Volume 31 - Article 19 | Pages 553–592  

A matrix approach to the statistics of longevity in heterogeneous frailty models

By Hal Caswell

References

Abramowitz, M and Stegun, I.A. (1965). Handbook of mathematical functions. New York: Dover.

Download reference:

Anderson, J.E. and Louis, T.A. (1995). Survival analysis using a scale change random effects model. Journal of the American Statistical Association 90(430): 669-679.

Weblink:
Download reference:

Caswell, H. (2006). Applications of Markov chains in demography. In: Langville, A.N. and Stewart, W.J. (eds.). MAM2006: Markov Anniversary Meeting. Boson Books: 319-334.

Download reference:

Caswell, H. (2011). Beyond R_0: Demographic Models for Variability of Lifetime Reproductive Output. PloS ONE 6(6): e20809.

Weblink:
Download reference:

Caswell, H. (2012). Matrix models and sensitivity analysis of populations classified by age and stage: a vec-permutation matrix approach. Theoretical Ecology 5(3): 403-417.

Weblink:
Download reference:

Caswell, H. (2001). Matrix population models: construction, analysis, and interpretation. Sunderland, MA: Sinauer Associates.

Download reference:

Caswell, H. (2008). Perturbation analysis of nonlinear matrix population models. Demographic Research 18(3): 59-116.

Weblink:
Download reference:

Caswell, H. (2013). Sensitivity analysis of discrete Markov chains via matrix calculus. Linear Algebra and its Applications 438(4): 1727-1745.

Weblink:
Download reference:

Caswell, H. (2007). Sensitivity analysis of transient population dynamics. Ecology Letters 10(1): 1-15.

Weblink:
Download reference:

Caswell, H. (2009). Stage, age and individual stochasticity in demography. Oikos 118(12): 1763-1782.

Weblink:
Download reference:

Caswell, H. and Fujiwara, M. (2004). Beyond survival estimation: mark-recapture, matrix population models, and population dynamics. Animal Biodiversity and Conservation 27(1): 471-488.

Download reference:

Caswell, H. and Salguero-Gómez, R. (2013). Age, stage and senescence in plants. Journal of Ecology 101(3): 585-595.

Weblink:
Download reference:

Cha, J.H. and Finkelstein, M. (2013). The failure rate dynamics in heterogeneous populations. Reliability Engineering and System Safety 112: 120-128.

Download reference:

Choquet, R. and Nogue, E. (2010). E-SURGE 1.7 User's Manual.

Download reference:

Engelman, M., Canudas-Romo, V., and Agree, E.M. (2013). Frailty in transition: variation and vulnerability in aging populations.

Download reference:

Engelman, M., Caswell, H., and Agree, E.M (2014). Why do lifespan variability trends for the young and old diverge? Demographic Research 30(48): 1367-1396.

Weblink:
Download reference:

Feichtinger, G. (1971). Stochastische Modelle demographischer Prozesse. Berlin: Springer-Verlag.

Download reference:

Gage, T.B. (1998). The comparative demography of primates: with some comments on the evolution of life histories. Annual Review of Anthropology 27: 197-221.

Weblink:
Download reference:

Gavrilov, L.A. and Gavrilova, N.S. (1992). The biology of life span: A quantitative approach. New York: Harwood Academic Publishers.

Download reference:

Henderson, H.V. and Searle, S.R. (1981). The vec-permutation matrix, the vec operator and Kronecker products: A review. Linear and Multilinear Algebra 9(4): 271-288.

Weblink:
Download reference:

Horiuchi, S. (2003). Interspecies Differences in the Life Span Distribution: Humans versus Invertebrates. Population and Development Review 29: 127-151.

Download reference:

Hunter, C.M. and Caswell, H. (2009). Rank and Redundancy of Multistate Mark-Recapture Models for Seabird Populations with Unobservable States.

Weblink:
Download reference:

Hunter, C.M. and Caswell, H. (2005). The use of the vec-permutation matrix in spatial matrix population models. Ecological Modelling 188(1): 15-21.

Weblink:
Download reference:

Iosifescu, M. (1980). Finite markov processes and their applications. New York: Wiley.

