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Research Article

Estimating multistate transition rates from population distributions

Robert Schoen 1

Stefan H. Jonsson2

Abstract

The ability to estimate interstate transition rates (or probabilities) from population
distributions has many potential applications in demography.  Iterative Proportional Fitting
(IPF) has been used for such estimation, but lacks a meaningful behavioral foundation. 
Here a new approach, Relative State Attraction (RSA), is advanced.  It assumes that states
have a greater (or lesser) ability to attract individuals, and that rates respond accordingly.
 The RSA estimation procedure is developed and applied to model and actual data where
the underlying rates are known.  Results show that RSA provides accurate estimates under
a wide range of conditions, typically yielding values quite similar to those produced by IPF.
 Both methods are then applied to U.S. data to provide new estimates of interregional
migration between the years 1980 and 1990.
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1. Introduction

There are many circumstances where an investigator knows the size and distribution of a
multistate population at two fairly close points in time and seeks the transition rates—or the
transition probabilities—that characterize the population’s behavior over that time interval.
 For example, census (or survey) figures can provide population counts, at two time points,
by marital status, labor force status, or place of residence.  It would be very useful if those
population counts could be employed to determine the prevailing risks of marriage and
divorce, job entry and exit, or interregional migration.

It is well known, however, that knowledge of two population stocks alone is
insufficient to uniquely determine the transition rates or probabilities that transform the first
population into the second.  With n living states, one typically has a set of n equations with
n2 unknown rates, hence an infinite number of solutions.  The problem of finding optimal
solutions has attracted a good deal of attention, but the appropriateness of proposed
solutions to demographic analysis is less than clear.  Here we review the leading
methodological approach to the problem1, advance a new, behaviorally based approach,
compare both techniques using hypothetical and actual data, and apply them to a problem
of substantive interest.

2. The iterative proportional fitting method

The principal technique for adjusting the elements of an array to satisfy specified row and
column totals is known as iterative proportional fitting (IPF).  In different publications, IPF
(or an equivalent procedure) has been referred to by a number of names, including the
Deming-Stephan procedure, the DSF procedure (after Deming, Stephan, and Furness), bi-
(or multi-) proportional adjustment, and the RAS method.  Bishop, Fienberg and Holland
(1975) and Willekens (1982) discuss its development and statistical properties.  The earliest
application appears to be that of Kruithof (1937), who examined network size needs for
different levels of telephone traffic.  IPF has been widely used in transportation science to
estimate spatial interaction flows, and has been generalized for estimating input-output
models. 

To describe the procedure, let us consider a non-negative array, D, of r rows and c
columns, whose ijth element is dij.  The dij can be considered base values, and represent
prior knowledge regarding patterns of interaction or movement.  Now let Ri, i=1,r be the
desired sum of the ith row, and let Cj, j=1,c, be the desired sum of the jth column.  Work
by Kruithof (1937), Deming and Stephan (1940), and Furness (1965) has shown that there
is a unique set of row factors, fi, i=1,r, and column factors, gj, j=1,c, such that there is an
array D*, whose ijth element is given by
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d*ij = dij fi gj (1)

which has the desired row and column totals.  The adjusted elements and the unique factors
can be found by (i) successively multiplying each matrix element of a given row by a factor
so that those row elements sum to the desired total, and following that procedure for every
row, (ii) successively multiplying each (adjusted) element of a given column by a factor so
that the column elements sum to the desired total, and following that procedure for every
column, and (iii) continuing the process until both row and column totals equal the desired
quantities.  While the algebraic solution is complex even for matrices with only 2 rows and
2 columns, the IPF procedure has a unique solution and can easily be programmed for
matrices of any size.

Iterative proportional fitting has a number of desirable properties. It is equivalent to
entropy maximization, where entropy reflects the amount of randomness (or lack of
structure) in the data (Willekens 1999).  Essentially, the maximum entropy solution finds
the pattern of flows achievable in the greatest number of ways (Halli and Rao 1992:190).
 Entropy maximization is particularly appropriate when the probability model underlying
the data is not known, and yields estimates equivalent to those made by maximum
likelihood (Batty and Mackie 1972; Bishop, Fienberg and Holland 1975: Ch. 3 and 5). 
Willekens (1982) showed that IPF is equivalent to estimating an array by log linear
modeling, where higher order interactions in the model are ignored.  The IPF procedure can
be applied to any state space, and readily accommodates “structural zeroes” (i.e. values that
must be zero because a transfer between those states is not possible). 

Models based on IPF have been applied to several demographic issues.  McFarland
(1975) used IPF to address the “two-sex problem” of demography, as it could resolve
inconsistencies between the number of marriages implied by male and female marriage
rates.  Estimates of migration arrays have been a major substantive focus (cf. Chilton and
Poet 1973; Nair 1985; Philipov 1978; and Willekens 1982).  In general, reasonable results
have been reported, although migration flows involving small numbers of persons have
been estimated poorly in some cases.  Previous studies emphasized retrospective data,
however, and had only a limited ability to compare their results to accurately known values.

