5MR. As seen in Table 2, the intervals for the estimated difference between the Weibull
estimates and Turnbull estimates capture zero for 44% and 60% of monthly ages prior
to age 60 months for [2000, 2005) and [2005, 2010), respectively. In contrast, the inter-
vals for the estimated difference between the lognormal estimates and Turnbull estimates
capture zero for 93% and 80% of monthly ages prior to age 60 months. This aligns with
the visualizations to suggest that the lognormal model is a better parametric fit for the
mortality curve for children under the age of 5 than the Weibull model. The log-quad
model is not included in Table 2 because it is not a model you can sample from based on
the way the uncertainty bands are defined, and therefore our model validation approach
cannot apply.
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Figure 4: Estimates of NMR, IMR, and U5MR for Malawi in periods
[2000, 2005) (top) and [2005, 2010) (bottom)
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Notes: Turnbull point estimates are denoted by vertical black lines, with dashed vertical black lines denoting 95%
confidence intervals. Horizontal error bars are blue if the interval captures the monthly discrete hazards point
estimate, or red if the interval does not capture the monthly discrete hazards point estimate. All 95% confidence
intervals are based on finite population variances, with the exception of the log-quad model, where uncertainty is
calculated as in Guillot et al. (2022).
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Table 2: Model validation results

Country Period
Discrete

Hazards

Piecewise

Exponential
Gompertz Weibull Lognormal

Generalized

Gamma
ETSP

Burkina Faso
(2000, 2005) 48 40 12 17 52 93 33

(2005, 2010) 60 48 9 14 65 70 57

Malawi
(2000, 2005) 73 76 18 44 93 94 94

(2005, 2010) 73 61 12 60 80 82 81

Senegal
(2000, 2005) 72 73 19 28 86 84 85

(2005, 2010) 72 73 13 38 85 63 87

Namibia
(2000, 2005) 86 86 25 56 100 100 99

(2005, 2010) 85 86 29 53 100 100 99

Total All 71 68 17 39 83 86 79

Notes: Percentage of samples (out of 500) from θ̂ − ~θ that contain 0 for all parametric models, countries, and
periods. Results that contain more than 70% of samples noted in bold. The final row contains the overall percentage
across all countries and periods for a given model.

4.4.2 Comparison to existing approaches

The log-quad approach performs adequately, though it is important to note that while the
point estimates may be reasonable, the uncertainty quantification is less so. In particular,
U5MR is assumed to be estimated with no uncertainty. This is not a desirable property
of this approach since our estimates of U5MR that are input to the log-quad model are
themselves estimated with uncertainty. Second, we note that the uncertainty bands around
the log-quad point estimates are in general much wider than the confidence bands for the
parametric models. The confidence bands surrounding the parametric models may be
interpreted at each age x with a 95% confidence interval interpretation based on resam-
pling observations from the finite population, whereas the uncertainty surrounding the
log-quad model does not have as straightforward of an interpretation. Furthermore, out
of all the analyses conducted, only the log-quad models for Namibia (both time periods)
provided estimates and confidence bands that would be considered reasonable by Guil-
lot et al. (2022). All other countries either had estimated values for certain parameters
outside the range suggested by Guillot et al. (2022) or an increasing hazard by age in the
uncertainty interval computed, which is unrealistic.

In general, the discrete hazards approach performed well, though perhaps not suffi-
ciently better than some of the proposed parametric models (such as lognormal or piece-
wise exponential) to justify the need for six parameters in estimating the survival curve.
Furthermore, assuming a constant hazard over certain age intervals is not necessarily an
assumption we wish to make, as it is unrealistic even at a fine scale of age groups. Addi-
tional comments on the results of the application can be found in Appendix D.
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5. Discussion

In this paper, we propose two novel approaches to estimating full survival curves for
child mortality that are well suited to applications in LMICs: one parametric and one
nonparametric, survey-weighted survival model. We detail existing methods that can
be used to estimate full survival curves and explain how they fall short in this specific
context.

Our application suggests that there are potentially very large differences in model
fit between parametric distributions, with the Weibull distributions and Gompertz distri-
butions generally providing the worst fit compared to the Turnbull estimator, in terms of
capturing the survival curve under the age of 5. This suggests that in scenarios where data
may be sparse, the proposed approach is sensitive to the choice of parametric hazard, and
as such, parametric assumptions should be assessed via some form of model validation.
In general, the lognormal model seems to fit the countries in our application reasonably
well. We note that two of the three-parameter models we compared – the piecewise ex-
ponential and ETSP model – also adequately captured the survival curve provided by the
Turnbull estimator, though the piecewise exponential model has the undesirable property
of assuming constant hazards within prespecified age groups, and the ETSP model is
computationally challenging to fit. We conclude that for our application, the lognormal
model outperforms other parametric models in terms of the ability to capture the point es-
timate provided by the Turnbull estimator while only requiring two parameters to define
the survival curve. We note that this choice takes into consideration the trade-off between
parsimony and flexibility; with little data, stronger parametric assumptions, which may
involve fewer parameters, may be needed to produce realistic estimates. This considera-
tion is especially important in small area estimation, where sample sizes are even more
limited.

