Volume 33 - Article 28 | Pages 801–840 Author has provided data and code for replicating results

The sensitivity analysis of population projections

By Hal Caswell, Nora Sánchez Gassen

Print this page  

 

References

Abadir, K.M. and Magnus, J.R. (2005). Matrix algebra. New York: Cambridge University Press.

Download reference in RIS | BibTeX

Ahlburg, D. and Lutz, W. (1998). Introduction: The need to rethink approaches to population forecasts. Population and Development Review 24(Supplement. Frontiers of Population Forecasting): 1-14.

Weblink doi:10.2307/2808048
Download reference in RIS | BibTeX

Alzheimer Europe (2014). The prevalence of Dementia in Europe.

Weblink http://www.alzheimer-europe.org/Policy-in-Pra ...
Download reference in RIS | BibTeX

Arthur, W.B. (1984). The analysis of linkages in demographic theroy. Demography 21(1): 109-128.

Weblink doi:10.2307/2061031
Download reference in RIS | BibTeX

Booth, H. (2006). Demographic forecasting: 1980 to 2005 in review. International Journal of Forecasting 22(3): 547-581.

Weblink doi:10.1016/j.ijforecast.2006.04.001
Download reference in RIS | BibTeX

Caswell, H. (2000). Prospective and retrospective perturbation analyses: Their roles in conservation biology. Ecology 81: 619-627.

Weblink doi:10.2307/177364
Download reference in RIS | BibTeX

Caswell, H. (2001). Matrix Population Models: Construction, Analysis, and Interpretation. Sunderland: Sinauer Associates.

Download reference in RIS | BibTeX

Caswell, H. (2006). Applications of Markov Chains in Demography.

Download reference in RIS | BibTeX

Caswell, H. (2007). Sensitivity analysis of transient population dynamics. Ecology Letters 10(1): 1-15.

Weblink doi:10.1111/j.1461-0248.2006.01001.x
Download reference in RIS | BibTeX

Caswell, H. (2008). Perturbation analysis of nonlinear matrix population models. Demographic Research 18: 59-116.

Weblink doi:10.4054/DemRes.2008.18.3
Download reference in RIS | BibTeX

Caswell, H. (2009). Stage, age, and individual stochasticity in demography. Oikos 118(12): 1763-1782.

Weblink doi:10.1111/j.1600-0706.2009.17620.x
Download reference in RIS | BibTeX

Caswell, H. (2010). Reproductive value, the stable age distribution, and the sensitivity of the population growth rate to changes in vital rates. Demographic Research 23: 531-548.

Weblink doi:10.4054/DemRes.2010.23.19
Download reference in RIS | BibTeX

Caswell, H. (2012). Matrix models and sensitivity analysis of populations classified by age and stage: A vec-permutation matrix approach. Theoretical Ecology 5(3): 403-417.

Weblink doi:10.1007/s12080-011-0132-2
Download reference in RIS | BibTeX

Caswell, H. and Salguero-Gomez, R. (2013). Age, stage and senescence in plants. Journal of Ecology 101(3): 585-595.

Weblink doi:10.1111/1365-2745.12088
Download reference in RIS | BibTeX

Caswell, H. and Shyu, E. (2012). Sensitivity analysis of periodic matrix population models. Theoretical Population Biology 82(4): 329-339.

Weblink doi:10.1016/j.tpb.2012.03.008
Download reference in RIS | BibTeX

Cohen, J.E., Roig, M., Reuman, D.C., and GoGwilt, C. (2008). International migration beyond gravity: A statistical model for use in population projections. Proceedings of the National Academy of Sciences 105(4): 15269-15274.

Weblink doi:10.1073/pnas.0808185105
Download reference in RIS | BibTeX

Colantuoni, E., Surplus, G., Hackman, A., Arrighi, H. M., and Brookmeyer, R. (2010). Web-based application to project the burden of Alzheimer's disease. Alzheimer's and Dementia 6(5): 425-428.

Weblink doi:10.1016/j.jalz.2010.01.014
Download reference in RIS | BibTeX

Courgeau, D. (1995). Migration theories and behavioural models. International Journal of Population Geography 1(1): 19-27.

Weblink doi:10.1002/ijpg.6060010103
Download reference in RIS | BibTeX

Ekamper, P. and Keilman, N. (1993). Sensitivity analysis in a multidimensional demographic projection model with a two-sex algorithm. Mathematical Population Studies 4(1): 21-36.

Weblink doi:10.1080/08898489309525354
Download reference in RIS | BibTeX

Engelman, M., Caswell, H., and Agree, E. (2014). Why do lifespan variability trends for the young and old diverge? A perturbation analysis. Demographic Research 30: 1367-1396.

Weblink doi:10.4054/DemRes.2014.30.48
Download reference in RIS | BibTeX

Fox, P.J., Kohatsu, N., Max, W., and Arnsberger, P. (2001). Estimating the costs of caring for people with Alzheimer Disease in California: 2000-2040. Journal of Public Health Policy 22(1): 88-97.

Weblink doi:10.2307/3343555
Download reference in RIS | BibTeX

Gerland, P., Raftery, A., Sevcikova, H., Li, N., Gu, D., Spoorenberg, T., Alkema, L., Fosdick, B., Chunn, J., Lalic, N., Bay, G., Buettner, T., Heilig, G., and Wilmoth, J. (2014). World population stabilization unlikely this century. Science 346(6206): 234-237.