Viewing demographic flows as cross-classified (or contingency table) data allows a
number of possible statistical models to be used.  Significant statistical modeling of that
kind on demographic topics has been done by Willekens (1999), Moffitt (1993), Moffitt
and Rendall (1995), and Rogers, Willekens, and Raymer (2001).  Here, we focus on the
core IPF procedure and its implicit entropy maximization and log linear interpretations.
 In addition to the transparent nature of those underlying assumptions, the procedure can
be applied with a minimum of information beyond the beginning and ending population
distributions.
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Despite its strengths, one can question the appropriateness of IPF for demographic
analysis.  Iterative proportional fitting has no simple demographic interpretation, while
demography has always emphasized the order and pattern that characterizes aggregate
behavior, and has found numerous behavioral regularities that transcend time and place.
 What is called for is a behaviorally interpretable procedure, and we now turn to the
specification of such an approach.

3. The relative state attraction method

3.1. The conceptual foundation

When there are n living states in the model, n constraints are imposed by the beginning and
ending population stocks.  As each state provides one constraint, we can think of changes
in the extent to which a state “attracts” (or “repels”) people.  If a state’s power to attract
people increases, then it is plausible to expect an increase in rates of transfer into the state
and a decrease in rates of transfer out.  For example, if marriage loses some of its ability
to attract, one might expect fewer marriages and more divorces.  Similarly, if Region A
enjoys economic prosperity and increases its ability to attract people, it should draw
inmigrants and discourage outmigrants.  While somewhat simplistic, the notion of
attraction/repulsion provides a plausible and interpretable basis for adjusting rates of
transfer when population distributions and a referent set of rates are available.

To explain the Relative State Attraction (RSA) approach, let mij(x,u) be some given
base (or standard) rate of transfer from state i to state j between ages x and x+u.  We
introduce a set of state-and-age-specific adjustment factors, ki(x,u) to reflect the changes
in attraction/repulsion from the base rate conditions, and a set of adjusted rate mij*(x,u) that
satisfy

mij*(x,u) = mij(x,u) kj(x,u)/ki(x,u) (2)

Each adjusted rate reflects changes in the power of attraction of both its origin and
destination states.  The rate of transfer from state i to state j increases as state j exerts more
attraction and decreases as state i exerts more attraction.  Through the factors ki and kj, the
adjusted rates mij* are influenced by behavior in all states.

From the symmetry of the attraction factors for states i and j, equation (2) implies

mij*(x,u) mji*(x,u) = mij(x,u) mji(x,u) (3)
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or that an increase in one rate is exactly offset by a decrease in the other.  The relationship
in equation (3) characterizes every pair of living states in the model, and is independent of
the number of states being considered.  For example, if divorce rates rise, it is reasonable
to expect a fall in marriage rates.  Similarly, if the rate of migration from A to B increases,
it is plausible that the rate of migration from B to A declines.  Such patterns have often
been observed, although exceptions are not uncommon. 

With only n system constraints on n2 rates, any estimation method must restrict the
range of possible behavioral changes.  The RSA method does not accurately capture all
possible behavioral patterns; no solution can do that.  The strength of the RSA method is
that it provides is a simple, intuitive, and readily communicable notion that translates the
n available constraints into n2 adjustment factors in a way that yields a reasonable pattern
of behavioral change.  It is applicable to any state space, and easily accommodates
structural zeroes (as zero rates remain zero).  In practice it is straightforward to apply. 
When standard rates and a chronological sequence of population distributions are available,
RSA (like IPF) can generate a time trajectory of rates. 

Furthermore, RSA opens up new analytical possibilities.  Because its underlying
assumption is readily interpretable, scenarios can be expressed in terms of changes in state
attraction/repulsion.  One can start with an initial population and set of rates, and assume
that the attraction/repulsion associated with each state changes over time in a given way.
 For example, it could be assumed that urban areas steadily exert more attraction for those
in rural areas, or that the attraction/repulsion (pull/push) factors motivating migration
between urban and rural areas vary cyclically over time.  Those assumed changes in
attraction/repulsion can be used to generate a trajectory of future rates, whose implications
can be found by conventional projection techniques.  No comparable procedure is possible
with IPF because the assumptions underlying IPF cannot readily be expressed in ways with
straightforward behavioral implications.

3.2. Determining the adjustment factors

The RSA method involves adjusting given behavioral rates, and our procedure uses “flow”
equations involving rates that connect the initial and final populations.  Let vector l(t) with
ith element li(t) be the observed initial population vector that provides the number of
persons in each state at exact time t, let vector l(t+u) with ith element li(t+u) be the
observed population vector at exact time t + u, and let L(t,u) with ith element Li(x,u) be the
vector of person-years lived by state between times t and t+u.  The L vectors are considered
calculable from the known l vectors2.

Typically, one has a base matrix, M, of rates believed to approximately characterize
the observed population.  The ijth element of M, i≠j, is mij, the transition rate from state i
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to state j.  The ith diagonal element of M can be written as i� i� j mij, where the
summation index j ranges over all living states other than i; i is the fertility rate in state i;
and i is the death (or “loss”) rate in state i.  As defined, M can reflect the demographic
behavior of any multistate population (cf. Schoen 1988; Ch. 4).

