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Research Article

The impact of population heterogeneity on the age trajectory of
neonatal mortality: A study of US births 2008–2014

Jonas Schöley1

Abstract

BACKGROUND
The risk of death declines rapidly over the first month of life. It has been theorized that
the fast pace of this decline is explained by hidden population heterogeneity resulting in a
mortality selection process whereby the frailest infants leave the population at the fastest
rate. A competing explanation situates the rapid mortality decline on the individual level,
pointing toward the risky transition of birth and the subsequent adaptation of the newborn
to the unfamiliar surroundings.

OBJECTIVE
This study estimates heterogeneity in the level and shape of age-specific mortality within
a cohort of newborns and quantifies the degree to which mortality selection explains the
shape of the average neonatal mortality trajectory.

METHODS
Given individual-level data on 20,322,147 births and 82,562 neonatal deaths in the United
States from the 2008–2012 U.S. birth cohort, I calculate life tables for 252 mutually ex-
clusive strata each defined by a unique combination of observed birth characteristics.
Using this information, I characterize the distribution of mortality risk and its evolution
over the first 28 days of life and decompose changes in key characteristics of this distri-
bution – the mean, the variance, and the mean-to-mode ratio – into a mortality selection
and a direct component.

RESULTS
The average age trajectory of neonatal mortality is highly influenced by a small group
of frail newborns and does not reflect the rather flat age effect estimated for the healthy
majority of the birth cohort. While the risk decline over the first day of life is substantially
influenced by mortality selection, the overall age trajectory is better explained by the
convergence of high-risk toward low-risk population strata.

1 Max Planck Institute for Demographic Research, Rostock, Germany. Email: schoeley@demogr.mpg.de.
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CONTRIBUTION
I contribute an empirical test of the hypothesis that the age trajectory of mortality in the
days and weeks following birth is an artifact of mortality selection.

1. Introduction

Never again throughout the existence of a cohort will the hazard of death change as
rapidly as it does during the first few weeks following birth. For the 2009–2012 birth
cohort in the United States, the risk of death falls tenfold over the first day of life, and
again by a factor of ten over the next four weeks. But how reflective is this population-
level phenomenon of a single newborn’s risk trajectory? Is the period of exceptional risk
right after birth part of every human’s experience, or have we been led astray by one more
of “heterogeneity’s ruses” (Vaupel and Yashin 1985b)? In this paper, I seek to quantify
the impact of population heterogeneity on the age trajectory of neonatal mortality based
on observed mortality differences in a cohort of US-born infants.

Populations in which members are heterogeneous concerning their risk of death are
subjected to mortality selection, which may be defined as the changing composition of
a cohort over age due to heterogeneous mortality. As mortality is the rate of leaving a
population due to death, with time, the proportion of low-mortality strata will increase,
whereas strata with high mortality will become less prevalent. In consequence, any ob-
served change of a cohort’s trait over age (such as income, health, or risk of death) may
result from a change either within the stratum trait or in the cohort’s composition along
those strata over age due to mortality selection.

A rich (bio)demographic literature exists for the special case of mortality selection
driving the shape of the population-level hazard of death over age, thus explaining phe-
nomena such as late-life mortality plateaus (e.g., Beard 1959; Vaupel, Manton, and Stal-
lard 1979; Vaupel and Carey 1993; Steinsaltz and Wachter 2006; Missov and Vaupel
2015; Colchero and Kiyakoglu 2019), the adolescent “accident hump” (Remund 2015),
declining mortality following surgery (Hougaard 1986), or the age pattern of early life
mortality (Vaupel and Yashin 1985a; Hsieh 1985; Trussell and Richards 1985; Avraam
et al. 2014). All the aforementioned literature features frailty models as a means to for-
malize, understand, and estimate the impact of population heterogeneity on the age tra-
jectory of mortality. In these models, an individual’s risk of death depends on a random
quantity coined frailty, (Vaupel, Manton, and Stallard 1979) that, on account of being
unobserved, may be thought of as hidden heterogeneity between members of a cohort.
Frailty is most commonly expressed in a proportional hazards framework where the haz-
ard of death at age x of an individual with frailty z is given by h(x|z) = zh0(x) and
h0(x) is a baseline hazard shared by all members of the population. An expression for
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the population/marginal/unconditional hazard h(x) can be derived by assuming a distri-
bution of survival times for the case where z = 1 with corresponding hazard h0 and a
distribution for the frailties at age x = 0.2 It is then possible to fit h(x) to observed
survival times or a life table and – given the parameters of the fit and an array of formal
relationships (Vaupel and Yashin 1985a; Vaupel and Missov 2014) – to determine how
hidden heterogeneity acts in the population under investigation. Herein lies one central
attraction of frailty models: They allow inference about population heterogeneity even if
none has been observed. The quality of the inference then, of course, crucially depends
on the adequacy of the assumptions going into the model.

A frailty explanation for the age trajectory of mortality following birth has been put
forward multiple times in the literature but never seriously followed up on. Vaupel and
Yashin (1985a) model the hazard of infant death, assuming a constant baseline hazard
and multiplicative Gamma distributed frailty with unity mean and a variance of 500.
Such a model implies that the majority of infants at birth are at virtually no risk of death
with a small minority of critical cases.3 Trussell and Richards (1985) demonstrate how
sensitive the choice of baseline hazard is when modeling infant mortality via a frailty
model, with the Gompertz leading to decreasing and the Weibull to increasing individual-
level risk trajectories. Hougaard (1984) hypothesizes that the high mortality during the
first year of life and the subsequent rapid decline might be the result of an “extreme frailty
distribution” upon birth, meaning a distribution with a long right tail, and he proposes
the inverse-Gamma distribution as a suitable candidate. Hougaard (1986) introduces a
particularly flexible family of frailty distributions, including the Gamma, the inverse-
Gaussian, and positive-stable-based distribution. He fitted a corresponding frailty model
to data on time until death after a myocardial infarct, a survival scenario not unlike the
neonatal case as there is a stressor at time zero with mortality declining quickly and
monotonically thereafter.

