Volume 38 - Article 29 | Pages 773–842 Editor's Choice Author has provided data and code for replicating results Article has associated letter

Gompertz, Makeham, and Siler models explain Taylor's law in human mortality data

By Joel E. Cohen, Christina Bohk, Roland Rau

Print this page  

 

References

Bergeron-Boucher, M.P., Ebeling, M., and Canudas-Romo, V. (2015). Decomposing changes in life expectancy: Compression versus shifting mortality. 33(14): 391–424.

Weblink doi:10.4054/DemRes.2015.33.14
Download reference in RIS | BibTeX

Bohk, C., Rau, R., and Cohen, J.E. (2015). Taylor’s power law in human mortality. 33(21): 589–610.

Weblink doi:10.4054/DemRes.2015.33.21
Download reference in RIS | BibTeX

Bongaarts, J. (2005). Long-range trends in adult mortality: Models and projection methods. 42(1): 23–49.

Weblink doi:10.1353/dem.2005.0003
Download reference in RIS | BibTeX

Booth, H. and Tickle, L. (2008). Mortality modelling and forecasting: A review of methods. 3(1–2): 3–43.

Weblink doi:10.1017/S1748499500000440
Download reference in RIS | BibTeX

Brouhns, N., Denuit, M., and Vermunt, J.K. (2002). A Poisson log-bilinear regression approach to the construction of projected lifetables. 31(3): 373–393.

Weblink doi:10.1016/S0167-6687(02)00185-3
Download reference in RIS | BibTeX

Cairns, A.J.G., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D., Ong, A., and Balevich, I. (2009). A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. 13(1): 1–35.

Weblink doi:10.1080/10920277.2009.10597538
Download reference in RIS | BibTeX

Canudas-Romo, V. (2010). Three measures of longevity: Time trends and record values. 47(2): 299–312.

Weblink doi:10.1353/dem.0.0098
Download reference in RIS | BibTeX

Canudas-Romo, V. (2008). The modal age at death and the shifting mortality hypothesis. 19(30): 1179–1204.

Weblink doi:10.4054/DemRes.2008.19.30
Download reference in RIS | BibTeX

Christensen, K., Doblhammer, G., Rau, R., and Vaupel, J.W. (2009). Ageing populations: The challenges ahead. 374(9696): 1196–1208.

Weblink doi:10.1016/S0140-6736(09)61460-4
Download reference in RIS | BibTeX

Cohen, J.E. (2013). Taylor’s power law of fluctuation scaling and the growth-rate theorem. 88: 94–100.

Weblink doi:10.1016/j.tpb.2013.04.002
Download reference in RIS | BibTeX

Cohen, J.E. (2016). Statistics of primes (and probably twin primes) satisfy Taylor’s law from ecology. 70(4): 399–404.

Weblink doi:10.1080/00031305.2016.1173591
Download reference in RIS | BibTeX

Cohen, J.E., Xu, M., and Brunborg, H. (2013). Taylor’s law applies to spatial variation in a human population. 69(1): 25–60.

Download reference in RIS | BibTeX

Eisler, Z., Bartos, I., and Kertész, J. (2008). Fluctuation scaling in complex systems: Taylor’s law and beyond. 57(1): 89–142.

Weblink doi:10.1080/00018730801893043
Download reference in RIS | BibTeX

Gompertz, B. (1825). On the nature of the function of the law of human mortality, and on a new mode of determining the value of life contingencies. 115(513–583).

Weblink doi:10.1098/rstl.1825.0026
Download reference in RIS | BibTeX

Grigoriev, P., Doblhammer-Reiter, G., and Shkolnikov, V. (2013). Trends, patterns, and determinants of regional mortality in Belarus, 1990–2007. 67(1): 61–81.

Weblink doi:10.1080/00324728.2012.724696
Download reference in RIS | BibTeX

Grigoriev, P., S., Vladimir, Andreev, E.M., Jasilionis, D., Jdanov, D., Meslé, F., and Vallin, J. (2010). Mortality in Belarus, Lithuania, and Russia: Divergence in recent trends and possible explanations. 26: 245–274.

Weblink doi:10.1007/s10680-010-9210-1
Download reference in RIS | BibTeX

Heligman, L. and Pollard, J.H. (1980). The age pattern of mortality. 107: 49–80.

Weblink doi:10.1017/S0020268100040257
Download reference in RIS | BibTeX

Horiuchi, S., Ouellette, N., Cheung, S.L.K., and Robine, J.M. (2013). Modal age at death: Lifespan indicator in the era of longevity extension. 11: 37–69.

Weblink doi:10.1553/populationyearbook2013s37
Download reference in RIS | BibTeX

Human Mortality Database (2015). Berkeley and Rostock: University of California and Max Planck Institute for Demographic Research.