We require that the matrix M*(t,u) of adjusted rates satisfy the interstate flow equation

l(t+u) = l(t) + M*(T)(t,u) L(t,u) (4)

where the superscript (T) indicates the matrix transpose.  The ijth element of M*(t,u), i≠j,
is mij*(t,u) = mij(t,u) kj(t,u) / ki(t,u).  The ith diagonal element of M*(t,u) is mii*(t,u) = i

ki(t,u) - i/ki(t,u) - j mij*(t,u).  In this formulation, a state’s mortality and fertility are
assumed to respond only to changes in its own power of attraction, with greater attraction
raising fertility and lowering mortality.  Thus the state i fertility rate is multiplied by the
adjustment factor for state i and the state i mortality rate is divided by that factor.  In effect,
the “dead” state and the “preborn” state are assumed to have constant adjustment factors
equal to 1.  That both avoids the need for introducing additional unknowns and is consistent
with the idea that a state’s greater power of attraction increases entrants and decreases
exits.3   Substantively the assumption is plausible, though it does not always hold.

Solving equation (4) means using its n scalar equations to find the n adjustment factors
ki(t,u) {or the ratios ki(t,u)/ kj(t,u) }. Algebraically, those equations are nonlinear and give
rise to complicated expressions for the ki.  Even the general two living state model yields
a complicated cubic solution.  To indicate the nature of the mechanisms involved,
Appendix A gives the quadratic solutions for two restricted n=2 models.  Moreover,
Appendix A.2 shows that there is a unique realistic solution for a two state model with no
mortality or fertility (or for a two state model where mortality and fertility are determined
by the procedure described in note 3).

Numerically, the solution can readily be found using a mathematical program such as
Maple.  Numerous Maple and Octave calculations involving models with 2, 3, and 4 living
states have been made, and have always produced one and only one solution with
demographically realistic values (i.e. all ki > 0). When a model includes mortality or
fertility, a numerical solution for each ki can be found.  When the model includes neither
fertility nor mortality, the ki are only determined up to a multiplicative constant, and the
unique realistic solution is best expressed in terms of ki/kj ratios.  However, a general proof
that there must be a unique, demographically realistic solution is not available, and the
existence of such a solution may depend on the choice of standard matrix M. 
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4. Evaluating the RSA method

We examine the RSA method, and compare it with the IPF approach, in two ways.  First
we consider hypothetical multistate life table contexts where observed age-specific rate
schedules are shifted proportionately at all ages.  Second, we estimate transfer rates using
real data when the actual transfer rates are known.  RSA is a new and untested method, but
these comparisons are also the first time that the IPF method has been systematically
evaluated with respect to known rates in a demographic application.

4.1. Evaluations of hypothetical changes in rates

The venerable demographic technique of indirect standardization is based on the idea that
there is an underlying regularity in the pattern of demographic behavior over age.  In that
spirit, we produce a simulated set of age curves of rates by shifting the observed rates
proportionately, up or down, at all ages.  We then examine how the RSA and IPF methods
respond, age by age.  The imposed proportional pattern of change is quite distinct from the
assumptions underlying both estimation approaches. 

4.1.1. Models with two living states

Table 1 and Figure 1 are based on a two-living state married/unmarried model calculated
from data for the cohort of Swedish females born 1930-34 (see Schoen 1988, 92-93).  We
focus on the rates of transfer from Unmarried (U) to Married (M) and from M to U.  A
number of standard rates are used.  They are the actual rates multiplied by an arbitrary
modification factor: FUM for transfers from Unmarried to Married, and FMU for transfers
from Married to Unmarried.   To reflect a considerable degree of change, the factors chosen
were .7, .8, and .9, along with their (approximate) reciprocals 1.4, 1.25, and 1.1 and base
value 1.0.  Thus the “correct” rates for either transition could be as much as 40% higher or
30% lower than the “standard” used.  Because equation (3) indicates that RSA is based on
the assumption that the product of the two interstate transfer rates remains constant, Table
1 includes a column showing the product of FUM and FMU.  The life table population values
remain fixed.
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Figure 1: Actual, estimated, and standardized marriage rates from two-living state
(married/unmarried) model based on rates for Sweden, female cohort born
1930-1934

Figure 1 shows the age-specific marriage rates (i.e. the rates of transfer from U to M) in
three cases: when both FUM and FMU are .70, when FUM = .70 and FMU=1.40 (and their
product is .98), and when both factors are 1.40.  When the product of the factors was close
to one (Panel B), both RSA and IPF tracked the actual rates very closely.  The
discrepancies were considerably greater when the product of the factors departed
substantially from 1, though again the RSA and IPF estimates were quite close to each other
and yielded a reasonable pattern over age.
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Table 1: Mean proportional errors of RSA and IPF rate estimates in the context of
a two-state (married/unmarried) life table model based on the experience
of Swedish females born 1930-34