Indeed the Hougaard frailty model with a Gompertz baseline hazard (see Appendix
A for the model specification) gives an excellent fit not only to neonatal mortality but to
the entire day-to-day infant life table of the 2009–2012 US birth cohort, capturing the
extremely steep decrease in hazard following birth and the subsequent log-linear decline
during the post-neonatal period (Figure 1). While by no means a proof of the frailty
hypothesis, this simple model shows that a mortality selection explanation is consistent
with the dynamics of daily mortality rates observed on the population level.

2 An excellent introduction to this technique can be found in Wienke (2011).
3 A Gamma distribution with unity mean and variance 500 has more than 98.8% of its probability mass below

the mean and 0.24% at least 100 times above.
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Figure 1: Predicted hazard (black) vs. life-table mortality rates (gray) for the
2008–2012 US birth cohort
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Notes: Daily mortality rates over the first 365 days of life are well described by a Gompertz baseline distribution
with Hougaard distributed frailties. Via the process of mortality selection, a mixture of log-linear individual-level
hazards, here drawn for various levels of frailty z, gives rise to a population-level hazard with extreme curvature on
the log scale. The area of the circles is in rough proportion to the number of deaths each day.

More recently, the heterogeneous frailty hypothesis is discussed by Levitis (2011)
and Levitis and Martı́nez (2013) as an alternative to evolutionary explanations for “on-
togenescence,” – that is, the declining hazard of death following birth observed in many
species. Via simulation Levitis demonstrated how age-independent individual-level risk
leads to age-dependent population mortality rates. In a further variation on the theme,
Avraam et al. (2014) captures the decline in mortality from birth to adolescence by em-
ploying a discrete frailty model with subgroups featuring either exponentially increasing
or constant hazards.
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Without data on heterogeneous risks, the hypothesis of mortality selection can be
tested only indirectly. While frailty models do provide heterogeneity estimates from
population-level data alone, this can be taken as only suggestive evidence for a selec-
tion explanation. The estimated amount of heterogeneity depends crucially on the choice
of baseline hazard, the choice of frailty distribution, the assumption of fixed versus
changing frailty, and the specific way that frailty modulates the baseline hazards (pro-
portional hazards vs. accelerated failure time). These assumptions can not be validated
on population-level data as different model specifications yield the same parametric form
for the marginal hazard (Trussell and Richards 1985; Hoem 1990; Yashin, Iachine, and
Begun 2000). I argue that a more convincing case for the impact of population hetero-
geneity on the age trajectory of mortality can be made by analyzing the distribution of
risk in a cohort stratified by observed characteristics. For infants, such data is available
on birth certificates.

A birth certificate contains a wealth of information that identifies potentially frail
newborns. Routinely collected are birth weight, the length of pregnancy, and the Apgar
score, an index of the vitality of the child shortly after delivery. The combination of these
characteristics delineates hundreds of highly specific subpopulations within a single birth
cohort, and based on the distribution of deaths and exposure times across these strata, I
analyze the impact of population heterogeneity on the age trajectory of neonatal mortal-
ity using both discrete-time life-table decomposition methodology and continuous-time
hazard modeling in connection with results from formal demography. This approach of
describing mortality selection along observed mortality differentials has little precedence
as far as human mortality is concerned, an exception being Remund (2015), who, based
on an analysis of French individual-level survival data with covariates, finds that selec-
tion effects contribute to the “accident hump” observed in the hazard trajectory of young
adults.

Following the description of the US 2008–2012 birth cohort, I outline a discrete life-
table approach and a complementary continuous time hazard method to quantify popula-
tion heterogeneity and mortality selection and its impact on the age trajectory of neonatal
mortality. This is followed by results on the distribution of neonatal mortality risks as it
changes over age, the heterogeneity of hazard trajectories, and various decompositions of
population-level statistics along the age dimension. A discussion of the results concludes
the paper.

Data4 and R scripts5 required to reproduce the results of this paper are openly avail-
able online and indexed with Zenodo.

4 See: https://doi.org/10.5281/zenodo.15304230.
5 See: https://doi.org/10.5281/zenodo.15309229.
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Schöley: The impact of population heterogeneity on the age trajectory of neonatal mortality

2. Data

As population heterogeneity drives mortality selection, one can learn about selection ef-
fects by estimating the hazard of death across a diverse collection of population strata.
Such estimation is possible given the publicly available “Cohort Linked Birth – Infant
Death Data Files” (National Center for Health Statistics 2016), which contain a com-
plete census of births and infant deaths on the territory of the United States (excluding
overseas territories) and feature most fields present on birth and death certificates. The
size and detail of the data allow the calculation of neonatal life tables over hundreds of
subpopulations, capturing observed heterogeneity in mortality following birth.

To increase the sample size and thus the reliability of the stratum-specific mortality
estimates, I pool births and deaths across cohorts 2008 to 2012. This leaves a sample size
of 20,322,147 births contributing 567,031,738 person-days of exposure to risk over the
first 28 days of life, during which 82,562 neonatal deaths were registered.

Following the practice of statistical offices, I compute mortality rates based on all
registered births and deaths, including cases with missing data on key birth character-
istics and unreasonable covariate combinations (e.g., extremely preterm delivery with
average birth weight). While this approach challenges any causal interpretation of the
determinants of neonatal death, it allows one to capture, in great detail, the observed
heterogeneity giving rise to the usual population-level estimates. For this paper, it is of
no concern whether the relationship between observed characteristics at birth and risk of
death is causal or not as the phenomenon of interest – mortality selection – is induced by
any mortality differential between population strata, no matter the cause.

For stratification, I use the information on birth weight, age of gestation at delivery,
and five-minute Apgar score. These variables are routinely recorded upon birth and highly
predictive of neonatal death (Pollack et al. 2000; Casey, McIntire, and Leveno 2001; Park
et al. 2018). As the inclusion of further strata contributes only minimal additional het-
erogeneity compared to what is already captured by the Apgar–birth weight–prematurity
triad but considerably increases the computational demands of the model fitting proce-
dure, I opted against it.