The benefits of a parametric approach to under-5 mortality estimation, and in partic-
ular to estimating the full survival curve for children under the age of 5, are many. As laid
out in Schöley (2019), correctly specified parametric assumptions about the shape of mor-
tality may greatly assist estimation of the survival curve under the age of 5 in situations
with little data. This becomes particularly relevant in a small area setting, where often
little data is available at small administrative regions (Wakefield, Okonek, and Pedersen
2020). The methods proposed in this paper may be used for small area estimation of child
mortality when a full survival curve is desired, since they contain fewer parameters than
in the usual discrete hazards approach (Mercer et al. 2015).

Further benefits of a continuous parametric approach involve interpretability and
parsimony. The Heligman-Pollard model (Heligman and Pollard 1980), a well-known
parametric demographic model for mortality estimation, provides informative interpre-
tations of the parameters involved in the model, and the same is true of the models we
propose. Of course, we rely on the assumption that the parametric distribution used is
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correctly specified, which may not be the case. However, we have shown that our para-
metric approach may perform as good or better than the discrete hazards approach, and
further exploration of parametric hazards should be investigated to see if model fit can
be improved. We emphasize that our approach is generalizable to other parametric fam-
ilies, not only the ones considered in this paper, and that there may not be one single
parametric distribution that best fits all countries. Especially in scenarios with little data,
reasonable parametric assumptions are useful. Hence it is important to observe and test
these parametric models in settings with more data, such as the national setting we use in
our application. A meaningful question is: ‘Is the fit of a continuous parametric model
at least as good as the six-parameter discrete hazards model currently used by the UN
IGME and DHS?’ When compared to the Turnbull estimator, the lognormal model does
outperform the six-parameter discrete hazards model in terms of our model performance
metric (see Table 2).

An additional benefit of our approach is that we can address potential age heap-
ing without the need to remove any data from our modeling procedure. Similarly to
Romero Prieto, Verhulst, and Guillot (2021), we did not find large differences in result-
ing model estimates comparing models where we adjusted for age heaping to those where
we did not (see Appendix E). Despite not seeing a large impact on estimates, we still find
it valuable that our approach can incorporate this information, particularly since our ap-
plication was not exhaustive and we cannot guarantee this would be the case across all
DHS surveys or scenarios where age heaping may occur more generally.

Limitations of our nonparametric proposed approach include that the Turnbull esti-
mator lacks a well-justified variance estimate. As previously noted, a variance estimate
is not readily available due to the non-Gaussian, cubed-root asymptotics, and a boot-
strap estimate of the variance is not applicable for similar reasons. More work needs to
be done before comparisons between the nonparametric and parametric approaches (and
model validation procedures) can be made with some degree of calibration. Alternative
approaches to model validation such as evaluation via proper scoring rules could be con-
sidered, though existing approaches are not yet generalized to allow for both arbitrarily
censored and truncated observations in addition to a complex survey design (Lumley and
Scott 2015; Yanagisawa 2023).

In conclusion, we have provided a flexible framework for obtaining a complete con-
tinuous survival curve for children under the age of 5 using parametric models. Our
method enables estimation using interval censored, left-truncated observations, as is re-
quired for period estimates of mortality from DHS data. Our approach is flexible in its
ability to adapt to various shapes of mortality curves using different parametric hazard
forms, and also allows for straightforward incorporation of covariates if this were de-
sired. Furthermore, aspects of survey design, which are particularly relevant in LMICs,
are directly acknowledged in our modeling framework to provide design-consistent esti-
mates of mortality with finite population variances. Possible extensions of this work – in
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addition to further exploration of parametric families – include subnational or small area
estimation with the use of Bayesian smoothing models to incorporate spatial information
into the estimation framework (Rao and Molina 2015; Wakefield, Okonek, and Pedersen
2020).
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Appendices

A. Data

A.1 Survey Design

All DHS surveys used in our application follow a two-stage stratified cluster design and
were designed to provide accurate estimates at the Administrative 1 (admin1) subnational
level. Strata are defined by admin1 region and urban/rural status. Each sampling frame
is established from a previous census. Primary sampling units (PSUs), or clusters, are
selected across strata, and the second stage of sampling consists of households within
PSUs. GPS coordinates are displaced by up to 2km for urban clusters and 5km for rural
clusters, and are not displaced outside of their strata. Information related to the sampling
design for the surveys used in our application is given in Table A-1.

Table A-1: Sampling information from DHS surveys

Country Survey Year Census Admin1 Regions PSUs (U/R) Households (U/R)

Burkina Faso 2010 2006 13 574 (176/398) 14,924 (4576/10348)
Malawi 2016 2008 *28 850 (173/677) 27,531 (5190/22341)
Senegal 2010 2002 14 392 (147/245) 8,232 (3087/5145)
Namibia 2013 2011 13 554 (269/285) 11,080 (5380/5700)

Notes: Census year is the year of the census that the sampling frame for the survey is based upon. PSUs and
Households listed are the number of PSUs and Households in the sample, not the sampling frame, and counts
are additionally disaggregated by Urban/Rural (U/R). *At the time of survey, Malawi’s 28 districts were considered
Admin2 regions, with Northern, Central, and Southern regions being Admin1. Some shapefiles now consider the
28 districts to be Admin1, with a finer grid as 243 Admin2 subregions.