Unmarried  to Married Married to Unmarried

Factor Factor Product MPE from MPE Ratio MPE from MPE Ratio

U-M M-U (U-M)*(M-U) RSA IPF IPF/RSA RSA IPF IPF/RSA

.70 .70 .490 0.375 0.383 1.02 0.181 0.188 1.04

.70 .80 .560 0.324 0.331 1.02 0.146 0.154 1.06

.70 .90 .630 0.275 0.280 1.02 0.113 0.123 1.09

.70 1.00 .700 0.228 0.229 1.01 0.082 0.093 1.14

.70 1.10 .770 0.181 0.178 .99 0.067 0.080 1.19

.70 1.25 .875 0.113 0.101 .90 0.048 0.063 1.31

.70 1.40 .980 0.046 0.038 .82 0.036 0.053 1.48

.80 .80 .640 0.259 0.266 1.03 0.122 0.129 1.05

.80 .90 .720 0.204 0.209 1.02 0.087 0.095 1.09

.80 1.00 .800 0.150 0.152 1.01 0.054 0.063 1.18

.80 1.10 .880 0.098 0.095 .96 0.037 0.048 1.29

.80 1.25 1.000 0.022 0.017 .78 0.023 0.035 1.54

.80 1.40 1.120 0.053 0.080 1.53 0.065 0.049 .76

.90 .90 .810 0.134 0.138 1.04 0.062 0.066 1.07

.90 1.00 .900 0.075 0.075 1.01 0.026 0.032 1.22

.90 1.10 .990 0.017 0.013 .77 0.011 0.018 1.64

.90 1.25 1.125 0.067 0.083 1.24 0.055 0.045 .83

.90 1.40 1.260 0.149 0.181 1.21 0.100 0.088 .88

1.00 1.00 1.000 0.000 0.000 -- 0.000 0.000 --

1.00 1.10 1.100 0.063 0.069 1.10 0.035 0.034 .97

1.00 1.25 1.250 0.155 0.174 1.12 0.086 0.083 .97

1.00 1.40 1.400 0.245 0.281 1.15 0.133 0.128 .96

1.10 1.10 1.210 0.142 0.149 1.05 0.063 0.071 1.12

1.10 1.25 1.375 0.241 0.263 1.09 0.116 0.122 1.06

1.10 1.40 1.540 0.338 0.379 1.12 0.166 0.171 1.03

1.25 1.25 1.563 0.368 0.395 1.07 0.160 0.187 1.17

1.25 1.40 1.750 0.476 0.525 1.10 0.213 0.241 1.13

1.40 1.40 1.960 0.611 0.669 1.10 0.259 0.322 1.24
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Table 1 shows the overall errors found when every value of FUM was combined with
every equal or higher value of FMU.  The measure of accuracy used is the Mean
Proportional Error (MPE) where the proportional error is

PE = ( Actual - Estimated) / Actual (5)

Since the principal marriage ages are approximately 15-39, the MPE values shown in Table
1 reflect the average of the absolute values of the proportional errors for those ages.  The
IPF/RSA ratio of MPE values is also shown, with a ratio over 1 indicating that the IPF
method has a larger error, and a ratio under 1 indicating that the RSA method has a larger
error.

Table 1 shows that RSA and IPF yielded fairly similar error levels, though RSA
usually did a bit better.  When the product of FUM and FMU was close to one, the MPE was
small, e.g less than 2% when FUM was .90 and FMU was 1.10.  At the extremes, shown in
panels A and C of Figure 1, the MPE was from near 40% to over 60%.  As is true for
indirect standardization, the results are thus standard dependent.  Standards that yield
offsetting changes in the rates produce good results for both methods, though all of the
standards used led to reasonable marriage patterns over age.  It is not surprising that the
RSA estimates go increasingly off as the underlying state attraction assumption increasingly
departs from the actual circumstances.  What is surprising is that the IPF estimates go off
in very much the same way, even though its underlying assumptions are quite different.

4.1.2. Models with four living states

Let us now consider a marital status model with four states: Never Married (s), Currently
Married (m), Widowed (w), and Divorced (v).  Table 2 and Figure 2 show values based on
observed data for United States Females, 1995 (cf. Schoen and Standish 2001).  The
adjustment factors again range from .7 to 1.4, with FUM reflecting the adjustment made to
all marriage rates, and FMV reflecting the adjustment to the divorce rate.  The other rates
in the model are not changed, and life table values are again used for the initial and ending
populations.  Our comparison focuses on the rates of transfer from Never Married to
Married (msm), Married to Divorced (mmv), and Divorced to Married (mvm), and MPEs are
based on ages 18 through 45-49.
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Figure 2: Actual, estimated, and standardized marriage rates from four-living state
model based on rates for USA females in 1995
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Table 2: Mean Proportional Errors of RSA and IPF Rate Estimates in the Context of
a Four State Marital Status Life Table Based on the Experience of United
States Females in the Year 1995.