The variables are defined and discretized as follows:

• Gestation at delivery alias prematurity: The number of weeks from conception
to delivery commonly estimated by the time since the first day of the mother’s last
menstrual cycle plus 14 days. Discretized into five groups: Extremely preterm
(earlier than 28 weeks), Very preterm (28 to 32 weeks), Moderate to late preterm
(32 to 37 weeks), Term or postterm (37 weeks or later), and Missing.

• Birth weight: The weight of the newborn child measured in the minutes following
birth, discretized into five categories: Extremely low (<1,000g), Very low (1,000–
1,500g), Low (1,500–2,500g), Regular or high (2,500g and above), and Missing.

192 https://www.demographic-research.org
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• Five-minute Apgar score: A measure of the infant’s physical condition five min-
utes following birth, based on muscle activity, pulse, response to stimulation, skin
color, and respiration of the newborn (Apgar 1953). Vitality increases over integers
zero to ten, with missings being treated explicitly as a twelfth category.

Table 1 shows births, death counts, and empirical 28-day survival for the complete
2008 to 2012 birth cohort by level of gestation, birth weight, and Apgar score.

Table 1: Summary statistics of the US 2008–2012 birth cohort

Births (%) Deaths (%) % 28-day survival

Total 20,322,147 (100.0) 82,562 (100.0) 99.5

5 minute Apgar score
0 9,981 (0.1) 5,154 (6.3) 48.3
1 45,091 (0.3) 28,430 (34.5) 36.9
2 30,569 (0.2) 9,839 (12.0) 67.8
3 31,941 (0.2) 4,987 (6.1) 84.3
4 43,408 (0.3) 3,705 (4.5) 91.4
5 72,970 (0.4) 3,781 (4.6) 94.8
6 135,842 (0.7) 4,456 (5.4) 96.7
7 364,256 (1.8) 5,119 (6.3) 98.5
8 2,017,526 (10.0) 5,577 (6.8) 99.7
9 16,746,692 (82.5) 7,869 (9.6) 99.9
10 715,842 (3.6) 242 (0.3) 99.9
(Missing) 108,029 (0.6) 3,403 (4.2) 96.8

Gestation at delivery
Extremely preterm 149,760 (0.8) 50,606 (61.3) 66.2
Very preterm 246,770 (1.3) 6,990 (8.5) 97.1
Moderate to late preterm 2,029,693 (10.0) 9,484 (11.5) 99.5
Term or postterm 17,870,545 (88.0) 14,493 (17.6) 99.9
(Missing) 25,379 (0.2) 989 (1.2) 96.1

Birth weight
Extremely low 146,303 (0.8) 52,350 (63.5) 64.2
Very low 151,709 (0.8) 5,692 (6.9) 96.2
Low 1,355,547 (6.7) 10,573 (12.9) 99.2
Regular or high 18,663,662 (91.9) 13,363 (16.2) 99.9

(Missing) 4,926 (0.1) 584 (0.8) 88.1
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3. Methods

From neonatal life tables stratified by birth characteristics, I derive the empirical distribu-
tion of mortality rates conditioned on time since birth for a cohort of newborns. Age dif-
ferences in three key characteristics of this distribution – the mean, the variance, and the
mean-to-mode ratio – are then decomposed into components due to mortality selection
and due to “direct” effects. Adopting a continuous-time perspective, I estimate hazard
trajectories and survival curves for every subpopulation and a corresponding population
hazard. By employing the Vaupel–Zhang equality, I calculate the degree to which the
between-stratum variance in hazard rates compounds the slope of the population hazard
at selected exact ages.

3.1 Stratified infant life tables

Consider a cohort of i = 1, . . . ,N newborns stratified into subpopulations k = 1, . . . ,K
according to the combined discrete characteristics of birth weight, age of gestation at
birth, and five-minute Apgar score. Observed for every newborn are a survival time tik
in days since birth censored at day 28 and a binary death indicator δik. I partition the
survival time into j = 1, . . . , J nonoverlapping daily age intervals [xj ,xj +1), where xj

is the start of the jth age interval, and for each interval calculate stratum-specific death
counts Djk =

∑
i δijk, the population alive at the beginning of the age interval

Njk =

{
Birthsk for j = 1

Birthsk −
∑s=j

s=1 Dj=s,k for j > 1
,

and person-days of exposure Ejk = Nj+1,k + ajkDjk, with ajk as the average time of
death of those dying in age interval j. For the first day of life I calculate aj using infor-
mation on the proportion of deaths during the first hour of life while for the other days the
usual midpoint assumption ajk = 0.5 is employed. I then calculate stratum-specific life-
table death rates mjk =

Djk

Ejk
for each age interval and corresponding population-level

death rates mj =
∑

k Djk∑
k Ejk

and relative exposures pjk =
Ejk∑
k Ejk

. These tabulated counts,
exposures, rates, and proportions form the basis of all subsequent analyses.
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3.2 Discrete-time life-table analysis

3.2.1 Decomposing change in mean mortality over age

Using the shorthand ∆fx = fx+1 − fx, let ∆mj denote the change in population-level
mortality from age interval j to j + 1. How much of this difference is explained by a
change of the subpopulation hazards, and how much is due to a change in the population
composition induced by mortality selection? A straightforward solution to this decom-
position problem can be derived by writing mj =

∑
k pjkmjk and applying the product

rule for finite differences (Boole 1880) to the equivalent products mjkpjk = pjkmjk,
yielding the two expressions

∆mj =
∑
k

pjk∆mjk +
∑
k

mj+1,k∆pjk

=
∑
k

mjk∆pjk +
∑
k

pj+1,k∆mjk,

which when averaged give the well-known Kitagawa decomposition (Kitagawa 1955)

∆mj =
∑
k

pjk + pj+1,k

2
∆mjk︸ ︷︷ ︸

Direct change ∆mD
j

+
∑
k

mjk +mj+1,k

2
∆pjk︸ ︷︷ ︸

Compositional change ∆mC
j

. (1)

The two terms represent the change in the population mortality rate due to changes in
the group-specific mortality rates and due to changing group composition. Of particular

interest is the ratio
∆mC

j

∆mj
, which for ∆mC

j < 0 and ∆mj < 0 is the share of the decline
in population mortality explained by a compositional shift of the population. If mortality
selection is indeed the main driver of the age decline in mortality over the neonatal period,
then the aforementioned ratio has to be greater than 0.5.