A.2 Age heaping in DHS surveys

For the four DHS surveys we consider in our application (Malawi 2015–2016, Burkina
Faso 2010, Senegal 2010, Namibia 2013), we display the total death counts at each age
recorded in the entire survey in Figure A-1. Note that we expect peaks at 24, 36, and 48
months because they capture a full year of deaths as opposed to only single months, but
the peaks observed at 12 months reflect age heaping as they cover the same age span as
the age groups surrounding it. The small number of counts observed at unexpected age
months (25 months, for example) are the few exceptions to the typical interval censoring
scheme used in DHS surveys.
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Figure A-1: Total death counts at each age group within DHS surveys
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B. Pseudo-likelihood

Consider a vector of superpopulation parameters θ and observations y that can be written
as the solution to the score equations S(θ, y) = 0. In a finite population setting, we are
interested in the finite population parameters θ′, obtained by solving

∑N
i=1 S(θ′, y) = 0,

where i = 1, . . . ,N denote all individuals in the finite population. Rather than observe all
N individuals in the population, we instead take a probability sample of j = 1, . . . ,U ≤
N individuals, with weights wj equal to the inverse of their inclusion probabilities in the
sample. We obtain survey-weighted estimates of the finite population parameters θ′ via
the finite population score equations

U∑
j=1

wj × S(θ′, yj) = 0.

This framework, developed in Binder (1983), works for sample designs and popula-
tions that admit asymptotically normal estimators, with certain regularity conditions (see
Binder (1983) for details, as well as a more general case of score equations). As an exam-
ple, for linear regression we would set S(θ, y) = −(yi−x⊤

i θ)xi. The variance of θ′ then
has a sandwich form obtained via a Taylor expansion of the score equations at θ′ = θ.

C. Methodological details

C.1 Turnbull estimator

Suppose we are interested in estimating a full mortality schedule (survival curve) from
ages 0 to 5 at a national level in time periods [2000, 2005) and [2005, 2010). For simplic-
ity, we consider age in full years rather than months in this example. Let [t0, t1] denote
the interval in which an observation is censored, with the convention [t0,∞) for right
censored observations. Our data is recorded as follows:
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Table A-2: (Left) Example data for children alive between the ages of 0 and 5
years in the time periods [2000, 2005) and [2005, 2010). (Right)
Example data, separated into (truncated) observations for each time
period

Individual Year born t0 t1

1 2002 2 4
2 1998 5 ∞
3 2007 1 1
...

...
...

...

Individual Year born Bi Ai Period

1 2002 (−∞,∞) [2, 3] [2000, 2005)
1 2002 [3, ∞) [3, 4] [2005, 2010)
2 1998 [2, ∞) [5, ∞) [2000, 2005)
3 2007 (−∞,∞) [1, 1] [2005, 2010)
...

...
...

...
...

Individual 1 is interval censored to the age range [2, 4], individual 2 is right censored
at age 5, individual 3 is observed to die at exactly 1 year, and so forth. To account for time
period as a time-varying covariate in our model, we rearrange our data by splitting each
observation into multiple observations, one for each time period in which they contribute
to the risk set. The observations are left truncated at the beginning of each time period by
max(0, age at which they enter the time period), where we denote this truncation in set
notation as Bi. If Bi = (−∞,∞), this indicates that no truncation has occurred, which
in this context means the individual was born in the given time period and not before
it. Individuals are censored according to the sets Ai = [Li,Ri], where if Li = Ri the
observation is exactly observed (uncensored), and if Ai = [Li,∞) the observation is right
censored at Li. The number of observations in our expanded dataset is N ≡

∑n
i=1 pi,

where n is the number of individuals in our dataset and pi is the number of time periods
in which individual i contributes to the risk set.

In the above example, for i = 1, . . . ,N observations, let Ai denote an individual’s
censoring set, and let Bi denote an individuals truncation set such that the likelihood
contribution for an individual can be denoted P (Xi ∈ Ai | Xi ∈ Bi), where Xi is the
random variable corresponding to the death of child i. The data is thus in the form of
pairs (A1,B1), . . . , (An,Bn).

The Turnbull estimator is the NPMLE of the cumulative distribution function F̂ of
F , and therefore, also produces the NPMLE of the survival curve Ŝ = 1 − F̂ . We
write the likelihood in a convenient way that allows us to optimize the proportions of the
cumulative distribution function that lie within given intervals subject to the constraint
that the proportions sum to 1 and are greater than 0. This allows us to view the likeli-
hood maximization as a constrained optimization problem that can be solved using an
expectation-maximization algorithm (Dempster, Laird, and Rubin 1977), which we now
describe.
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Assume that each Ai can be written as a finite union of disjoint, closed intervals,
with a single point Ai = Xi being written as the closed interval [Xi,Xi]. Then for each
censoring set Ai we can write,

Ai =

ki⋃
j=1

[Lij ,Rij ],

for i = 1, . . . ,n. Then the likelihood for all observations can be written as

Likelihood =

n∏
i=1

[∑ki

j=1 F (Rij)− F (Lij)
]

P (Bi)
. (3)

Let [q1, r1], . . . , [qm, rm] denote all unique intervals defined by [Lij ,Rij ], and sj =
F (rj) − F (qj). These sj define the proportions of the cumulative distribution function
that lie within an interval [qj , rj ].