Weblink www.mortality.org
Download reference in RIS | BibTeX

Kendal, W.S. (2004). Taylor’s ecological power law as a consequence of scale invariant exponential dispersion models. 1: 193–209.

Weblink doi:10.1016/j.ecocom.2004.05.001
Download reference in RIS | BibTeX

Kendal, W.S. (2013). Fluctuation scaling and 1/f noise: Shared origins from the Tweedie family of statistical distributions. 2(2): 40–49.

Weblink doi:10.5963/JBAP0202002
Download reference in RIS | BibTeX

Kendal, W.S. and Jørgensen, B. (2011). Taylor’s power law and fluctuation scaling explained by a central-limit-like convergence. 83(6): 066115.

Weblink doi:10.1103/PhysRevE.83.066115
Download reference in RIS | BibTeX

Kendal, W.S. and Jørgensen, B. (2015). A scale invariant distribution of the prime numbers. 3: 528–540.

Weblink doi:10.3390/computation3040528
Download reference in RIS | BibTeX

Kilpatrick, A.M. and Ives, A.R. (2003). Species interactions can explain Taylor’s power law for ecological time series. 422(65–68).

Weblink doi:10.1038/nature01471
Download reference in RIS | BibTeX

Makeham, W.M. (1860). On the law of mortality and the construction of annuity tables. 8(6): 301–310.

Weblink doi:10.1017/S204616580000126X
Download reference in RIS | BibTeX

Missov, T.I., Lenart, A., Nemeth, L., Canudas-Romo, V., and Vaupel, J.W. (2015). The Gompertz force of mortality in terms of the modal age at death. 32(36): 1031–1048.

Weblink doi:10.4054/DemRes.2015.32.36
Download reference in RIS | BibTeX

Mullen, K., Ardia, D., Gil, D., Windover, D., and Cline, J. (2011). DEoptim: An R package for global optimization by differential evolution. 40(6): 1–26.

Weblink doi:10.18637/jss.v040.i06
Download reference in RIS | BibTeX

Oksuzyan, A., Juel, K., Vaupel, J.W., and Christensen, K. (2008). Men: Good health and high mortality: Sex differences in health and aging. 20(2): 91–102.

Weblink doi:10.1007/BF03324754
Download reference in RIS | BibTeX

R Core Team (2015). R: A language and environment for statistical computing [electronic resource]. Vienna: R Foundation for Statistical Computing.

Weblink http://www.R-project.org/
Download reference in RIS | BibTeX

Rau, R., Jasilionis, D., Soroko, E.L., and Vaupel, J.W. (2008). Continued reductions in mortality at advanced ages. 34(4): 747–768.

Weblink doi:10.1111/j.1728-4457.2008.00249.x
Download reference in RIS | BibTeX

Renshaw, A.E. and Haberman, S. (2006). A cohort-based extension to the Lee–Carter model for mortality reduction factors. 38(3): 556–570.

Weblink doi:10.1016/j.insmatheco.2005.12.001
Download reference in RIS | BibTeX

Shkolnikov, V.M., Andreev, E.M., McKee, M., and Leon, D.A. (2013). Components and possible determinants of the decrease in Russian mortality in 2004–2010. 28(32): 917–950.

Weblink doi:10.4054/DemRes.2013.28.32
Download reference in RIS | BibTeX

Siler, W. (1979). A competing-risk model for animal mortality. 60(4): 750–757.

Weblink doi:10.2307/1936612
Download reference in RIS | BibTeX

Siler, W. (1983). Parameters of mortality in human populations with widely varying life spans. 2: 373–380.

Weblink doi:10.1002/sim.4780020309
Download reference in RIS | BibTeX

Taylor, L.R. (1961). Aggregation, variance and the mean. 189(732–735).

Weblink doi:10.1038/189732a0
Download reference in RIS | BibTeX

Thiele, T.N. (1872). On a mathematical formula to express the rate of mortality throughout the whole of life, tested by a series of observations made use of by the Danish Life Insurance Company of 1871. 16(5): 313–329.

Weblink doi:10.1017/S2046167400043688
Download reference in RIS | BibTeX

Tippett, M.K. and Cohen, J.E. (2016). Tornado outbreak variability follows Taylor’s power law of fluctuation scaling and increases dramatically with severity. 7: 10668.

Weblink doi:10.1038/ncomms10668
Download reference in RIS | BibTeX

Vaupel, J.W. (2010). Biodemography of human ageing. 464(536–542).

Weblink doi:10.1038/nature08984
Download reference in RIS | BibTeX

Xiao, X., Locey, K.J., and White, E.P. (2015). A process-independent explanation for the general form of Taylor’s law. 186(2): E51–E60.

Weblink doi:10.1086/682050
Download reference in RIS | BibTeX