3.2.2 Decomposing change in mortality rate variance over age

In addition to compounding the effect of age on the average risk of death, mortality se-
lection can lower the variance of mortality rates across population strata as the survivors
concentrate in more resilient subgroups. Alternatively, any change in population variance
may result from stratum-specific mortality rates converging over age. Because the vari-
ance of mortality rates across strata k among the survivors in age group j is the weighted
average vj(x) =

∑
k pjksjk, with sjk = (mjk −mj)

2, one can follow the same strategy
as before to yield the Kitagawa-style decomposition
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∆vj =
∑
k

pjk + pj+1,k

2
∆sjk︸ ︷︷ ︸

Direct change ∆vD
j

+
∑
k

sjk + sj+1,k

2
∆pjk︸ ︷︷ ︸

Compositional change ∆vC
j

, (2)

with vDj denoting the change in variance due to convergence or divergence of stratum-
specific mortality rates over age toward the population mean and vCj denoting the age
decline in variance due to changing population composition – that is, mortality selection.

3.2.3 Decomposing change in the ratio of mean to modal mortality over age

If the distribution of death rates in a cohort of infants exhibits positive skewness, mortality
selection can reduce the mean-to-mode ratio of this distribution by ‘thinning the tail,’ by
reducing the relative proportion of very frail subpopulations. However, any such decline
may also result from genuine convergence of stratum-specific death rates toward the death
rates of the most prevalent stratum, the modal mortality rate, formally Mj = mj,k=r,
with r such that pj,k=r = max(pj1, . . . , pjK).

A Kitagawa-style decomposition of the mean-to-mode ratio mj

Mj
=

∑
k pjk

mjk

Mj
,

shortened to rj , gives the two components

∆rj =
∑
k

pjk + pj+1,k

2
∆
mjk

Mj︸ ︷︷ ︸
Direct change ∆rDj

+
∑
k

mjk

Mj
+

mj+1,k

Mj+1

2
∆pjk︸ ︷︷ ︸

Compositional change ∆rCj

, (3)

where ∆rDj captures the changing ratios of stratum-specific mortality rates to modal mor-
tality and ∆rCj referring to changes in the population composition.

3.3 Continuous-time hazard analysis

In the following subsection, I outline a methodology to decompose the age derivative
of the population hazard of death into a ‘direct’ component reflecting actual age effect
within the population strata and a ‘compositional component’ capturing the confounding
effect of population heterogeneity.

196 https://www.demographic-research.org
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3.3.1 Estimating stratum-specific hazard and survival

Stratum-specific hazards during the neonatal period are well captured by the expression

hk(x) = eβ0k+β1k log(x+1)+β2k log2(x+1), (4)

which can be interpreted as a Weibull hazard extended by a log-quadratic term over day
of life (see Appendix B). The curve has the advantage of being linear on the log scale,
thus allowing it to be fit as a generalized linear mixed/multilevel model, which greatly
facilitates a stable estimation of stratum-specific hazards. There are in total 252 strata in
the population of newborns with each stratum k marking a unique combination of “Pre-
maturity,” “Birth weight,” and “Apgar score” levels. Fitting the hazard separately to each
stratum will result in erratic estimates as some strata do not contain enough observations
to inform the model. A solution to this problem is to fit a multilevel model where instead
of estimating β0k,β1k,β2k directly, one models the coefficient’s distribution at different
grouping levels.

Given the observed death counts Djk in age group j and stratum k and associated
person-days of exposure to risk Ejk, I fit the model

Djk ∼ Pois (λjkEjk)

λjk = eβ0k+β1k log(xjk+1)+β2k log2(xjk+1),
(5)

where λjk are mortality rates by age group and stratum. For each stratum, a smooth haz-
ard is recovered by evaluating λjk over a continuous range of ages x as in Equation (4).

The stratum-specific coefficients β0k, β1k, β2k are sums of baseline coefficients
β, prematurity effects βPm, prematurity–birth weight interactions βPm×Bw, and prema-
turity–birth weight–Apgar interactions βPm×Bw×Ap, resulting in the multilevel structure

β0k

β1k

β2k

 =

β0

β1

β2


︸ ︷︷ ︸

lvl 0
baseline coef.

+


βPm
0,p[k]

βPm
1,p[k]

βPm
2,p[k]


︸ ︷︷ ︸

lvl 1
deviations by
prematurity

+


βPm×Bw
0,p[k],b[k]

βPm×Bw
1,p[k],b[k]

βPm×Bw
2,p[k],b[k]


︸ ︷︷ ︸

lvl 2
deviations by

birth weight given
prematurity

+


βPm×Bw×Ap
0,p[k],b[k],a[k]

βPm×Bw×Ap
1,p[k],b[k],a[k]

βPm×Bw×Ap
2,p[k],b[k],a[k]


︸ ︷︷ ︸

lvl 3
deviations by
Apgar given

prematurity and
birth weight

,
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where p[k], b[k], and a[k] denote the prematurity, birth weight, and Apgar level associated
with stratum k. Except for the baseline βs, each set of coefficients is assumed to be drawn
from a multivariate normal distribution with zero mean and covariance matrix

Σ =

 σ2
β0

σβ0β1
σβ0β2

σβ0β1
σ2
β1

σβ1β2

σβ0β2
σβ1β2

σ2
β2

 ,

with separate estimates for levels one to three.
Treating the coefficients as realizations from a multivariate normal distribution with

zero mean acts as a regularizer on the estimated hazard trajectories. In cases where zero
or very few deaths are observed, the stratum-specific deviations will be ‘pulled’ toward
zero with the effect that the estimated hazard resembles the hazard of the next higher
hierarchy level (Gelman and Hill 2007). Take as an example the 303 infants delivered
“Very preterm” with “Very low” birth weight and given an Apgar score of 10. Because
all newborns survived the neonatal period, there is no information available to learn the
shape of the underlying hazard. In the multilevel model, the larger population of infants
delivered “Very preterm” with “Very low” birth weight will inform the hazard of the
Apgar 10 subgroup. If plenty of data is available, then the hazard estimate will follow
that data closely.