We can rewrite the likelihood defined in Equation (3) as

Likelihood =

n∏
i=1

(∑m
j=1 I{[qj , rj ] ∈ Ai}sj∑m
j=1 I{[qj , rj ] ∈ Bi}sj

)
.

Maximizing the above subject to the constraints sj ≥ 0,
∑m

j=1 sj = 1 then corresponds
to maximizing the likelihood for arbitrarily censored and truncated observations, and pro-
vides us with a nonparametric estimate of the MLE. A visual description of the Turnbull
estimator is provided in Figure A-2.
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Figure A-2: A visual representation of the values sj that make up the Turnbull
estimator

Turnbull (1976) suggests the following procedure for obtaining the MLE:

1. Obtain initial values for s0 = s01, . . . , s
0
m subject to

∑m
j=1 s

0
j = 1, s0j ≥ 0.

2. Compute

µij(s) =
I{[qj , rj ] ∈ Ai}sj∑m

k=1, I{[qk, rk] ∈ Ai}sk

νij(s) =
(1− I{[qj , rj ] ∈ Bi})sj∑m

k=1 I{[qk, rk] ∈ Bi}sk

πj(s) =
∑n

i=1 (µij(s) + νij(s))∑n
i=1

∑m
j=1 (µij(s) + νij(s))

.

3. Set s1j = πj(s0).

4. Return to Step 1.
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The procedure exits once some predetermined required tolerance is achieved.
Incorporating survey weights into the Turnbull estimator is straightforward, as the

likelihood contribution for each individual is simply multiplied by their survey weight.
This corresponds to altering Step 2 in the algorithm described, replacing πj(s) with π̃j(s),
where π̃j(s) is

π̃j(s) =
∑n

i=1 wi (µij(s) + νij(s))∑n
i=1 wi

∑m
j=1 (µij(s) + νij(s))

,

and wi is the survey weight for a given individual.

C.1.1 A note on the Turnbull estimator

When an individual is interval censored across the boundary of a time period, that indi-
vidual cannot be split into separate observations that are left truncated at the beginning of
a given time period. Intuitively, this would imply that a single individual could contribute
more than one death to the risk set, which biases estimates of mortality upwards, and also
overstates the amount of information present. When working on a 5-year period scale,
few observations are interval censored across the boundary of a time period. For yearly
periods (or shorter), we expect this to be a more prevalent occurrence. For 2000–2009
data from Malawi, roughly 0.3% of all individuals are interval censored across a time
period boundary, which constitutes approximately 4% of all observed deaths throughout
2000–2009. Table 3 gives the exact breakdown of these percentages for the additional
countries we consider in our application.

Table A-3: Percentages of individuals who are interval censored across a time
period boundary out of all individuals at risk, and percentages of
individuals who are interval censored across a time period boundary
out of all observed deaths for 2000–2009

Country Percent across boundary
out of all individuals

Percent across boundary
out of all deaths

Burkina Faso 0.7 6
Malawi 0.3 4
Namibia 0.1 3
Senegal 0.3 4

To account for an individual in our application who is interval censored across time
period boundaries in the Turnbull estimator, we split the individual into separate left-
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truncated observations at the beginning of the time period, where the last two obser-
vations for this individual will each contain an interval censored observation. We then
down-weight these last two observations by the proportion of the length of the original
individual’s interval that is included in that time period. Note that this assumes that the
age distribution of deaths in each of these two time periods is the same. Though we know
this assumption will not hold (due to cohort effects of conflicts, for example), the resulting
survey-weighted Turnbull estimator is still a useful comparator, as it is a nonparametric
estimator that estimates rates more robustly than a parametric estimator.

C.2 Parametric estimator

Suppose we have children i = 1, . . . ,n. Let,

1. p = 1, . . . ,P : consecutive time periods, which may be single years or combina-
tions of years (e.g., 1 or 5 year periods)

2. lp: length of period p, measured in the same units as age of child

3. yp: date at the start of time period p

4. bi: child’s date of birth

5. api = yp − bi: the age the child would be at yp

6. Ii: an indicator that child i is interval censored. If Ii = 1, child i is interval
censored. If Ii = 0, child i is right censored or has an exact death time

7. Ei: an indicator that child i’s death is exactly observed. If Ei = 1, then Ii = 0,
and if Ei = 0, then Ii could be 0 or 1

8. ti: child’s age at right censoring or age at death

9. t0i: child’s age at beginning of interval censoring, if child is interval censored

10. t1i: child’s age at end of interval censoring, if child is interval censored

11. p̃i: if Ei = 1, the period in which that child died

12. Uxi
(p) = {p : api > −lp, api < xi}. Uxi

(p) is the set of periods for which child i
is alive and at risk of dying, where xi is one of ti, t0i, or t1i where appropriate

Let Fθ denote the cumulative distribution function for the specified parametric distri-
bution, and Hθ the corresponding cumulative hazard function, dependent on a set of
unknown parameters θ. In the case of simple random sampling, the likelihood for all
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individuals in our dataset across all time periods can be written as

L(θ) =

n∏
i=1

Li(θ)

=

n∏
i=1

[1− Fθ,i(ti)]
1−Ii [Fθ,i(t1i)− Fθ,i(t0i)]

Ii [fθ,i(ti)]
Ei ,

=

n∏
i=1

[exp (−Hθ,i(ti))]
1−Ii︸ ︷︷ ︸

right censored

× [exp (−Hθ,i(t0i))− exp (−Hθ,i(t1i))]
Ii︸ ︷︷ ︸

interval censored

× [exp (−Hθ,i(ti))hθ,p̃i(ti)]
Ei︸ ︷︷ ︸

exact

,

where

Hθ,i(xi) =
∑

Uxi
(p)

∫ min{xi,api
+lp}

max{api
,0}

hθ,p(u)du,

and hθ,p(u) is a period-specific hazard function for a specified parametric distribution.

