Volume 35 - Article 38 | Pages 1135–1148 Author has provided data and code for replicating results

Multiple imputation for demographic hazard models with left-censored predictor variables: Application to employment duration and fertility in the EU-SILC

By Michael Rendall, Angela Greulich

Print this page  Facebook  Twitter

 

 
Date received:21 Mar 2016
Date published:20 Oct 2016
Word count:2335
Keywords:employment spells, fertility, left-censored data, multiple imputation, panel data
DOI:10.4054/DemRes.2016.35.38
Additional files:readme.35-38 (text file, 914 Byte)
 demographic-research.35-38 (zip file, 34 kB)
 

Abstract

Objective: A common problem when using panel data is that individuals’ histories are incompletely known at the first wave. We demonstrate the use of multiple imputation as a method to handle this partial information, and thereby increase statistical power without compromising the model specification.

Methods: Using EU-SILC panel data to investigate full-time employment as a predictor of partnered women’s risk of first birth in Poland, we first multiply imputed employment status two years earlier to cases for which employment status is observed only in the most recent year. We then derived regression estimates from the full, multiply imputed sample, and compared the coefficient and standard error estimates to those from complete-case estimation with employment status observed both one and two years earlier.

Results: Relative to not being full-time employed, having been full-time employed for two or more years was a positive and statistically significant predictor of childbearing in the multiply imputed sample, but was not significant when using complete-case estimation. The variance about the ‘two or more years’ coefficient was one third lower in the multiply imputed sample than in the complete-case sample.

Contribution: By using MI for left-censored observations, researchers using panel data may specify a model that includes characteristics of state or event histories without discarding observations for which that information is only partially available. Using conventional methods, either the analysis model must be simplified to ignore potentially important information about the state or event history (risking biased estimation), or cases with partial information must be dropped from the analytical sample (resulting in inefficient estimation).

Author's Affiliation

Michael Rendall - University of Maryland, United States of America [Email]
Angela Greulich - Université Paris 1 Panthéon-Sorbonne, France [Email]

Other articles by the same author/authors in Demographic Research

» Education, labour, and the demographic consequences of birth postponement in Europe
Volume 36 - Article 23

» The quality of periodic fertility measures in EU-SILC
Volume 36 - Article 17

Most recent similar articles in Demographic Research

» Educational differences in period fertility: The case of South Korea, 1996–2010
Volume 38 - Article 13    | Keywords: fertility

» First and second births among immigrants and their descendants in Switzerland
Volume 38 - Article 11    | Keywords: fertility

» Historical reproductive patterns in developed countries: Aggregate-level perspective
Volume 38 - Article 2    | Keywords: fertility

» The wage penalty for motherhood: Evidence on discrimination from panel data and a survey experiment for Switzerland
Volume 37 - Article 56    | Keywords: panel data

» On the pace of fertility decline in sub-Saharan Africa
Volume 37 - Article 40    | Keywords: fertility