I fit model (5) as a generalized linear mixed model using the lme4 library in R
(Bates et al. 2015) and use the fitted coefficients to compute stratum-specific hazard tra-
jectories and survival curves – the basis for the Vaupel–Zhang decomposition – using the
expressions given in Appendix C.

3.3.2 Vaupel–Zhang decomposition

The Vaupel–Zhang equality (Vaupel and Zhang 2010) states that in any cohort stratified
by some random characteristic K with initial distribution πk = P (K = k) the age
derivative of the average hazard of death among the survivors at age x can be written as

ḣ(x) = ḣ(x)− σ2
h(x),

where ḣ(x) denotes average slope and σ2
h(x) the average variance of hazards for the

survivors at x. This result can be interpreted as a decomposition of the slope in the pop-
ulation hazard at x into a direct and a compositional component: The first component
is based on the actual slopes of hazards within each stratum k. Only if the population
is completely homogeneous with respect to the levels of their hazards is the slope in the
population hazard equal to the average slope in the stratum-specific hazards. When, how-
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ever, the variance of hazards is not zero – that is, the population differs in its risk of
death – the mortality selection biases the slope in the population-level hazard downward.
In other words, the trajectory of the population hazard over age is explained by the aver-
age hazard trajectory across population strata compounded by heterogeneity in the level
of hazard.

The quantity of interest is the ratio ν(x) =
−σ2

h(x)
˙
h(x)

, which, given that ḣ(x) < 0,

is the share of decline in the population hazard at x explained by population hetero-
geneity in the level of mortality. From the observed distribution of birth characteristics
πk = Birthsk

ΣkBirthsk
and the estimated stratum-specific hazards hk(x) and survival Sk(x), I

calculate the population survival curve S(x) =
∑

k πkSk(x) and the stratum distribution
conditioned on survival to a given age πk(x) =

Sk(x)πk

S(x) , which in turn gives rise to the

population hazard curve h(x) =
∑

k πk(x)hk(x), and the variance of hazards over pop-
ulation strata σ2

h(x) =
∑

k πk(x)(hk(x) − h(x))2. See Appendix C for a derivation of
the stated equalities.

4. Results

4.1 Extreme skewness and Taylor’s law in the distribution of mortality

The distribution of mortality rates over population strata conditioned on neonatal age is
characterized by the high proportion of lowest-low mortality infants, an extremely long
right tail of high-risk subpopulations, and a power-law relationship between expectation
and variance (Taylor’s law). With more than 72% share on the total population, the group
of infants who are born on term or postterm with regular or high birth weight and a five-
minute Apgar score of 9, are the most prevalent stratum throughout the entire neonatal
period. Their mortality (the mode of the distribution of mortality risk) is among the lowest
observed and remains relatively constant throughout the first four weeks of life. The
quantile of average mortality demonstrates the extremely long right tail of the mortality
risk distribution: On the day of birth, 98% of newborns are part of a stratum with a risk
of death lower than the population average. Over the next four weeks, the skewness
decreases, but the expected value remains a bad measure of centrality (Figure 2C). On a
log-log plot, the relationship between mean and variance of the distribution of mortality
risk over the first 28 days of life is almost perfectly linear with a slope of 2.5. The fitted
regression model reproduces this linearity (Figure 2B).
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Figure 2: In a cohort of newborns over the first 27 days of life, (A) age-specific
mean and density, (B) mean-variance relationship, and (C)
distribution functions of the mortality/hazard rates
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4.2 Shape and level of hazards are heterogeneous

The hazard trajectories predicted by the multilevel Poisson regression model (5) closely
match the mortality rate estimates from the life table. They reflect a high degree of
heterogeneity among the 252 birth weight×prematurity×Apgar score strata of the US
2009–2012 birth cohort (Figure 3), varying both in level and shape. The heterogeneity
is well illustrated by contrasting the lowest-low mortality subgroup (term-born infants
with regular birth weight and an Apgar score of 10) with the highest-high mortality stra-
tum (extremely premature infants with extremely low birth weight and an Apgar score
of zero). At birth, the force of mortality ranges across five orders of magnitude with a
hazard ratio of roughly 244,000 between the extremes but over time hazards converge as
there is a strong positive correlation between the level of the hazard at birth and the rate of
mortality decline over the neonatal period. While the lowest-low mortality group features
a comparatively flat hazard over age, declining by 39% over days 0 to 28, the hazard of
the highest-high risk stratum drops by 99.8% over the same period. Hazard trajectories
by Apgar score are stratified as expected on a low-high mortality continuum from 10 to
0 stretching multiple orders of magnitude within all birth weight × prematurity combi-
nations. However, hazards by Apgar score are clustered more closely among extremely
preterm infants with extremely low birth weight compared to term-born infants of regular
or high birth weight.

The lack of proportionality in the hazard trajectories is evident in the varying pace
of mortality decline over the first week of life. Thus, we can rule out the hypothesis of
proportional frailties for the 252 subhazards along the birth weight×prematurity×Apgar
score strata of the US 2009–2012 birth cohort. Time-varying frailties as well as propor-
tional unobserved frailties are, however, still consistent with our sample.