C.3 Influence functions

For a generic parametric model (in a non survey context) with j = 1, . . . , J parameters,
let θ̂ = (θ̂1, . . . , θ̂J) denote the MLE. We can write θ̂j as asymptotically linear, meaning

θ̂j − θj =
1

n

n∑
i=1

∆i + op(n
−1/2),

with influence functions ∆i given by

∆i =

[
∂

∂θ
log(Li(θ̂))

] [
Hlog(Li)

]
,

where ∂
∂θ log(Li(θ̂)) is an n×J dimensional matrix of score functions for each individual

i = 1, . . . n with respect to parameters j = 1, . . . J , and Hlog(Li) denotes the Hessian of
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the log likelihood. Then for an influence function of a pseudo-MLE with weights wi, we
can write

θ̂j − θj =
1

n

n∑
i=1

wi∆i + op(n
−1/2).

To estimate the finite population variance of θ̂j , calculating the finite population vari-
ance of

∑n
i=1 wi∆i corresponds to the Taylor-linearization method described in Binder

(1983). The convenience here lies in that
∑n

i=1 wi∆i is a survey total, and the influence
functions are simple to obtain since we have a parametric model. In fact, only the gradi-
ent of the log likelihood evaluated at the pseudo-MLE and the Hessian obtained during
optimization of the weighted log likelihood are needed to calculate the finite population
variance.

Since our log likelihood is given by

log(L) =
n∑

i=1

[(1− Ii)(−Hi(ti)) + Ii log(exp(−Hi(t0i))− exp(−Hi(t1i)))]

we can then obtain the score for an individual i for each parameter θj as

∂

∂θj
log(L)(θ̂) =

(1− Ii)(−
∂

∂θj
Hi(ti)) + Ii

(
− exp(−Hi(t0i))

∂
∂θj

Hi(t0i) + exp(−Hi(t1i))
∂

∂θj
Hi(t1i)

exp(−Hi(t0i))− exp(−Hi(t1i))

)
.

In practice, it is more computationally efficient to calculate the gradient analytically,
though we may calculate the gradient numerically as well.

C.4 Log-quad model

The only parameter that is estimated in the modeling step when predicting the U5MR
pattern for a new country is k, unless the average pattern of mortality observed across
data in the HMD is desired, in which case k is set to 0. (Of note, Guillot et al. (2022)
consider 60q̂0 to be an additional parameter for the log-quad model. Here we consider
60q̂0 to be data rather than a parameter, as 60q̂0 is input to the model as a fixed value
rather than estimated during the modeling step.) The parameter k is estimated in one of
two ways:
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1. Option 1: If only a single value x is supplied for xq0 to the model as a fixed
constant, k is estimated as

k̂ =
e(x)

vx
,

where e(x) is the difference between the predicted and observed values of xq0 when
the model is fit with k = 0.

2. Option 2: If more than one x is supplied for xq0 to the model as data, k is estimated
as

k̂∗ =

∑
x w(x)e(x)vx∑

x w(x)v
2
x

,

where k̂∗ is the value of k that minimizes the root-mean-square error of predicted
values of xq0 to observed values of xq0 across all values of x supplied, and w(x) is
the weight corresponding to the length of the previous age interval ending at age x
(i.e., w(1) = 7d, w(2) = 7d, . . . , w(22) = 1y).

When all 22 possible values for x are supplied to the model, Guillot et al. (2022)
propose an uncertainty band around the estimated survival curve that can be computed as

k̂∗ ± 1.96×
√

V ar(k̂∗),

V ar(k̂∗) =
22

21

(∑
x w(x)e(x)

2∑
x w(x)v

2
x

− (k̂∗)2
)
.

They propose a separate uncertainty band when only one value for x is supplied to the
model, but we exclude it in our summary as that scenario is of little importance in our
applications. In the derivation of this variance estimator, Guillot et al. (2022) assume that
the errors e(x) are independent across values x, that the weighted errors w(x)e(x) are
homoskedastic, and that k̂∗ is approximately normally distributed.

Additionally, they note that almost all data used to estimate the age-specific coeffi-
cients {ax, bx, cx, vx} in the U5MD is estimated with values of k that fall in (−1, 1).
Due to this observed range of values, they state that values of k that are estimated outside
the range (−1.1270, 1.5047) (the exact range of all observed values) have no “empirical
basis” and may in fact produce estimates of xq0 that progress nonmonotically for children
under the age of 5, whereas actual survival curves must be monotonically nonincreasing.
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Therefore, they suggest a rule of thumb that the estimates should only be used when k is
estimated in the range (−1.1, 1.5).