All Marriage
Rates

Divorce
Rate Single to Married Married to Divorced Divorced to Married

Factor Factor Product MPE from
MPE
Ratio MPE from

MPE
Ratio MPE from

MPE
Ratio

U-M M-V (U-M)*(M-V) RSA IPF IPF/RSA RSA IPF IPF/RSA RSA IPF IPF/RSA

.70 .70 .490 0.007 0.007 1.01 0.181 0.181 1.00 0.397 0.396 1.00

.70 .80 .560 0.007 0.007 1.00 0.152 0.153 1.00 0.336 0.336 1.00

.70 .90 .630 0.006 0.006 .99 0.125 0.126 1.00 0.278 0.278 1.00

.70 1.00 .700 0.006 0.006 .97 0.099 0.100 1.01 0.221 0.223 1.01

.70 1.10 .770 0.005 0.005 .95 0.074 0.076 1.02 0.167 0.170 1.02

.70 1.25 .875 0.005 0.005 .92 0.039 0.041 1.05 0.089 0.094 1.05

.70 1.40 .980 0.005 0.004 .88 0.005 0.009 1.66 0.015 0.021 1.46

.80 .80 .640 0.004 0.004 1.01 0.122 0.121 1.00 0.269 0.268 1.00

.80 .90 .720 0.004 0.004 .99 0.092 0.093 1.00 0.206 0.206 1.00

.80 1.00 .800 0.004 0.004 .97 0.064 0.065 1.01 0.144 0.146 1.01

.80 1.10 .880 0.003 0.003 .94 0.038 0.039 1.04 0.085 0.088 1.03

.80 1.25 1.000 0.003 0.002 .88 0.001 0.003 5.30 0.001 0.006 11.16

.80 1.40 1.120 0.002 0.002 .86 0.037 0.033 .91 0.081 0.073 .91

.90 .90 .810 0.002 0.002 1.02 0.061 0.061 1.00 0.137 0.136 1.00

.90 1.00 .900 0.002 0.002 .97 0.031 0.032 1.02 0.071 0.072 1.01

.90 1.10 .990 0.001 0.001 .90 0.003 0.004 1.47 0.007 0.010 1.35

.90 1.25 1.125 0.001 0.001 .84 0.038 0.035 .94 0.084 0.079 .94

.90 1.40 1.260 0.001 0.001 .96 0.076 0.073 .95 0.172 0.163 .95

1.00 1.00 1.000 0.000 0.000 -- 0.000 0.000 -- 0.000 0.000 --

1.00 1.10 1.100 0.000 0.000 1.31 0.030 0.029 .97 0.068 0.066 .97

1.00 1.25 1.250 0.001 0.001 1.35 0.073 0.071 .97 0.165 0.160 .97

1.00 1.40 1.400 0.001 0.002 1.39 0.114 0.110 .97 0.259 0.250 .97

1.10 1.10 1.210 0.002 0.002 1.02 0.062 0.062 1.00 0.140 0.139 .99

1.10 1.25 1.375 0.002 0.002 1.09 0.107 0.105 .98 0.244 0.239 .98

1.10 1.40 1.540 0.003 0.003 1.14 0.150 0.146 .97 0.342 0.334 .97

1.25 1.25 1.563 0.004 0.004 1.02 0.156 0.155 .99 0.356 0.353 .99

1.25 1.40 1.750 0.004 0.005 1.06 0.202 0.198 .98 0.463 0.455 .98

1.40 1.40 1.960 0.006 0.006 1.03 0.250 0.248 .99 0.578 0.571 .99
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Figure 2 shows the three rates of interest when the factors FUM and FMV are (.7, .7), (.7,
1.4), and (1.4, 1.4).  Once again, when the product of the factors is close to one (as in panel
B), both methods closely reproduce the actual rates.  Estimates of msm are consistently good
(under 1%) for both methods, because the Never Married state has no entrants, and thus
there are no complications from a transfer rate from Presently Married to Never Married.
 Estimates of mmv and mvm are increasingly in error as the product of the factors departs
from one, though again the two methods generate similar estimates and produce a
reasonable pattern over age.  When the factors are both below one or both above one
(Panels A and C of Figure 2), the mmv estimates are between the standard and actual values,
while the mvm estimates are a bit further away from the actual than the standard. 
Nonetheless, for most factor combinations, the error level is not bad considering the limited
input data.

4.2. Evaluations of estimates using actual data for the standard rates

Table 3 shows standard, actual, and RSA and IPF estimates of msm, mmv, and mvm for
United States Females, 1995, when the standard is based on observed values for United
States Females, 1988.  While not far apart in time, the marriage and divorce rates of those
two years showed quite different patterns.  In 1995, marriage, divorce, and remarriage rates
were much lower at young ages but somewhat higher at older ages than they were in 1988.
Thus the 1988 standard implies reinforcing, not offsetting, changes in the rates, and affords
a demanding test of the RSA approach. 

Both methods again produced similar estimates.  While the first marriage estimates
were again quite close, the remarriage and divorce rate estimates were somewhat off.  The
fall in first marriage and divorce rates at the young ages, combined with the large drop in
rates of remarriage from divorce, produced large errors in mvm at ages below 25. 
Nonetheless, Table 4 shows that those errors generally did not produce poor estimates of
the major summary measures.  For example, the actual 1995 probability that a marriage
would end in divorce was .425, while the RSA estimate was .415 and the IPF estimate was
.419.  The RSA and IPF methods are thus reasonably robust to the choice of standard in
terms of producing useful estimates of overall behavior.  Again, what is striking is that the
IPF estimates were less accurate and had errors paralleling the RSA estimates when the
assumptions underlying the RSA method were violated.
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Table 3: Standard (year 1988), actual (year 1995), and estimated rates for U.S.
females, using the relative state attraction (RSA) and iterative proportional
fitting (IPF) approaches

Single to Married
Age     Standard    Actual     RSA        IPF

Married to Divorce
Standard      Actual       RSA           IPF

Divorced to Married
Standard     Actual      RSA         IPF

18        .05701     .02722     .02727     .02728
19        .07184     .05353     .05361     .05368

.10390        .05579      .08814       .08423

.12581        .05593      .09958       .09307
.57823      .03682      .78180      .68688
.54149      .07387      .81975      .69553

20        .10124     .07127     .07135     .07134
21        .12319     .08164     .08173     .08174
22        .13446     .09772     .09780     .09779
23        .12419     .10803     .10805     .10803
24        .10574     .11321     .11322     .11321