Download reference:

Keiding, N., Andersen, P.K., and Klein, J.P. (1997). The role of frailty models and accelerated failure time models in describing heterogeneity due to omitted covariates. Statistics in Medicine 16(2): 215-224.

Download reference:

Keyfitz, N. and Caswell, H. (2005). Applied mathematical demography. New York: Springer.

Download reference:

Klein, J.P., Pelz, C., and Zhang, M.-j. (1999). Modeling random effects for censored data by a multivariate normal regression model. Biometrics 55(2): 497-506.

Download reference:

Kondor, R.I. and Lafferty, J.D. (2002). Diffusion Kernels on Graphs and Other Discrete Input Spaces.

Download reference:

Le Bras, H. (1976). Lois de mortalité et âge limite. Population 31(3): 655-692.

Download reference:

Magnus, J.R. and Neudecker, H. (1979). The commutation matrix: some properties and applications. Annals of Statistics 7(2): 381-394.

Download reference:

Missov, T.I. (2013). Gamma-Gompertz life expectancy at birth. Demographic Research 28(9): 259-270.

Weblink:
Download reference:

Missov, T.I. and Finkelstein, M. (2011). Admissible mixing distributions for a general class of mixture survival models with known asymptotics. Theoretical Population Biology 80(1): 64-70.

Weblink:
Download reference:

Pan, W. (2001). Using frailties in the accelerated failure time model. Lifetime Data Analysis 7(1): 55-64.

Weblink:
Download reference:

Pradel, R. (2005). Multievent: An Extension of Multistate Capture-Recapture Models to Uncertain States. Biometrics 61(2): 442-447.

Download reference:

Tuljapurkar, S., Steiner, U.K., and Orzack, S.H. (2009). Dynamic heterogeneity in life histories. Ecology Letters 12(1): 93-106.

Weblink:
Download reference:

van Raalte, A.A. and Caswell, H. (2013). Perturbation analysis of indices of lifespan variability. Demography 50(5): 1615-1640.

Weblink:
Download reference:

Vaupel, J.W. (2010). Biodemography of human ageing. Nature 464: 536-542.

Weblink:
Download reference:

Vaupel, J.W. and Carey, J.R. (1993). Compositional interpretations of medfly mortality. Science 260(5114): 1666-1667.

Download reference:

Vaupel, J.W., Carey, J.R., Christensen, K., Johnson, T.E., Yashin, A.I., Holm, N.V., Iachine, I.A., Kannisto, V., Khazaeli, A.A., and Liedo, P. (1998). Biodemographic Trajectories of Longevity. Science 280(5365): 855-860.

Weblink:
Download reference:

Vaupel, J.W., Manton, K.G., and Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16(3): 439-454.

Weblink:
Download reference:

Vaupel, J.W. and Missov, T.I. (forthcoming). Unobserved population heterogeneity: a review of formal relationships. Demographic Research .

Download reference:

Vaupel, J.W. and Yashin, A.I. (1985). Heterogeneity's ruses: some surprising effects of selection on population dynamics. American Statistician 39(3): 176-185.

Weblink:
Download reference:

Vaupel, J.W. and Yashin, A.I. (2006). Unobserved population heterogeneity.

Download reference:

Vaupel, J.W., Yashin, A.I., and Manton, K.G. (1988). Debilitation's aftermath: Stochastic process models of mortality. Mathematical Population Studies 1(1): 21-48.

Weblink:
Download reference:

Wienke, A. (2010). Frailty models in survival analysis. Boca Raton, Florida: Chapman & Hall/CRC.

Download reference:

Yashin, A.I., Iachine, I.A., and Begun, A.S. (2000). Mortality modeling: A review. Mathematical Population Studies 8(4): 305-332.

Weblink:
Download reference:

Yashin, A.I., Vaupel, J.W., and Iachine, I.A. (1994). A duality in aging: the equivalence of mortality models based on radically different concepts. Mechanisms of Ageing and Development 74(1-2): 1-14.

Weblink:
Download reference:

Zarulli, V., Marinacci, C., Costa, G., and Caselli, G. (2013). Mortality by education level at late-adult ages in Turin: a survival analysis using frailty models with period and cohort approaches. BMJ Open 3(7): e002841.

Weblink:
Download reference:

Back to the article