C.5 Discrete hazards approach

We make two further notes on using the discrete hazards model in conjunction with DHS
surveys. First, in DHS surveys deaths are recorded at exact days between ages 0 and 1
month, monthly until 24 months, and yearly onwards. The discrete hazards model does
not take advantage of the fine-scale daily data available prior to 1 month, and instead
groups those deaths together to form a neonatal age group. If NMR is the smallest demo-
graphic rate we wish to estimate, this grouping is not inherently an issue. However, daily
recorded deaths may be informative of the overall pattern of mortality before the age of
5, so if we instead want to estimate an accurate survival curve over the entire age range
from 0 to 5, grouping all deaths within the first month of life together will not capture the
expected sharp decline in survival in the first week of life, or even the first two weeks of
life.

A second benefit of aggregating our data across age groups is that, especially at
small levels of spatial aggregation, we may have very little data available on the hazard in
some age groups. Consequently, if data is sparse we may prefer to use fewer age groups
in the discrete hazards model, as if no deaths were present in a certain age-period group
(which is common for small regions in small area estimation, or fine-scale time periods),
their estimated hazard will be exactly zero. Hazards of exactly zero are undesirable, as
they are both implausible and it is difficult to get inference around such an estimate.

D. Additional results

One thing to note from the results of our application is that both the ETSP and general-
ized Gamma models performed reasonably well, but again perhaps not significantly better
than some of the two-parameter models. This can be seen for Namibia in Table 2 in par-
ticular, where both differences between the models’ respective parametric estimates and
the Turnbull estimates capture zero for 99% (ETSP) and 100% (generalized Gamma) of
ages where the Turnbull estimate is defined prior to 60 months. However, the lognormal
model performs just as well in Namibia according to this metric. Furthermore, fitting both
models (generalized Gamma and ETSP) results in computational complexities that may
make them less desirable than other parametric options. The ETSP model, for example,
does not have a closed form cumulative hazard, and therefore requires numerical integra-
tion at every step of the likelihood optimization. Therefore, this model takes more time
to fit and is potentially less numerically stable than others with closed form cumulative
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hazards. The generalized Gamma distribution, on the other hand, occasionally produces
unreasonably wide confidence bands. In some countries and time periods, Burkina Faso
[2000, 2005), for example, the shape parameter Q is estimated with a large variance rel-
ative to the other parameters in the model. This results in the confidence bands produced
being highly asymmetric, and so wide as to be unusable in practice. As such, we believe
that in certain cases there may not be enough data under the age of 5 to reliably estimate
all three parameters that define the generalized Gamma survival curve.

A visual representation of model validation results is presented in Figure A-3.

Figure A-3: Model validation results
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Notes: Percentage of samples (out of 500) from θ̂ − θ̃ that contain 0 for all parametric models, countries, and
periods.

In the following section we display additional results from Weibull, generalized
Gamma, piecewise exponential, lognormal, Gompertz, and exponentially truncated shifted
power (ETSP) models for Burkina Faso, Malawi, Senegal, and Namibia.
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Figure A-4: Estimated survival curves for Burkina Faso in [2000, 2005) (top) and
[2005, 2010) (bottom) from ages 0 to 60 months
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Figure A-5: Estimates of NMR, IMR, and U5MR for Burkina Faso in periods
[2000, 2005) (top) and [2005, 2010) (bottom)
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Figure A-6: Empirical distributions of differences in survival curves for Burkina
Faso in [2000, 2005) (top) and [2005, 2010) (bottom) from ages 0 to 60
months between parametric estimates θ̂ and the Turnbull estimate θ̃
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Figure A-7: Estimated survival curves for Malawi in [2000, 2005) (top) and
[2005, 2010) (bottom) from ages 0 to 60 months
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Notes: Parametric, pseudo-likelihood estimates are in blue. All confidence bands are 95% confidence intervals
based on finite population variances, with the exception of the log-quad model where uncertainty is calculated as in
Guillot et al. (2022).
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Figure A-8: Estimates of NMR, IMR, and U5MR for Malawi in periods
[2000, 2005) (top) and [2005, 2010) (bottom)
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Notes: Turnbull point estimates are denoted by vertical black lines. All 95% confidence intervals are based on finite
population variances, with the exception of the log-quad model where uncertainty is calculated as in Guillot et al.
(2022).
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Figure A-9: Empirical distributions of differences in survival curves for Malawi in
[2000, 2005) (top) and [2005, 2010) (bottom) from ages 0 to 60 months
between parametric estimates θ̂ and the Turnbull estimate θ̃
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Figure A-10: Estimated survival curves for Senegal in [2000, 2005) (top) and
[2005, 2010) (bottom) from ages 0 to 60 months
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Notes: Parametric, pseudo-likelihood estimates are in blue. All confidence bands are 95% confidence intervals
based on finite population variances, with the exception of the log-quad model where uncertainty is calculated as in
Guillot et al. (2022).
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Figure A-11: Estimates of NMR, IMR, and U5MR for Senegal in periods
[2000, 2005) (top) and [2005, 2010) (bottom)
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Notes: Turnbull point estimates are denoted by vertical black lines. All 95% confidence intervals are based on finite
population variances, with the exception of the log-quad model where uncertainty is calculated as in Guillot et al.
(2022).
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Figure A-12: Empirical distributions of differences in survival curves for Senegal
in [2000, 2005) (top) and [2005, 2010) (bottom) from ages 0 to 60
months between parametric estimates θ̂ and the Turnbull estimate θ̃

−0.02

0.00

0.02

0.04

0 20 40 60
Age (months)

θ̂
−

θ~

Weibull

−0.02

0.00

0.02

0.04

0 20 40 60
Age (months)

θ̂
−

θ~

Gen. Gamma

−0.02

0.00

0.02

0.04

0 20 40 60
Age (months)

θ̂
−

θ~

Piecewise Exp.