While the hazards are heterogeneous when compared directly, the majority of new-
borns are born on full-term, with regular birth weight and an Apgar score of 9. Thus the
majority of the birth cohort is homogeneous with respect to their hazard trajectory.
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Figure 3: Estimated hazard rates versus life-table mortality rates over age by
prematurity, birth weight, and Apgar score
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trajectory for the entire birth cohort.

4.3 Mortality selection mainly acts shortly after birth

Population-level mortality during the first day of life is 10 times higher than mortality
over the following day. This 90% mortality decline over 24 hours is mostly the result of a
corresponding drop in the stratum-specific mortality rates, which, on average, declined by
71% between both time points. The remaining 19% decline is explained by a change in
population composition due to mortality selection on the day of birth. Over the following
time intervals, mortality continues to decline at a fast pace with compositional effects
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ceasing to contribute substantially to this decline. At no point is the ratio of compositional

mortality decline to total mortality decline
∆mC

j

∆mj
higher, or even near 0.5 (Table 2).

The results from the discrete-time life-table analysis are mirrored by the Vaupel–
Zhang decomposition of the hazard’s rate of change at different ages. The contribution
of mortality rate variance across strata to the slope in the hazard is around 23% at birth
but merely 4.6% 24 hours later staying in the single digits over the remainder of the first
month of life (Table 3).

In order to understand the impact of mortality selection on the overall shape of the
hazard trajectory I compare the estimated population average hazard over age with a coun-
terfactual population hazard based on the stratum-specific hazard estimates of model (5)
but assuming the stratum-specific population proportions to be fixed, thereby negating
the effect of mortality selection on the population hazard. Figure 4 clearly shows that the
steep decline in the risk of death following birth is not explained by selection due to dif-
ferential mortality along the birth weight, Apgar score, and prematurity strata. However,
mortality selection has some noticeable effect on the level of risk: Without selection, the
hazard of death at day 28 would be an estimated 14% higher.

Figure 4: Keeping the population composition fixed at the distribution observed
at birth only results in a minor change of the population hazard
trajectory
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Table 2: Direct and compositional components of mortality rate decline over
the neonatal period

Age mj ∆mj (%) ∆mD
j (%) ∆mC

j (%)
∆mC

j
∆mj

%

0 2.5e-3
7→ –2.3e-3 –90.4 –1.8e-3 –71.1 –4.8e-4 –19.2 21.3

1 2.4e-4
7→ –1.8e-4 –73.4 –1.7e-4 –70.1 –7.9e-6 –3.3 4.5

7 6.4e-5
7→ –2.4e-5 –37.8 –2.3e-5 –36.4 –8.9e-7 –1.4 3.7

14 4.0e-5
7→ –1.0e-5 –25.9 –1.0e-5 –25.1 –3.4e-7 –0.9 3.3

21 2.9e-5
7→ –6.3e-6 –21.3 –6.1e-6 –20.9 –1.3e-7 –0.4 2.1

27 2.3e-5

Note: Age refers to single-day age groups.

Table 3: Vaupel–Zhang decomposition of the slope in the hazard of death into
direct and compositional components at selected ages

Age x h(x)
˙
h(x) ḣ(x) σ2

h(x) ν(x)%

0 2.5e-3 –1.2e-2 –9.0e-3 2.8e-3 23.5
1 3.1e-4 –3.0e-4 –2.8e-4 1.4e-5 4.6
7 6.2e-5 –6.1e-6 –5.9e-6 1.8e-7 2.9

14 4.0e-5 –1.7e-6 –1.6e-6 6.1e-8 3.6
21 3.1e-5 –7.9e-7 –7.6e-7 3.7e-8 4.7
27 2.8e-5 –4.7e-7 –4.4e-7 3.1e-8 6.5

Note: Age refers to exact ages.

204 https://www.demographic-research.org

https://www.demographic-research.org


Demographic Research: Volume 53, Article 7

4.4 Stratum-specific mortality converges

Following birth, the stratum-specific mortality rates rapidly converge, explaining both
the sudden decline in variance and mean-to-mode ratio of the mortality rate distribution
(Figures 2 and 5).

Figure 5: The ratio of the population average and the modal mortality rates
over the first four weeks of life
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Note: Following birth population, mortality converges toward the low mortality of the most prevalent stratum
(Apgar 9, regular or high birth weight, born term or postterm), which is due to the convergence of high-risk strata.

The variance of death rates over strata is highest at birth and falls by more than 90%
from day 0 to day 1 of age. The decline in variance is mainly the result of stratum-specific
death rates converging toward the population average, with only 19 percentage points
decline explained by mortality selection. The mortality variance continues to decline
substantially over the remainder of the first month of life, with mortality selection never
contributing more than 4.5% to the total decline (Table 4).

During the first day of life, population mortality is 189 times higher than the mor-
tality of the most prevalent stratum. This ratio declines by 85% over the next day of life,
with only 20 percentage points of this decline explained by a shifting population compo-
sition. During the remainder of the neonatal period, mortality selection only minimally
influences the continuing changes in the mean-to-mode mortality ratio, which eventually
arrives at a value of around 3, a drop by 98% compared to the value at birth (Table 5).
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Table 4: Direct and compositional components of mortality rate variance
decline over the neonatal period

Age vj ∆vj (%) ∆vD
j (%) ∆vC

j (%)
∆vC

j

∆vD
j

%

0 2.5e-3
7→ –2.3e-3 –90.4 –1.8e-3 –71.1 –4.8e-4 –19.2 21.3

1 2.4e-4
7→ –1.8e-4 –73.4 –1.7e-4 –70.1 –7.9e-6 –3.3 4.5

7 6.4e-5
7→ –2.4e-5 –37.8 –2.3e-5 –36.4 –8.9e-7 –1.4 3.7

14 4.0e-5
7→ –1.0e-5 –25.9 –1.0e-5 –25.1 –3.4e-7 –0.9 3.3

21 2.9e-5
7→ –6.3e-6 –21.3 –6.1e-6 –20.9 –1.3e-7 –0.4 2.1

27 2.3e-5

Note: Age refers to single-day age groups.