Weblink doi:10.1126/science.1257469
Download reference in RIS | BibTeX

Goldstein, J.R. and Stecklov, G. (2002). Long-range population projections made simple. Population and Development Review 28(1): 121-141.

Weblink doi:10.1111/j.1728-4457.2002.00121.x
Download reference in RIS | BibTeX

Hunter, C.M., Caswell, H., Runge, M.C., Regehr, E.V., Amstrup, S.C., and Stirling, I. (2010). Climate change threatens polar bear populations: a stochastic demographic analysis. Ecology 91(10): 2883-2897.

Weblink doi:10.1890/09-1641.1
Download reference in RIS | BibTeX

Instituto Nacional de Estadística (2012a). Press Release. Population projections for 2012.

Weblink http://www.ine.es/en/prensa/np744\_en.pdf
Download reference in RIS | BibTeX

Instituto Nacional de Estadística (2012b). Proyección de la Población de España a Largo Plazo (2012-2052). Metodología.

Weblink http://www.ine.es/metodologia/t20/t2030251.pdf
Download reference in RIS | BibTeX

Instituto Nacional de Estadística (2012c). Demographic evolution parameters 2012-2051. (http://www.ine.es/jaxi/menu.do?type=pcaxis&path=%2Ft20%2Fp251&file=inebase&L=1).

Download reference in RIS | BibTeX

Jenouvrier, S., Caswell, H., Barbraud, C., Holland, M., Stroeve, J., and Weimerskirch, H. (2009). Demographic models and IPCC climate projections predict the decline of an emperor penguin population. Proceedings of the National Academy of Sciences 106(6): 1844-1847.

Weblink doi:10.1073/pnas.0806638106
Download reference in RIS | BibTeX

Jenouvrier, S., Holland, M., Stroeve, J., Barbraud, C., Weimerskirch, H., Serreze, M., and Caswell, H. (2012). Effects of climate change on an emperor penguin population: analysis of coupled demographic and climate models. Global Change Biology 18(9): 2756-2770.

Weblink doi:10.1111/j.1365-2486.2012.02744.x
Download reference in RIS | BibTeX

Jenouvrier, S., Holland, M., Stroeve, J., Serreze, M., Barbraud, C., Weimerskirch, H., and Caswell, H. (2014). Projected continent-wide declines of the emperor penguin under climate change. Nature Climate Change 4: 715-718.

Weblink doi:10.1038/nclimate2280
Download reference in RIS | BibTeX

Keilman, N., Pham, D.Q., and Hetland, A. (2002). Why population forecasts should be probabilistic - illustrated by the case of Norway. Demographic Research 6: 409-454.

Weblink doi:10.4054/DemRes.2002.6.15
Download reference in RIS | BibTeX

Keyfitz, N. (1964). The population projection as a matrix operator. Demography 1(1): 56-73.

Weblink doi:10.1007/BF03208445
Download reference in RIS | BibTeX

Kim, K. and Cohen, J.E. (2010). Determinants of international migration flows to and from industrialized countries: A panel data approach beyond gravity. International Migration Review 44(4): 899-932.

Weblink doi:10.1111/j.1747-7379.2010.00830.x
Download reference in RIS | BibTeX

Lanzieri, G. (2009). Europop2008: A set of population projections for the European Union.

Download reference in RIS | BibTeX

Magnus, J.R. and Neudecker, H. (1985). Matrix differential calculus with applications to simple, Hadamard, and Kronecker products. Journal of Mathematical Psychology 29(4): 474-492.

Weblink doi:10.1016/0022-2496(85)90006-9
Download reference in RIS | BibTeX

Magnus, J.R. and Neudecker, H. (1988). Matrix differential calculus with applications in statistics and econometrics. New York: John Wiley and Sons.

Download reference in RIS | BibTeX

Prskawetz, A. and Sambt, J. (2014). Economic support ratios and the demographic dividend in Europe. Demographic Research 30: 963-1010.

Weblink doi:10.4054/DemRes.2014.30.34
Download reference in RIS | BibTeX

Rogers, A. (1975). Introduction to multiregional mathematical demography. New York: John Wiley.

Download reference in RIS | BibTeX

Rogers, A. (1985). Regional population projection models. Beverly Hills: Sage.

Download reference in RIS | BibTeX

Roth, W.E. (1934). On direct product matrices. Bulletin of the American Mathematical Society 40: 461-468.

Weblink doi:10.1090/S0002-9904-1934-05899-3
Download reference in RIS | BibTeX

Samuelson, P.A. (1947). Foundations of economic analysis. Cambridge, MA: Harvard University Press.

Download reference in RIS | BibTeX

van Raalte, A. and Caswell, H. (2013). Perturbation analysis of indices of lifespan variability. Demography 50(5): 1615-1640.

Weblink doi:10.1007/s13524-013-0223-3
Download reference in RIS | BibTeX

Wancata, J., Musalek, M., Alexandrowicz, R., and Krautgartner, M. (2003). Number of Dementia sufferers in Europe between the years 2000 and 2050. European Psychiatry 18(6): 306-313.

Weblink doi:10.1016/j.eurpsy.2003.03.003
Download reference in RIS | BibTeX

Willekens, F.J. (1977). Sensitivity analysis in multiregional demographic models. Environment and Planning A 9(6): 653-674.

Weblink doi:10.1068/a090653
Download reference in RIS | BibTeX

Zipf, G.K. (1946). The P1P2/D hypothesis: On the inter-city movement of persons. Amerian Sociological Review 11(6): 677-686.

Weblink doi:10.2307/2087063
Download reference in RIS | BibTeX