−0.02

0.00

0.02

0.04

0 20 40 60
Age (months)

θ̂
−

θ~

Lognormal

−0.02

0.00

0.02

0.04

0 20 40 60
Age (months)

θ̂
−

θ~

Gompertz

−0.02

0.00

0.02

0.04

0 20 40 60
Age (months)

θ̂
−

θ~

ETSP

Senegal: [2000,2005)

−0.02

0.00

0.02

0.04

0 20 40 60
Age (months)

θ̂
−

θ~

Weibull

−0.02

0.00

0.02

0.04

0 20 40 60
Age (months)

θ̂
−

θ~

Gen. Gamma

−0.02

0.00

0.02

0.04

0 20 40 60
Age (months)

θ̂
−

θ~
Piecewise Exp.

−0.02

0.00

0.02

0.04

0 20 40 60
Age (months)

θ̂
−

θ~

Lognormal

−0.02

0.00

0.02

0.04

0 20 40 60
Age (months)

θ̂
−

θ~

Gompertz

−0.02

0.00

0.02

0.04

0 20 40 60
Age (months)

θ̂
−

θ~

ETSP

Senegal: [2005,2010)

Notes: Note that for [2005, 2010) the differences have been cut off at −0.03 for clarity, though the differences
extend much further negative for the generalized gamma model.
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Figure A-13: Estimated survival curves for Namibia in [2000, 2005) (top) and
[2005, 2010) (bottom) from ages 0 to 60 months
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Notes: Parametric, pseudo-likelihood estimates are in blue. All confidence bands are 95% confidence intervals
based on finite population variances, with the exception of the log-quad model where uncertainty is calculated as in
Guillot et al. (2022).
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Figure A-14: Estimates of NMR, IMR, and U5MR for Namibia in periods
[2000, 2005) (top) and [2005, 2010) (bottom)
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Notes: Turnbull point estimates are denoted by vertical black lines. All 95% confidence intervals are based on finite
population variances, with the exception of the log-quad model where uncertainty is calculated as in Guillot et al.
(2022).
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Figure A-15: Empirical distributions of differences in survival curves for
Namibia in [2000, 2005) (top) and [2005, 2010) (bottom) from ages 0
to 60 months between parametric estimates θ̂ and the Turnbull
estimate θ̃
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E. Comparison of models unadjusted for age heaping

We repeat our application, fitting the same models without addressing age heaping at 12
months (by interval censoring observations recorded as having died between 6 and 18
months for that entire 12 month period).

874 https://www.demographic-research.org

https://www.demographic-research.org


Demographic Research: Volume 53, Article 26

Figure A-16: Estimated survival curves for Burkina Faso in [2000, 2005) (top) and
[2005, 2010) (bottom) from ages 0 to 60 months, not adjusted for age
heaping at 12 months
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Notes: Parametric, pseudo-likelihood estimates are in blue. All confidence bands are 95% confidence intervals
based on finite population variances, with the exception of the log-quad model where uncertainty is calculated as in
Guillot et al. (2022).
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Figure A-17: Estimates of NMR, IMR, and U5MR for Burkina Faso in periods
[2000, 2005) (top) and [2005, 2010) (bottom), not adjusted for age
heaping at 12 months
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Notes: Turnbull point estimates are denoted by vertical black lines. All 95% confidence intervals are based on finite
population variances, with the exception of the log-quad model where uncertainty is calculated as in Guillot et al.
(2022).
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Figure A-18: Empirical distributions of differences in survival curves for Burkina
Faso in [2000, 2005) (top) and [2005, 2010) (bottom) from ages 0 to 60
months between parametric estimates (not adjusted for age heaping)
θ̂ and the Turnbull estimate θ̃
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Figure A-19: Estimated survival curves for Malawi in [2000, 2005) (top) and
[2005, 2010) (bottom) from ages 0 to 60 months, not adjusted for age
heaping at 12 months
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Notes: Parametric, pseudo-likelihood estimates are in blue. All confidence bands are 95% confidence intervals
based on finite population variances, with the exception of the log-quad model where uncertainty is calculated as in
Guillot et al. (2022).
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Figure A-20: Estimates of NMR, IMR, and U5MR for Malawi in periods
[2000, 2005) (top) and [2005, 2010) (bottom), not adjusted for age
heaping at 12 months
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Notes: Turnbull point estimates are denoted by vertical black lines. All 95% confidence intervals are based on finite
population variances, with the exception of the log-quad model where uncertainty is calculated as in Guillot et al.
(2022).
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Figure A-21: Empirical distributions of differences in survival curves for Malawi
in [2000, 2005) (top) and [2005, 2010) (bottom) from ages 0 to 60
months between parametric estimates (not adjusted for age heaping)
θ̂ and the Turnbull estimate θ̃
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Figure A-22: Estimated survival curves for Senegal in [2000, 2005) (top) and
[2005, 2010) (bottom) from ages 0 to 60 months, not adjusted for age
heaping at 12 months
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Notes: Parametric, pseudo-likelihood estimates are in blue. All confidence bands are 95% confidence intervals
based on finite population variances, with the exception of the log-quad model where uncertainty is calculated as in
Guillot et al. (2022).
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Figure A-23: Estimates of NMR, IMR, and U5MR for Senegal in periods
[2000, 2005) (top) and [2005, 2010) (bottom), not adjusted for age
heaping at 12 months
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Notes: Turnbull point estimates are denoted by vertical black lines. All 95% confidence intervals are based on finite
population variances, with the exception of the log-quad model where uncertainty is calculated as in Guillot et al.
(2022).
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Figure A-24: Empirical distributions of differences in survival curves for Senegal
in [2000, 2005) (top) and [2005, 2010) (bottom) from ages 0 to 60
months between parametric estimates (not adjusted for age heaping)
θ̂ and the Turnbull estimate θ̃
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Notes: Note that for [2005, 2010) the differences have been cut off at −0.03 for clarity, though the differences
extend much further negative for the generalized gamma model.
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Figure A-25: Estimated survival curves for Namibia in [2000, 2005) (top) and
[2005, 2010) (bottom) from ages 0 to 60 months, not adjusted for
age heaping at 12 months
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Notes: Parametric, pseudo-likelihood estimates are in blue. All confidence bands are 95% confidence intervals
based on finite population variances, with the exception of the log-quad model where uncertainty is calculated as in
Guillot et al. (2022).
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Figure A-26: Estimates of NMR, IMR, and U5MR for Namibia in periods
[2000, 2005) (top) and [2005, 2010) (bottom), not adjusted for age
heaping at 12 months
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(2022).
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Figure A-27: Empirical distributions of differences in survival curves for
Namibia in [2000, 2005) (top) and [2005, 2010) (bottom) from ages 0
to 60 months between parametric estimates (not adjusted for age
heaping) θ̂ and the Turnbull estimate θ̃
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Table A-4: Model validation results