.06814        .04766      .07076       .07122

.07107        .04080      .06704       .06582

.06563        .04588      .06991       .07099

.06369        .04347      .06635       .06715

.05863        .04478      .06093       .06155

.50253      .13350      .47543      .48313

.52848      .21473      .58260      .56459

.52997      .17490      .48020      .49464

.53343      .23492      .49972      .50932

.47975      .27526      .45219      .45930
25        .15988     .13640     .13640     .13640
26        .14562     .12927     .12912     .12912
27        .12802     .12540     .12528     .12526
28        .10573     .13309     .13276     .13273
29        .09245     .10172     .10171     .10169

.04692        .04141      .04434       .04406

.04302        .03899      .04285       .04283

.03804        .03804      .04325       .04367

.03567        .03845      .04415       .04486

.03300        .03798      .03762       .03795

.26695      .25661      .28659      .28363

.26159      .22564      .26278      .26268

.23829      .15729      .20423      .20826

.24390      .14234      .18895      .19497

.19695      .17164      .16910      .17165
30        .06657     .08609     .08287     .08279
35        .04198     .05313     .05218     .05170
40        .02084     .03241     .03172     .03076
45        .01186     .01657     .01643     .01556
50        .00732     .01148     .01081     .00942

.02670        .03160      .02788       .02843

.02230        .02582      .02300       .02323

.01900        .02161      .01965       .01989

.01300        .01523      .01257       .01271

.00780        .01041      .00835       .00864

.13770      .15208      .12698      .13100

.09030      .10170      .08599      .08702

.06690       .07196     .06338      .06407

.04640       .05856     .04723      .04746

.03030       .03479     .02720      .02739

Table 4: Selected summary measures from actual 1988, actual 1995, and estimated
1995 female marital status life tables for the United States.

Measure Actual RSA Estimated IPF Estimated
1988 1995 1995 1995

1.  PROPORTION EVER MARRYING OF THOSE         
        SURVIVING TO AGE 15 .879 .887 .886 .884
2.  MEAN AGE AT FIRST MARRIAGE 25.1 26.6 26.6 26.6
3.  NUMBER OF MARRIAGES PER PERSON               
       MARRYING 1.51 1.46 1.45 1.46
4.  PROPORTION OF MARRIAGES ENDING IN           
        DIVORCE .432 .425 .415 .419
5.  MEAN AGE AT DIVORCE 34.4 37.3 35.5 35.6
6.  AVERAGE DURATION OF A MARRIAGE 24.8 25.7 25.8 25.8
7.  REMARRIAGES OF WIDOWED                                
       PERSONS/WIDOWHOODS .063 .048 .057 .056
8.  REMARRIAGES OF DIVORCED                               
       PERSONS/DIVORCES .723 .687 .695 .695
9.  MEAN AGE AT REMARRIAGE FROM DIVORCED 36.0 39.7 37.8 37.8
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5. A substantive application

To show how the RSA method can be applied to produce useful results, we estimate rates
of interregional migration in the United States for the period 1980-1990.  Such rates are not
known at present, although rates for the period 1985-90 have been calculated from a
retrospective question in the 1990 Census that asked place of residence in 1985.  Appendix
B describes how 1980 and 1990 Census figures, and life table values for the 1989-91
period, were used to calculate multiregional life tables for the U.S., 1980-90.  Four regions
were recognized: North-east, Mid-west, South, and West.

Figure 3 compares RSA estimated age-specific female rates into and out of the Mid-
west for 1980-90 with analogous rates for 1985-90.  There are clear differences between
the two, with the entire decade having lower rates of migration into the Mid-west from
every other region, and higher rates of migration out of the Mid-west to every other region.
 That pattern is found in all age groups.  Expressing that pattern in terms of RSA
assumptions, the Mid-west region exerted more attraction during 1985-90 than it did over
the 1980-90 decade. 

Table 5 presents selected measures from female multiregional life tables based on the
1985-90 period and comparable figures for the 1980-90 period from separate tables
calculated by RSA and by IPF.  While the total amount of movement is very much the same
in all 3 models (.676 vs. .674 moves per person), there is a definite difference in
interregional migration patterns.  The RSA and IPF values are again very close.  Figure 3
would essentially be unchanged if IPF instead of RSA values were used.  Both estimates
for the 1980-90 decade yield substantially more net migration out of the Mid-west than
does the table for 1985-90.  For the whole decade, there was less net migration out of the
North-east and more net migration into the South.  The West region gained appreciably
from net migration over the decade, but lost some population to net migration during the
1985-90 period.  Even in this abbreviated presentation, it is evident that the RSA (or the
IPF) estimated decade rates  provide a new perspective, both qualitatively and
quantitatively.  To understand U.S. interregional migration in the 1980’s, one should extend
the analysis beyond the previously available rates, which only covered the second half of
the decade.
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Figure 3: Interregional migration rates for females in the United States, 1985-1990
(actual) and 1980-1990 (RSA estimates)
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Table 5: Selected measures from multiregional life tables for United States females,
1980-90 (RSA and IPF estimates) and 1985-90 (actual)