Table 5: Direct and compositional components of mean-to-mode ratio decline
over the neonatal period

Age rj ∆ rj (%) ∆ rDj (%) ∆ rCj (%)
∆ rCj

∆ rD
j

%

0 189
7→ –160 –84.9 –123 –65.0 –37 –19.9 23.4

1 28
7→ –21 –76.8 –21 –73.6 0 –3.2 4.2

7 6
7→ –1 –27.5 –1 –26.0 0 –1.5 5.4

14 4
7→ –1 –22.1 –1 –21.2 0 –0.9 3.9

21 3
7→ 0 –7.6 0 –7.2 0 –0.5 6.2

27 3

Note: Age refers to single-day age groups.

5. Discussion

Frailty theory cautions us against taking the population-level hazard shape as representa-
tive for the risk trajectory of the population members. The analysis of neonatal mortal-
ity indeed clearly demonstrates the potential severity of this ecological fallacy, with the
majority of newborns experiencing a hazard trajectory radically different from what is
observed on the aggregate level. Yet this difference does not arise from mortality selec-
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tion but from the nonproportionality of stratum-specific hazards. Neonatologists know
that the first 24 hours of life are the most critical in determining the further survival of
the preterm infant. Once the one-day threshold is passed, the survival chances not only
drastically improve but, as shown in this paper, converge toward the survival chances of
healthy term-born infants. The popular proportional frailty model is severely misspeci-
fied for situations where an individual may be saved due to medical intervention – that
is, where the physiological state of an individual and thus the associated frailty changes
abruptly. In consequence, even if the model fits the aggregate age pattern well, as it does
in case of the Hougaard–Gompertz fit to the age trajectory of infant mortality (Figure 1),
inferences drawn from it are biased.

To escape the strong assumptions of frailty models, I based the analysis in this paper
on the observed heterogeneity in age-specific mortality across mutually exclusive popu-
lation strata but, in turn, left open the possibility for hidden heterogeneity within a partic-
ular stratum. This hidden heterogeneity would need to be of extraordinary magnitude to
explain the observed pace of mortality decline via mortality selection (note that the het-
erogeneity observed in this paper spans five orders of magnitude and hardly shapes the
overall hazard via selection) and is thus unlikely to be found in social strata, which rarely
exceed single-digit hazard ratios. However, a further division of the population along the
presence and severity of congenital malformations may uncover that the mortality decline
following birth is primarily the effect of the vanishing subpopulation of newborns featur-
ing congenital disabilities incompatible with life. While this particular hypothesis can be
tested in a future publication, one can never exclude the possibility of further unobserved
quantities influencing observed outcomes. All that can be confidently said based on the
data analyzed above is that the heterogeneity in risk along birth weight, Apgar score, and
prematurity has only a minimal impact on the shape of the population-level age trajectory
of neonatal mortality.

The discipline of neonatology has achieved great successes in pushing the limit of
viability to earlier gestational ages. Whereas in 1971 newborns younger than 28 weeks
or weighing less than 1,000 grams were given no realistic chance of survival (Malloy
and Wang 2022), recently, two-year survival probabilities for infants delivered at US
hospitals at 23 weeks have exceeded 50% if active treatment was given (Bell et al. 2022).
From the perspective of mortality selection one may wonder if the improved survival
of extremely premature infants leads to increased cohort mortality at later ages. While
I did not address this question directly, the results of this study indicate that mortality
selection has only a weak effect on the level and shape of the cohort hazard past the first
day of life. This is because mortality selection primarily acts on the day of birth with the
hazards of the frailest subgroups dropping to safer levels within hours of birth. Globally
it has been shown that lower under-5 mortality goes hand in hand with a compression of
mortality toward the neonatal ages (Hug et al. 2019). This finding is consistent with an
intervention practice that both successfully addresses risk factors that contribute to post-
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neonatal mortality, such as infections, and successfully distinguishes between infants that,
given active treatment, will survive to childhood and those who most likely will not.

A peculiar finding is the near-perfect power-law relationship between the mean and
the variance of the distribution of stratum-specific mortality rates over age – a further ex-
ample of Taylor’s law in demography: Analyzing data on the spatial distribution of vari-
ous species, Taylor (1961) observed that the variance in population count per unit area is
well predicted by a power of the average population count. Similar mean-variance rela-
tionships have been found for population densities in human populations (Cohen, Xu, and
Brunborg 2013; Naccarato and Benassi 2018) and recently for time series of age-specific
mortality rates and rates of mortality improvement (Bohk-Ewald, Rau, and Cohen 2015;
Cohen, Bohk-Ewald, and Rau 2018). Whereas the studies by Cohen, Bohk, and Rau are
based on the concept of a “temporal mean/variance,” (i.e., mean and variance are esti-
mated from observations repeated over age or period), I contribute the first demonstration
of Taylor’s law in human mortality based on the distribution of risk at any single point in
time within a cohort of individuals followed over age.

6. Conclusion

The sudden drop in population mortality following birth is predominantly the result of
stratum-specific hazard rates quickly converging toward rather low levels. The composi-
tional shift in the population resulting from mortality selection has only a minimal impact
on the age trajectory of neonatal mortality.

Hazard trajectories in the first days following birth are highly nonproportional be-
tween risk strata. Thus the common assumption of proportionality, as in the popular Cox
model, may lead to biased estimates in the study of neonatal mortality.