Country Period Weibull
Piecewise

Exponential

Generalized

Gamma
Lognormal Gompertz ETSP

Discrete

Hazards

Burkina Faso
[2000, 2005) 18 37 91 67 15 67 64

[2005, 2010) 27 73 75 65 12 70 74

Malawi
[2000, 2005) 42 66 94 85 19 92 76

[2005, 2010) 52 76 92 86 17 88 76

Senegal
[2000, 2005) 29 73 85 78 20 85 72

[2005, 2010) 40 73 62 90 14 94 72

Namibia
[2000, 2005) 58 86 100 100 27 99 86

[2005, 2010) 56 86 100 100 29 99 85

Notes: Percentage of samples (out of 500) from θ̂ − ~θ that contain 0 for all parametric models, countries, and
periods for models that do not adjust for age heaping. Results that contain more than 70% of samples noted in bold.

In the following plots, we compare the parametric survival curves and Turnbull esti-
mators when age heaping is adjusted for vs. unadjusted. Note that the point estimates for
the survival curves are extremely similar for the Weibull, lognormal, Gompertz, general-
ized Gamma, and ETSP models, only differing in the third or fourth decimal place. This
suggests that age heaping occurring between 6 and 18 months does not greatly impact
the overall shape of the survival curve. The age-heaping-adjusted piecewise exponential
model differs quite significantly from the unadjusted piecewise exponential model at age
12 months, which is to be expected based on how we interval censored the data in the
adjusted model. Also note that in all cases, the uncertainty surrounding the age-heaping-
adjusted model is slightly larger than the uncertainty surrounding the unadjusted models,
though perhaps not meaningfully larger.
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Figure A-28: Comparison of parametric models where data is adjusted for age
heaping at 12 months versus not for Burkina Faso in periods
[2000, 2005) (top) and [2005, 2010) (bottom)
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Figure A-29: Comparison of Turnbull estimator where data is adjusted for age
heaping at 12 months versus not for Burkina Faso in periods
[2000, 2005) (left) and [2005, 2010) (right)
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Figure A-30: Comparison of parametric models where data is adjusted for age
heaping at 12 months versus not for Malawi in periods [2000, 2005)
(top) and [2005, 2010) (bottom)
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Figure A-31: Comparison of Turnbull estimator where data is adjusted for age
heaping at 12 months versus not for Malawi in periods [2000, 2005)
(left) and [2005, 2010) (right)
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Figure A-32: Comparison of parametric models where data is adjusted for age
heaping at 12 months versus not for Senegal in periods [2000, 2005)
(top) and [2005, 2010) (bottom)
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Figure A-33: Comparison of Turnbull estimator where data is adjusted for age
heaping at 12 months versus not for Senegal in periods [2000, 2005)
(left) and [2005, 2010) (right)
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Figure A-34: Comparison of parametric models where data is adjusted for age
heaping at 12 months versus not for Namibia in periods
[2000, 2005) (top) and [2005, 2010) (bottom)
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Figure A-35: Comparison of Turnbull estimator where data is adjusted for age
heaping at 12 months versus not for Namibia in periods
[2000, 2005) (left) and [2005, 2010) (right)
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