RSA 1980-90 IPF 1980-90 1985-90

A.  Number of Moves Per         
       Person

.676 .676 .674

Entrants Exits Net Change
1980-90 1985-90 1980-90 1985-90 1980-90 1985-90

B.  Inter-Regional Moves     RSA        IPF    RSA           IPF      RSA           IPF
1.  North-east    10,085   10,080 9,681   13,277       13,280 13,841   -3,192         -3,200 -4,160
2.  Mid-west    13,967   13,965 15,063   19,029       19,026 17,590   -5,062         -5,061 -2,527
3.  South    27,756   27,762 27,465   20,516       20,515 20,579    7,240          7,247   6,886
4.  West    15,779   15,782 15,159   14,765       14,768 15,358    1,014          1,014 -199
   Total    67,587   67,589 67,368   67,587       67,589 67,368    0                 0 0

Note: See Appendix B for calculation details

6. Summary and conclusions

We have developed, evaluated, and applied a new method, based on relative state
attraction, that estimates interstate transfer rates from cross-sectional population
distributions and an assumed set of standard rates.  The RSA method performs as well as
the leading alternative, iterative proportional fitting.  Unlike IPF, however, RSA has a clear
and plausible substantive interpretation and can be used to examine the implications of
hypothesized changes in the power of attraction of different states.

A basic characteristic of the RSA method is that the product of the transfer rates
between two states (i.e. the product mij mji) is the same in both the assumed standard and
the resultant estimates.  Hence, relative to the standard chosen, if the rates of transfer from
one state (say i) to the other (j) increase, then the rates in the opposite direction are assumed
to decrease.  The effects of such constraints on the estimates were examined in the context
of two-state and four-state models using stylized changes in the standard rates, and in a four
state model where estimates were made based on rates observed in a nearby year.  The
results showed that RSA yields excellent estimates when there are large, compensating
changes in interstate rates.  When the rates between two states move in the same direction,
the estimates are more in error, but nonetheless preserve the age pattern of behavior in the
rates and generally yield age-aggregated summary measures close to actual levels. 

A consistent feature of the evaluations was that RSA and IPF produced very similar
estimates.  Such a result was not expected, because the two methods are based on very
different assumptions: RSA on changes in the attraction/repulsion of states that affect the
risk of movement, and IPF on entropy maximization.  That concordance of estimates is
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encouraging, however, because it suggests that one comes to a very similar result regardless
of whether the problem is approached from a heuristic, more demographic, perspective or
from the viewpoint of statistical estimation. 

There are many circumstances where it is useful to estimate behavioral rates when
only a standard pattern and two cross-sectional population distributions are known.  The
procedures developed here show how that can be done in a way that is easy to justify in
nontechnical terms, that can be calculated in a straightforward fashion, and that gives
results that typically approximate maximum likelihood estimates.
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Notes

1.  The present topic has tangential relationships to two other lines of research that are not
pursued here.  One is estimations from sequential cross sections in the decrement only
context (see Schmertmann 2002).  The other is estimating fertility and mortality from
age distributions via inverse projection (cf. Lee 1985; Oeppen 1993).

2.  There are many ways to go from population distribution (l) vectors to person-year (L)
vectors.  The simplest is the linear assumption, used in the calculations presented here,
where

L(t,u) = (u/2)[ l(t) + l(t+u)] (E.1)

An alternative is to estimate the mean duration into the interval at which each type of
transfer takes place, i.e. estimate the multistate version of Chiang’s a.  That can be
done from a number of sources, including adjacent transfer rates (see Schoen 1988:
Chapter 4 for a discussion of these and other techniques).

3.  An anonymous reviewer has pointed out that published data on mortality and fertility
may be available for each state.  That would avoid the necessity of assuming unit
kj(t,u)  factors for the dead and preborn states, and could well produce better values for
the state-specific birth and death rates.  To implement that idea, one could obtain state-
specific birth and death rates for each age interval.  The number of births and deaths
in each state could then be calculated by multiplying those birth and death rates by the
number of person-years lived in each state (i.e. the appropriate Lj(t,u) value).  To
insure that the system remains properly closed, at each age (i) the total end-of-interval
population must be compared with (ii) the total beginning-of-interval population plus
the total number of births minus the total number of deaths.  Given data
inconsistencies, it will probably be necessary to proportionately adjust all of the birth
and death rates to make those two population figures equal.  With mortality and
fertility incorporated in this manner, the system is similar to the case with no mortality
or fertility.  Equation (4) can be solved for the kj(t,u)/ ki(t,u) ratios (or one kj(t,u)  can
arbitrarily be set equal to 1).  Data limitations or inconsistencies may make this
refinement unfeasible, and even when data are available the analyst must decide
whether or not it is worthwhile.  For the U.S. migration estimates (Figure 3 and Table
5), the refinement was not used because of concerns about data inconsistencies, the
unavoidable errors introduced by the approximations needed to determine the number
of persons born in each region, and the small effect of mortality at most ages.
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APPENDIX A 

Equations for the adjustment factors in a hierarchical two-state model

1. A two-state hierarchical model can be described by the equations

l1(t+u) = l1(t) - L1(t,u) [ m12(t,u) k2(t,u) / k1(t,u) + m� (t,u) / k1(t,u) ]

l2(t+u) = l2(t) - L2(t,u) m� (t,u) / k2(t,u) +  L1(t,u) m12(t,u) k2(t,u) /k1(t,u) (A.1)