It remains to be seen if the simple Taylor’s law expression that describes the time
evolution of mean and variance in mortality among a cohort of newborns replicates in
other populations and at other ages. The prospect of having a two-parameter expression
for the mortality dynamics in a heterogeneous aging cohort may motivate future inquiries
in that direction.
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In 2014 Jim Vaupel asked me, “What if the declining risk of death in the days, weeks, and
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Appendix A: The Hougaard–Gompertz frailty model

Let the hazard of death at age x for a newborn with frailty z be hz(x|z) = zh0(x)
with z drawn from the three parameter frailty distribution proposed by Hougaard (1986)
denoted with Z ∼ Houg(x;α, δ, θ) and Gompertz baseline hazard h0(x) = aebx with
corresponding cumulative hazard H0(x) =

∫ x

0
h0(s) ds = a(ebx − 1)/b. The average

frailty among the survivors at x then is E[Z|X ≥ x] = δ (θ +H0(x))
α−1 (Hougaard

1986: 393). Substituting δ = 1
θα−1 eliminates one parameter from the model and fixes

the average frailty at birth at one. The population hazard then is

h(x) = E[Z|X = x]h0(x) =

(
θ + a(ebx − 1)/b

θ

)α−1

aebx,

with log-hazard

log h(x) = (α− 1) log

(
θ + a(ebx − 1)/b

θ

)
+ log a+ bx.

The above hazard is fitted to daily death counts Dj and exposure times Ej of the US
2009–2012 infant life table via a Bayesian nonlinear Poisson regression model

Dj ∼ Pois(λjEj) for j = 1, . . . , 365

λj = elog h(xj ;a,b,θ,α)

with parameter transformations

a = eβ0

b = β1

θ = eβ2

α = log
β3

1− β3
,

and priors

β0 ∼ N(−8, 1)

β1 ∼ N(−0.03, 1)

β2 ∼ N(−6, 1)

β3 ∼ N(0.5, 1).
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Appendix B: The quadratic hazard over log age

Quadratic relationships between log age and log mortality can be captured by the expres-
sion

h(x) = eβ0+β1 log(x+1)+β2 log2(x+1),

with derivative wrt. x

h′(x) = (x+ 1)β1−1eβ0+β2 log2(x+1) (β1 + 2β2 log(x+ 1)) ,

and survival function

S(x) = exp

√
π exp

(
b0 − (b1+1)2

4b2

)(
erfi

(
b1+1
2
√
b2

)
− erfi

(
b1+2b2 log(x+1)+1

2
√
b2

))
2
√
b2

 .

An efficient algorithm for the evaluation of the imaginary error function erfi(x) =
2√
π

∫ x

0
exp

(
t2
)

dt exists (Poppe and Wijers 1990) and is implemented in the C++ library
Faddeeva, which can be called from within R via the package RcppFaddeeva.
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Appendix C: The Vaupel–Zhang equality

I find it instructive to derive the Vaupel–Zhang equality from a simple finite mixture
distribution of survival times as it gives justification to the weighted averages employed
in this paper. Once the marginal hazard rate has been shown to be a weighted average of
hazards among the survivors, the proof is the same as Vaupel and Zhang (2010).

Let X be the positive real-valued random variable ‘age at death’ and K be a random
index denoting membership to the kth population stratum. The marginal density of ages
at death is given by the discrete mixture distribution

f(x) =
∑
k

f(x|k)P(k),

where f(x|k) is the conditional density of deaths and P(k) the probability of membership
in stratum k. By definition the conditional and marginal survival functions are

S(x|k) = P(X > x|k) =
∫ ∞

x

f(x|k) dx

S(x) = P(X > x) =

∫ ∞

x

f(x) dx,

which give rise to the conditional and marginal hazards via the relationships

h(x|k) = −S′(x|k)/S(x|k)
h(x) = −S′(x)/S(x),

where the prime mark denotes the derivative with respect to age x.
The Vaupel–Zhang equality states that for the survivors at age x the age derivative

of their average hazard is equal to the average age derivative minus the variance of the
hazards, in their notation

ḣ(x) = ḣ(x)− σ2
h(x),

where
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ḣ(x) =

[∑
k

h(x|k)P(k|X > x)

]′

ḣ(x) =
∑
k

h′(x|k)P(k|X > x)

σ2
h(x) =

∑
k

h(x|k)2P(k|X > x)−

[∑
k

h(x|k)P(k|X > x)

]2

.

Proof:
Bayes theorem gives the probability of being in stratum k given survival to age x as

P(k|X > x) =
P(X > x|k)P(k)

P(X > x)
=

S(x|k)P(k)
S(x)

.

The marginal survival S(x) can be calculated from conditional survival S(x|k) and
stratum distribution P(k) via the law of total probability as

S(x) = P(X > x)

=
∑
k

P(X > x|k)P(k)

=
∑
k

S(x|k)P(k),

with age derivative

S′(x) =
∑
k

S′(x|k)P(k)

=
∑
k

−h(x|k)S(x|k)P(k).

By substituting S′(x) into h(x) = −S′(x)
S(x) one can express the marginal hazard as a

weighted average of the hazards of the survivors:
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Schöley: The impact of population heterogeneity on the age trajectory of neonatal mortality

h(x) = −
∑

k −h(x|k)S(x|k)P(k)
S(x)

=
∑
k

h(x|k)S(x|k)P(k)
S(x)

=
∑
k

h(x|k)P(k|X > x).

Taking the derivative of h(x) gives

ḣ(x) =
∑
k

h′(x|k)P(k|X > x) +
∑
k

h(x|k)P′(k|X > x)

= ḣ(x) +
∑
k

h(x|k)P′(k|X > x).

The second term can be manipulated to yield

∑
k

h(x|k)P′(k|X > x) =
∑
k

h(x|k)
(
P(k)S′(x|k)

S(x)
− P(k)S′(x)S(x|k)

S(x)2

)
=

∑
k

h(x|k)P(k)S′(x|k)
S(x)

−
∑
k

h(x|k)P(k)S′(x)S(x|k)
S(x)2

=
∑
k

h(x|k)P(k)S′(x|k)
S(x)

− S′(x)

S(x)

∑
k

h(x|k)P(k|X > x)

=
∑
k

h(x|k)P(k)S′(x|k)
S(x)

− h(x)2

=
∑
k

−h(x|k)2P(k)S(x|k)
S(x)

− h(x)2

= −
∑
k

h(x|k)2P(k|X > x)− h(x)2

= −σ2
h(x),

completing the proof.
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