������ ���	�
��������	��	�������������������������������������������������������������
and no transfers from state 2 to state 1.  The solutions for k1(t,u) and k2(t,u) are

k2(t,u) = [ l1(t) k1(t,u) - l1(t+u) k1(t,u) - L1(t,u) m� (t,u) ] / [L1(t,u) m12(t,u)] (A.2)

where k1(t,u) is the positive root of the quadratic equation

0 = [k1(t,u)]2 { [l1(t) - l1(t+u)]2 +  [l1(t) - l1(t+u)]  [l2(t) - l2(t+u)] }
   + k1(t,u)L1(t,u) { m� (t,u)[2 l1(t+u)-2 l1(t)+l2(t+u)-l2(t)] - L2(t,u) m� (t,u) m12(t,u) }
   + [ L1(t,u) m� (t,u) ]2 (A.3)

2. A two-state non-hierarchical model with no fertility or mortality can be described by the
equations

l1(t+u) = l1(t) - Z L1(t,u) m12(t,u) + L2 (t,u) m21(t,u) / Z

l2(t+u) = l2(t) - L2(t,u) m21(t,u) / Z + Z L1(t,u) m12(t,u) (A.4)

where Z = k2(t,u) / k1(t,u).  Using the first equation in (A.4) and solving the quadratic yields

Z = [1/(2 L1(t,u) m12(t,u))] [{l1(t) - l1(t+u)} ± [{l1(t) - l1(t+u)}2

+ 4 L1(t,u) m12(t,u) L2(t,u) m21(t,u)]½ ] (A.5)

From (A.5), it is evident that the positive root always yields a realistic (i.e. positive) value
for Z = k2(t,u) / k1(t,u), while the negative root always yields a negative value for Z,
because the expression whose square root is taken must be positive and greater than the
square of [{l1(t) - l1(t+u)}.
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APPENDIX B 

Calculating multiregional life tables for the United States, 1980-90

The population data for the calculations were obtained from the Integrated Public Use
Microdata Series (IPUMS, available at www.ipums.org/usa/doc.html;  see Ruggles and
Sobek et al 1997).  From the 1980 and 1990 census public use microdata 5% samples,
information was extracted on the age, sex, state of residence, state of birth (only U.S. born
persons were included), person sampling weight, and (for 1990) state of residence in 1985.
 States were aggregated into 4 regions: North-east (Connecticut, Maine, Massachusetts,
New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont), Mid-
west (Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North
Dakota, Ohio, South Dakota, and Wisconsin), West (Alaska, Arizona, California, Colorado,
Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, Wyoming),
and South (the remaining states and the District of Columbia).  Throughout, mortality in
all regions was assumed to follow that of the U.S Life Tables for 1989-91 (U.S. National
Center for Health Statistics 1997).

To prepare the multiregional life tables for 1985-90, the male and female populations
were each put in 5-year age groups for ages 0-4 through 80-84 years, with ages 85 and over
combined.  The calculation procedure followed was essentially that described in Schoen
(1988:76-79).  For ages 5-9 through 80-84, retrospective proportions Rij were calculated
as the ratio of (a) the number in state i in 1985 who were in state j in 1990 to (b) the sum
over all regions j of those who were in state i in 1985 and in state j in 1990.  Survivorship
proportions Sij were calculated from the Rij by back surviving the total 1990 population to
1985, using the 1989-91 U.S. female life table.  Migration at ages over 85 was assumed to
be the same as at ages 80-84.  State of birth was used as the previous state for persons aged
0-4 in 1990.  Elements of the Markov transition probability matrices ( ) were then found
as the arithmetic mean of the Sij for that and the preceding age interval.  The (i,j) element
of  is the probability that a person in state j at the beginning of an interval is in state i at
the end of the interval.  The matrix of interstate transfer rates was then obtained by the
linear relationship M=(2/5)[I+ ]-1[I- ], where I represents the identity matrix.  The life
table was calculated using a program very similar to Program IDLT in Schoen
(1988:Appendix D), but with linear survivorship.  The initial number of persons in each
state was allocated in proportion to the reported state of birth of persons under 5 in the
1990 Census.

For the 1980-90 life tables, the 1990 population was accepted as reported.  Because
of inconsistencies between the 1980 and 1990 age-sex distributions, it was necessary to
estimate the total 1980 U.S. born population by back surviving the 1990 population using
the 1989-91 U.S. life tables.  Within each age-sex group, that number was allocated to



Demographic Research – Volume 9, Article 1

24 http://www.demographic-research.org

regions in the same proportion as found in the 1980 Census data.  Ten year age groups were
used from ages 5-14 through 75-84 for consistency with the 10 year time interval.  (The 5-
year of age rates for 1985-1990 were aggregated to 10 year rates by multiplying
consecutive 5-year  matrices, and then transforming the products to rate matrices.)  For
the RSA rates, a variant of equation (4) was used to find the adjustment factors, with the
1985-90 rates taken as the standard.  With that same standard, the IPF rates were calculated
by programming the iterative procedure described in the text.  Program IDLT, with
modified age categories and linear survivorship, was used to construct the 1980-90
multiregional life tables.  The initial number of persons in each state reflects the reported
state of birth of persons aged 5-9 in the 1990 Census.  The summary measures were found
by summing the number of interregional moves in each life table population.


